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Abstract

With an increasing popularity of online streaming platforms, the amount of video content

being streamed over mobile cellular networks has seen an enormous increase over the past

decade. Videos are projected to account for 79% of the total mobile data traffic by the year

2022. Multicast transmissions provide an excellent means of catering to this bandwidth

intensive video streaming traffic. In this thesis, we address various problems related to

resource allocation in cellular multicast. For effective use of multicast transmissions, we

need to appropriately group users and efficiently allocate resources to multicast streams.

Users grouped for multicast transmissions must experience similar channel conditions in

addition to requiring the same content. Variations of channel states of users across time

and frequency make grouping a complicated problem. We prove that the optimal grouping

problem is NP-hard, and hence, no polynomial-time algorithms exist for determining

the optimal grouping. We propose a heuristic grouping scheme that divides users into

multicast groups based on their average channel states.

Multicast streaming may involve services like online movie premieres that require

high quality video content to be delivered to the users. For such services, we consider a

lossless multicast system that serves each user in each time slot. We formulate the resource

allocation problem for such a lossless multicast system to meet the rate requirements of

all users in minimum possible spectrum resources. We prove that this optimal resource

allocation problem is NP-hard. Therefore, we propose two efficient heuristic schemes for

solving this problem. We also design a randomized algorithm based on Simulated An-

nealing that works iteratively to estimate the optimal resource allocation and provides a

benchmark for performance evaluation of the resource allocation heuristics. Our simula-

tions indicate that the proposed heuristics provide solutions close to the optimal.

The performance of a lossless multicast system that serves all users in each time
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slot is always dependent on the weakest user in the system. This leads to a loss in

overall system performance and dissatisfaction of users experiencing good channels. We

leverage the loss tolerant nature of video streams to overcome these issues. Due to the

loss tolerant nature of videos, we can selectively drop packets from video streams without

any significant degradation in the quality experienced by end users. For streaming of

live events such as sports events, news feeds, factors such as delay take precedence over

video quality. We propose using loss tolerant multicasting to serve such applications.

We convert the problem of resource allocation in such a loss tolerant multicast system

to the problem of stabilizing a constructed virtual queueing system. We propose two

loss optimal resource allocation policies for this system. Through extensive simulations,

we show that the proposed policies perform significantly better than policies from the

existing literature.

Due to the wide variety of services available nowadays, a cell has to cater to a

heterogeneous mix of users and services having diverse QoS requirements. The existing

literature lacks a generalized resource allocation algorithm that can adapt to optimize

any system parameter to meet the QoS requirements of any service. We propose such a

generalized auction based resource allocation algorithm that can allocate resources to a

diverse set of services simultaneously. We prove that the proposed algorithm is strategy-

proof. Hence, it successfully elicits the actual valuations of users for the system resources

and maximizes the social utility of the system.

We also propose the use of Multi-Connectivity in multicast transmissions. Multi-

connectivity has a potential to improve the performance of video multicast transmissions

significantly. We propose the procedures and signaling exchange required for establishing

multi-connectivity in cellular multicast. We prove that the resource allocation problem

that maximizes the number of users served by multi-connectivity multicast is NP-hard.

We propose a greedy approximation algorithm for this resource allocation problem that

provides an approximation ratio of (1− 1
e
). No polynomial-time algorithm can provide a

better approximation for this problem.

Since video streaming services are the primary focus of this thesis, we have made

use of traces from actual video streams to generate realistic video traffic patterns in our

simulations.
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Chapter 1

Introduction

The unprecedented growth of mobile data traffic in the last decade has been the main

driver of technological advancements in mobile telecommunication. The global Mobile

Data Traffic (MDT) is expected to grow at a compound annual growth rate of around 46

percent from 2017 to 2022, reaching 77.5 ExaBytes (EB) per month by 2022 [3]. By 2022,

more than 90 % of the MDT will emanate from smartphones [3]. In India alone, the yearly

MDT increased from 0.83 EB in 2014 to 46.4 EB in 2018 [4], witnessing a 58 fold increase

in a span of four years. Video traffic is the largest contributor to this massive amount

of mobile data. Videos are projected to account for 79% of the total MDT by the year

2022 [3]. The amount of mobile video traffic will reach 69 EB per month in 2022 from 8.5

EB per month in 2016 [5]. With the widespread deployment of Fourth Generation (4G)

Long Term Evolution (LTE) worldwide, the number of high-speed mobile connections has

seen an enormous increase. This has also contributed to an unparalleled amount of videos

being sent over the Internet every day.

The explosion of video traffic has essentially transitioned us from the age of down-

loads to an age of streaming. This paradigm shift has been primarily driven by the grow-

ing popularity of platforms like Netflix, YouTube, Hotstar, Hulu, Amazon Prime Video.

Prevalence of such streaming services has led to a fundamental shift in the way users

consume online video content. Users increasingly prefer streaming content over cellular

networks on the go on their mobile devices like smartphones and tablets. This often in-

volves online streaming of television (TV) programs, live streaming of major world events,

sports matches, software updates, news feeds. All these applications require transmitting
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the same content to a large audience simultaneously.

Multicast Group 1 Multicast Group 2 

Figure 1.1: Multicast transmissions in a cell

Current cellular communications are primarily based on one-to-one or unicast trans-

missions. In unicast, the base station communicates with each user separately, using

different resources for each one of them. Using unicast transmissions for the above men-

tioned applications and assigning orthogonal resources to all users receiving the same

content consumes a substantial fraction of the limited amount of spectrum available for

use by cellular systems. This has created an immediate need for techniques that can

better utilize the system bandwidth and accommodate this surge in video traffic within

the available spectrum resources. Multicast transmission is one such technique that can

significantly ease the burden on cellular resources. Multicast refers to one-to-many trans-

missions in which several users receive the same content over shared spectrum resources.

Figure 1.1 illustrates the use of multicast transmissions in a cell. Using multicast instead

of unicast for serving streaming applications enables efficient bandwidth usage as it can

accommodate more users and services within the available resources.
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Using multicast saves valuable resources which enable the network to support users

in numbers otherwise impossible to handle using unicast. Let us take an example to un-

derstand this. Consider a cell with 50 users requiring the same content and 50 channels

available for allocation in a time slot. This is an everyday practical use case when stream-

ing live events. Let the minimum rate required by the users be 103 bits/slot. Consider

that all users are experiencing similar channel states so that we can transmit over 103 bits

in each channel. If unicast transmission is used here, one channel will be allocated to each

user to satisfy the required rate, and all the available channels will be used. On the other

hand, if we make a single multicast group of all the users, we can provide the required

rate in a single channel to all the users. Multicast, therefore, uses 49 fewer channels than

unicast, which can be used to support more traffic. Instead of 50 users, if we had 60 users

in this example, unicast transmission would become infeasible, and 10 users would have

to be blocked. However, with multicast, we can still provide the required rate to all users

in a single channel. This example illustrates how multicast can support many more users

than unicast transmissions. Multicast has recently been garnering much attention in the

research community as well as the industry. As of September 2018, KT, Verizon, Telstra

and Reliance (Jio) have already deployed LTE multicast services, and 41 operators have

invested in LTE multicast [6] in the form of trials and deployments worldwide.

We consider the use of multicast transmissions primarily for video streaming in LTE

and Fifth Generation (5G) cellular networks. In Sections 1.1 and 1.2, we discuss certain

aspects of LTE related to resource allocation and multicast, respectively. In Section 1.3,

we discuss the challenges presented by optimal grouping and resource allocation prob-

lems in cellular multicast transmissions. We then discuss the motivation of the thesis in

Section 1.4. The organization and the main contributions of this thesis are presented in

Section 1.5.

Remark 1. The work done in this thesis was started in 2014 when LTE systems were being

deployed worldwide but as of writing this thesis, work on 5G technology and standards is

in advanced stage. While we discuss most of the problems in this thesis in the context of

an LTE system, all the results and algorithms proposed are also equally applicable to the

5G cellular systems. We discuss the necessary generalizations of the proposed solutions

wherever needed.
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1.1 Overview of Resource Allocation in LTE

LTE is part of the Fourth Generation (4G) of wireless communications. LTE uses Or-

thogonal Frequency Division Multiple Access (OFDMA) for downlink transmissions and

Single-carrier FDMA (SC-FDMA) for uplink transmissions. In LTE, the base station is

given the name of evolved NodeB (eNB) and any device that enables the end users to

communicate with the LTE system is called a User Equipment (UE). The bandwidth of

LTE systems is variable ranging from 1.4 to 20 MHz. The available system bandwidth is

divided on a time and frequency scale. On the temporal scale, the available bandwidth

is divided into radio frames. A radio frame in LTE spans 10 ms and consists of 10 sub-

frames of 1 ms each. A sub-frame is further composed of two slots of 0.5 ms each, and

each slot consists of 7 OFDM symbols. On the frequency scale, a sub-frame is partitioned

into blocks of 12 sub-carriers spanning 180 kHz with a sub-carrier spacing of 15 kHz. The

resource block formed by 12 sub-carriers and spanning over one slot (0.5 ms) is termed

as a Physical Resource Block (PRB). This resource structure is illustrated in Figure 1.2.

Resource allocation in LTE is done on the scale of PRBs. The number of PRBs in a

sub-frame ranges from 6 in a 1.4 MHz LTE system to 100 in a 20 MHz system.

The amount of data that can be transmitted in a PRB is determined by the Modu-

lation and Coding Scheme (MCS) used. In LTE, UEs report their channel states to the

eNB in the form of a 4 bit value known as the Channel Quality Indicator (CQI). This 4 bit

indicator can take 15 distinct integral values. CQI is directly proportional to the channel

gain of a UE, i.e., a higher CQI indicates a better channel. A higher CQI also means

that the eNB can use a better modulation scheme for transmitting data to that UE. This

relationship between CQI and MCS is defined in Third Generation Partnership Project

(3GPP) standards for LTE [7]. These CQI to MCS mappings determine the modulation

scheme and code rate that can be used while transmitting data to a UE. The process of

mapping is carried out as follows. We first determine the SNR of the UE which is mapped

to the CQI using the CQI table specified in 3GPP R1-081483 [8]. The corresponding MCS

index is then determined based on the spectral efficiency using the MCS table also given

in 3GPP R1-081483 [8]. Finally, the MCS index is mapped to the Transport Block Size

(TBS) index and the TBS index gives us the TBS using the mappings specified in Tables

7.1.7.1 − 1 and 7.1.7.2.1 − 1 of 3GPP TS 36.213 [7] respectively. Thus, the amount of
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data that can be sent in one PRB is a function of the CQI of the user. The channel gain

of a UE and hence its CQI can vary from one sub-frame to another. Due to frequency

selective fading, the CQI of a user also varies across PRBs in a sub-frame. Therefore, the

rate at which data can be transmitted to a UE in a particular sub-frame is different for

different PRBs.

Allocation of resources in LTE is done once every sub-frame (1 ms). The resource

allocation information is contained in a Downlink Control Information (DCI) which is

conveyed to the UEs over the Physical Downlink Control Channel (PDCCH). DCI informs

UEs, among other things, of which PRBs carry their data and what kind of modulation

has been used to send the data. The UE then uses this information to decode the data

sent by the eNB successfully.

1.2 Overview of Multicast in LTE

The provisions for multicast and broadcast services in LTE are known as Multimedia

Broadcast Multicast Services (MBMS). MBMS was introduced in Release 9 of the 3GPP

standards for LTE [9]. Multicast in MBMS functions like a subscription service. It consists

of eight phases, namely, subscription, service announcement, joining, session start, MBMS

notification, data transfer, session stop, and leaving. Of these, subscription, joining, and

leaving are up to the user. The service announcement informs users of the available MBMS

services. The user can then get associated with a particular service via subscription and

join to indicate that it is interested in receiving the MBMS content.

To support MBMS, three new network elements have been added to the LTE archi-

tecture, Broadcast Multicast Service Centre (BM-SC), MBMS GateWay (MBMS-GW)

and Multicell/Multicast Coordination Entity (MCE) [10]. The positioning of these ele-

ments in the architecture is shown in Figure 1.3. BM-SC serves as an interface between

core network and multicast/broadcast content providers. It is responsible for transport-

ing MBMS data into the core network, managing group memberships and subscriptions

and charging for MBMS sessions [9]. MCE is responsible for allocating radio resources to

the eNBs [9] for Multimedia Broadcast Single Frequency Network (MBSFN) operations.

MBMS-GW uses IP multicast to forward the MBMS session data to the eNBs. The eNBs
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can then transmit the data to the UEs via wireless multicast/broadcast.

MBMS defines two modes of operation, namely, MBSFN and Single Cell Point-to-

Multipoint (SC-PTM) transmissions. In MBSFN operations, several eNBs in an MBSFN

area transmit the same content in strict synchronization. Owing to tight synchronization

between transmissions, content from different eNBs is perceived by the UEs as multipath

transmissions from a single source. This results in improved spectral efficiency, especially

at the cell edge. The signals from the neighboring eNBs, which would act as interference

in regular operation, interfere constructively with the useful signal and reinforce it. The

reinforced signal results in higher SNR and hence improves the spectral efficiency of the

system. SC-PTM mode of MBMS transmissions involves multicasting/broadcasting of
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content within an individual cell separately.

MBMS is an idle mode operation [11] which means that there is no need for a Radio

Resource Control (RRC) connection to be established for a UE to receive MBMS services.

The control information required by a UE for receiving MBMS services is contained in

SystemInformationBlockType13 (SIB13) which is transmitted by the eNB over Broadcast

Control Channel (BCCH). SIB13 provides the control information needed by the UE to

read Multicast Control Channel (MCCH). Using the information conveyed over MCCH,

the UE can then procure Multicast Traffic Channel (MTCH) of the service that it wants

to receive.

1.3 Challenges in Multicast Grouping and Resource

Allocation

In this thesis, we address various problems related to grouping and resource allocation

in multicast transmissions. For successfully using multicast transmissions in a cellular
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system, two main challenges need to be addressed. The first is the problem of determining

how to divide UEs into multicast groups. The set of UEs grouped together to be served

on common spectrum resources form a multicast group. The UEs in a multicast group are

treated as a single entity by the eNB and are served using the same PRBs. Which UEs are

grouped together is dictated by the criteria used for grouping. One obvious requirement

is for all the UEs in a group to require the same content. However, as we shall see later,

grouping all the UEs who need the same content together may lead to a degraded system

performance due to varied channel gains experienced by them. Therefore, channel gains

of the UEs also need to be considered during group formation. Variation of the channel

gains of users over time and different frequencies makes optimal group formation a complex

problem. The second challenge in multicast transmissions is that of allocating resources

to the multicast groups. Unlike unicast, where PRBs are allocated to individual users,

in multicast, PRBs are allocated to groups of users. Different users typically experience

different channel states in a PRB. As a result, while assigning PRBs to a multicast group,

the channel states of all the users in it need to be taken into consideration. This makes

the resource allocation problem for multicast significantly more complicated than that for

unicast transmissions. We discuss the challenges associated with these two problems in

greater detail in the following sections.

1.3.1 Grouping

We begin by discussing how grouping plays a crucial role in multicast transmissions. When

a PRB is allotted to a set of users, the rate at which reliable transmission can take place

corresponds to the user with the worst channel state in the group. Due to this dependence

on channels, creating groups at random can lead to degraded system performance. Let us

consider an example to illustrate this. Say we have 10 PRBs available for allocation in a

sub-frame and two users, U1 and U2 in the cell who require the same content. Let the rate

required by each user be 103 bits/sub-frame. Consider a channel state where U1 has a

good channel in all odd numbered PRBs in which as many as 103 bits can be transmitted

at a time. In the rest of the PRBs, U1 can get a maximum of 100 bits each. U2 has a good

channel in even-numbered PRBs and can receive 103 bits in each of them and 100 bits in

odd numbered PRBs. Now, if we choose to group these users for multicast transmission,
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we need to transmit data at the rate of the weakest user in the group. In this case, we can

transmit at most 100 bits in each PRB. Therefore, to satisfy the required rate, we need to

use all 10 PRBs. On the other hand, if we use unicast transmissions, U1 can be allotted

PRB 1, U2 can be allotted PRB 2 and 103 bits can be transmitted in each of these PRBs.

In this case, the required rate for both users is satisfied in just 2 PRBs, 8 fewer than the

multicast scenario. This example shows that appropriate grouping of users is essential for

obtaining any benefit whatsoever from multicast operations.

As is clear from the above examples, the channel states of users need to be taken into

account while dividing the multicast UEs into groups. The main challenge in grouping

UEs based on their channel gains is that, due to fast fading, channel gains experienced

by UEs keep on changing. As a result, grouping done based on channel states in one

sub-frame may not be optimal in subsequent sub-frames. Grouping UEs based on their

instantaneous Signal-to-Noise Ratio (SNR) in every sub-frame is also not feasible as it

leads to increased control overhead due to frequent changes in grouping. Since each

multicast group is treated as a unique entity by the eNB, each group is assigned a unique

MBMS Radio Network Temporary Identifier (M-RNTI). M-RNTI of a group is used for

scrambling its DCI which carries the resource allocation information in LTE [12]. If

grouping is changed every sub-frame, a new M-RNTI has to be assigned and conveyed to

UEs every sub-frame, leading to increased control overhead. Therefore, grouping policies

need to achieve a balance between efficiency and robustness of grouping. Grouping policies

also need to answer critical questions like the number of groups to be formed or the

maximum number of UEs to be placed in a group. Creating a lesser number of groups

means more UEs in a single group which may result in lesser number of PRBs being used.

However, as the number of UEs in a group increases, the probability that at least one

UE is in deep fade also increases, leading to degraded system performance. On the other

hand, a larger number of groups may require more resources. Thus, there is a tradeoff

between the number and size of multicast groups which needs to be taken into account

while grouping.
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1.3.2 Resource Allocation

Resource allocation problem in a multicast system determines which PRB should be allo-

cated to which multicast group. A multicast group comprises several UEs with different

channel states and different achievable rates in a PRB. Hence, the rate at which data can

be successfully transmitted in a PRB depends on the channel states of all the users in

a group. Unlike unicast, there is no unique CQI value for a group. All UEs in a group

experience different channel states and hence have different CQI values, but the data

in a PRB can only be sent at one rate using a particular MCS. Therefore, the resource

allocation policy also needs to define what this rate and MCS of transmission should be.

For allocating PRBs, a resource allocation policy needs a representative CQI value for a

group in each PRB of a sub-frame. The most common practice is to use the CQI value

corresponding to the UE with the least channel gain in the group. This is done to ensure

that all users in a group can decode the transmitted content successfully. While choos-

ing a robust CQI ensures that the entire group is served, it leads to degradation in the

overall system performance. The weakest UE in a group limits the throughput of other

users who may be experiencing much better channel states, leading to user dissatisfac-

tion. A resource allocation policy for multicast transmissions, therefore, needs to balance

between robustness and improving system performance parameters such as the overall

system throughput.

1.4 Motivation for the Thesis

In this work, we study various aspects of grouping and resource allocation for multicast

transmissions. As discussed in Section 1.3.1, it is essential to use appropriate criteria

for dividing multicast users into groups. In addition to their content requirements, the

channel states of users also need to be taken into account while grouping. Since the channel

states of UEs can change every sub-frame, the ideal thing to do would be to group users

with similar channels together in every sub-frame. However, doing this every sub-frame

would result in a prohibitive amount of additional control overhead. The alternative is to

use the knowledge of the average channel state of the users to make grouping decisions

that remain viable for a reasonable duration. Knowing the average SNR of users and
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the statistical properties of the fading encountered, we can make reasonable predictions

about the channel states of users. These predictions can then be used to create a grouping

that remains feasible for a long enough period. Thus, grouping policies can be designed

based on the average channel states of users that can result in better user satisfaction and

overall system performance.

Multicast transmissions are uniquely suited for serving video streaming services

which are often requested by a large audience simultaneously. Video streaming could

involve real-time streaming for events such as a sport event, live telecasts of award shows,

political rallies, a live news feed, or real-time telecast of any other important event. For

such services, performance factors like delay and buffering time are much more important

than quality of the video i.e., some degradation in video quality may be acceptable if delay

and buffering time are kept small. On the other hand, for non-real-time streaming such as

the premiere of a movie or a series pilot, the video quality takes precedence over other pa-

rameters. The resource allocation policies for these two types of streaming services should

satisfy their unique performance requirements. For non-real-time services that prioritize

video quality, multicast streaming has to be lossless. All UEs subscribed to such services

should receive all video packets to ensure the highest viewing quality of the video stream.

Such lossless transmission requires a robust resource allocation scheme that transmits the

streaming content at a rate decodable by the weakest user in a multicast group. There-

fore, the resource allocation policy is constrained to serve all the users throughout the

duration of the session. For efficient resource utilization in such a system, we must ensure

that the rate requirements of the multicast users are satisfied in the minimum possible

number of PRBs. This problem is of great practical importance because it minimizes the

impact of multicast operations on other services that may be simultaneously going on in

a cell.

Serving each UE in every sub-frame makes the performance of multicast operations

dependent on the weakest users in the system. As a result, if a UE experiences poor

channel states for an extended period, the eNB has to continually allocate more PRBs to

the corresponding multicast group and transmit content at a lower MCS. This decreases

the overall system throughput and impacts the performance of other services in the cell.

Moreover, the users with good channel states are constantly forced to settle for lower rates
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despite their high CQI values, making them dissatisfied with the services. Under such

conditions, users with a good channel may choose to leave the MBMS session and opt for

a dedicated unicast stream instead, resulting in even more load on the system resources.

The answer to overcoming this bottleneck lies in exploiting some unique properties of

video streams. Videos are inherently tolerant to a certain amount of packet loss [13],

meaning that the quality perceived by the end user does not undergo any degradation

despite the loss of some packets. We can take advantage of this property for designing

resource allocation algorithms for real-time video streaming services that allow for some

amount of packet loss. The eNB can choose to selectively drop some packets of the weakest

users to improve the overall system performance. The system is no longer constrained to

serve every user in every sub-frame. Several factors need to be considered while designing

a resource allocation policy for such a system. The policy should be able to contain the

packet losses of users within certain allowable limits, and it should also ensure that no

user starves for long periods. We design such resource allocation policies in this work.

An LTE cell typically caters to several different kinds of services simultaneously.

The users in a cell could be using Voice over Internet Protocol (VoIP), downloading files

over a unicast link, streaming real-time and non-real-time multicast videos or simply

browsing the Internet. Each of these services has a different Quality of Service (QoS)

requirement and each service needs a resource allocation algorithm suited to its unique

requirements. For instance, even the two forms of multicast streaming require different

kinds of allocation algorithms, as discussed above. So, while catering to all these different

services at a time, which resource allocation algorithm should we use? Is it even possible

to satisfy the varying QoS requirements of all the services using a single algorithm? The

existing literature lacks a unified and flexible resource allocation policy that can meet the

requirements of different kinds of services. Considering the plethora of services provided

by today’s cellular networks, there is a need for designing such a unified resource allocation

algorithm. We address this requirement by designing a generalized policy that can be used

to cater to the requirements of a heterogeneous mix of users and services.

The MBSFN mode of operation in LTE was designed for achieving higher spectral

efficiency, especially at the cell edge. However, it has not seen much usage by the cellular

operators. One of the reasons for this is the rigidity of operation of MBSFNs. MBSFN
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requires all eNBs within an MBSFN area to transmit the same multicast stream over

the same resources in strict time synchronization. It also requires using extended Cyclic

Prefix (CP) to ensure that the users can combine multiple copies of the content received

by them. Using extended CPs leads to a decrease in the system throughput. We propose

the use of Multi-Connectivity (MC) with MBMS to overcome these issues. As discussed

in Section 1.2, the MBMS stream content is sent to all the eNBs by the MBMS-GW. Since

the content is already available in all the cells in an MBSFN area, using MC, a user can

independently receive the same stream from multiple eNBs in its vicinity. Like MBSFNs,

MC multicast also results in users receiving multiple copies of the same content which can

then be combined by them, resulting in improved performance. Besides, without the need

for synchronization, eNBs can individually optimize resource allocation in their respective

cells and use the most suitable PRBs for transmitting the MBMS content. The resulting

frequency diversity increases the probability of the MBMS content being successfully

delivered to the users. Using MC multicast in place of MBSFNs also eliminates the

control overhead involved in synchronizing multiple eNBs in the MBSFN area. MC has

never been studied in the context of multicast transmissions before. Therefore, there is a

need for investigating the impact of MC on the performance of multicast transmissions and

designing suitable resource allocation algorithms for it. We address both these problems

in this thesis.

1.5 Contributions and Organization

In this thesis, we focus on methods for improving video streaming using multicast trans-

missions and multi-connectivity. The related literature and open issues in this field are

discussed in Chapter 2. Chapters 3 through 6 discuss the main contributions of this thesis.

The chapter-wise contributions of this work are summarized below:

1. In Chapter 3, we address the problem of grouping and resource allocation in lossless

multicast transmissions to minimize the resource utilization of multicast applica-

tions. A large portion of multicast literature like [14] and [15] claim that the group-

ing and resource allocation problems are ‘hard to solve’ or ‘infeasible’. However,

none of these papers present any mathematical proof of hardness of these problems.
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In this work, we present the proof of NP-hardness of both the optimal grouping

as well as the optimal resource allocation problems. Since we prove both these

problems to be NP-hard, no polynomial-time algorithms exist for determining their

optimal solutions. Therefore, we use the following means to solve these problems:

(a) We devise a simulated annealing based randomized scheme for estimating the

optimal resource allocation. The randomized scheme works iteratively to con-

verge to the optimal solution with high probability. The output of this scheme

acts as a benchmark for evaluating the performance of heuristic resource allo-

cation schemes.

(b) We propose two heuristic schemes for resource allocation to multicast groups.

Through extensive simulations, we show that these schemes provide a signifi-

cant performance improvement over unicast transmissions. We also propose a

heuristic scheme for multicast group formation. We compare the performance

of the proposed policies with the existing state of the art through rigorous

simulations. Using traces from various video streams [16, 17], we evaluate the

performance of the proposed heuristics specifically for streaming video content.

The proposed policies succeed in meeting the requirements of video traffic in

far fewer PRBs than the existing state of the art.

2. In Chapter 4, we propose a model for a loss tolerant MBMS system. The system

allows for a certain fraction of packet losses in MBMS streams being transmitted

to multicast UEs as long as the losses stay within a predefined threshold. The loss

thresholds of UEs can be a function of the channel quality experienced as well as the

video content being streamed by them. Allowing for these losses can help control

congestion in the network during peak traffic hours. Our main contributions to

resource allocation in loss tolerant video streaming are:

(a) We convert the problem of resource allocation in a loss tolerant MBMS system

to a problem of stabilizing a virtual queueing system that models the loss

tolerant MBMS system. We prove that stabilizing the token queues in this

queueing system ensures that the losses encountered by all UEs stay below

their allowed thresholds.
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(b) We propose an online Loss Optimal Resource Allocation (LORA) policy for

resource allocation in the loss tolerant MBMS network. The loss tolerance of

each UE is taken into consideration by this policy. We prove that the policy is

throughput optimal. We also propose an online Priority Loss Optimal Resource

Allocation (p-LORA) policy that progressively increases the priority (up to a

certain limit) of a UE for being scheduled every time it is not served. p-LORA

improves upon LORA by ensuring that users are not starved for long periods

at a stretch. It regulates the pattern of packet loss in addition to the amount

of loss encountered.

(c) The Exponential (Queue length) (EXP-Q) rule [18] is a well-known through-

put optimal resource allocation policy that is defined for a single time vary-

ing channel shared by multiple flows. We generalize this EXP-Q rule for use

in the multi-channel multicast scenario under consideration. Using extensive

simulations, we compare the performance of the proposed schemes to that of

the EXP-Q rule [18]. Since the proposed loss tolerant system is specifically de-

signed for video streaming, we use traces from actual videos [16,17] to generate

realistic data traffic for these simulations.

3. The resource allocation algorithms proposed in Chapters 3 and 4 are aimed at

optimizing specific objective functions. However, present day networks cater to a

heterogeneous mix of services and user devices with different QoS requirements. This

presents the need for a generalized allocation algorithm that can be used irrespective

of the performance parameters being optimized and the types of traffic being served.

We design such an auction based algorithm in Chapter 5. The proposed algorithm

succeeds in meeting the requirements of a heterogeneous mix of users without any

prior knowledge of their QoS requirements. The allocation decisions made by the

proposed algorithm are only based on the bids submitted by the users. We prove that

the algorithm is strategy-proof which means that the users have no incentive in lying

about their actual valuations for being scheduled. This ensures the maximization

of social welfare under the proposed policy.

4. In Chapter 6, we investigate the use of multi-connectivity for multicast transmis-
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sions. We prove that the optimal resource allocation problem in MC multicast is

an NP-hard problem. Therefore, we propose a greedy approximation algorithm and

prove that it provides an approximation ratio of (1− 1/e). We also prove that this

is the best approximation ratio possible for the given problem. Through extensive

simulations, we show that the use of MC provides huge performance benefits over

a single connected system. Since multi-connectivity is not defined to be used with

multicast in the current 3GPP standards, we also propose procedures and signaling

exchanges needed for establishing multi-connectivity in MBMS systems.

Chapter 7 concludes the thesis along with a discussion on possible directions for further

research.



Chapter 2

Multicast Streaming: Literature and

Open Problems

Wireless multicast provides an excellent means of efficiently serving the ever-increasing

video streaming traffic over cellular mobile networks. Using multicast enables the net-

work to serve any number of users in resources that would be needed by a single user

with unicast transmissions. As discussed in the previous chapter, there is a requirement

for efficient grouping and resource allocation algorithms that can help integrate multicast

seamlessly with the existing cellular mobile operations. Developing such algorithms and

solving the optimal resource allocation problem for various forms of multicast transmis-

sion is the primary focus of this thesis. Towards this end, we first discuss the existing

literature related to multicast group formation and resource allocation in Sections 2.1

and 2.2 respectively. As outlined in Chapter 1, the inherent loss tolerant nature of video

streams can play a pivotal role in changing the way videos are streamed online. Utilizing

this property for selectively dropping some packets can combat network congestion due to

excessive mobile video streaming. To this end, we design resource allocation algorithms

for loss tolerant video streaming. Some limited literature is available in this area which

we discuss in Section 2.3. While multi-connectivity is considered a key enabler for unicast

communications in LTE and 5G, its use in multicast has not been adequately considered.

Use of multi-connectivity with multicast has a potential to significantly improve the spec-

tral efficiency of multicast transmissions and provide advantages of MBSFN transmissions

without their stringent synchronization requirements. We discuss some literature relevant

to this area in Section 2.5.

17
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2.1 Multicast Group Formation

In the existing framework for MBMS, all users that subscribe to the same MBMS stream

are treated as a single group. However, as discussed in the previous chapter, this can

lead to degraded system performance and user dissatisfaction. Dividing the users into

smaller groups can help tackle these problems. In [19], the authors deal with the grouping

problem for MBMS in High Speed Packet Access (HSPA) networks. They propose a

grouping policy that minimizes a ‘global dissatisfaction index’. This global dissatisfaction

index accounts for the difference in the maximum data rates achievable by UEs and the

rates assigned to them. The authors show, using simulations, that their proposed policy

performs better in terms of UE satisfaction compared to MBMS transmission without

grouping. In [20], the same authors investigate the effect of pedestrian mobility on the

performance of the grouping policy proposed in [19]. The authors conclude that pedestrian

mobility does not impact the performance of the proposed grouping policy.

In [21], the authors propose subgrouping and resource allocation for multicast in

LTE Advanced (LTE-A) systems. Extensions of LTE multicast subgroup formation are

presented for use in LTE-A systems. They propose a radio resource management scheme

that achieves a trade-off between efficiency and fairness. For resource allocation, they

make use of the bargaining solutions proposed in [22]. It is shown that, due to carrier

aggregation in LTE-A systems, the overall system throughput is significantly increased,

but the relative performance of the algorithms investigated remains the same. Extensions

of bargaining solutions proposed in [22] to multi-carrier systems like LTE-A have been

studied in [23]. In [24], the authors have extended the work from [22] to exploit frequency

selectivity for improving the spectral efficiency of multicast in LTE. In [25], the authors

explore the use of multicast in heterogeneous networks. The grouping cum resource

allocation problem in [25] aims at maximizing the system throughput while meeting the

rate of all users. In [26], users are divided into groups such that the system capacity is

maximized while optimizing different cost functions. The cost functions used are system

throughput, fairness, and user satisfaction.

Most of the papers mentioned in this section assume that the entire set of PRBs

can be used for catering to multicast transmissions. In practice, however, an eNB has to

support multiple other services alongside multicast sessions. Therefore, we formulate the
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grouping problem in this work with the aim of satisfying the rate requirements multicast

UEs in the minimum possible number of PRBs.

2.2 Resource Allocation in Multicast

The existing research on resource allocation for multicast transmissions can be classified

into several categories based on the objective of the allocation problem, the techniques

used for allocation, or the types of videos being streamed. Therefore, we study the relevant

literature in this section under the following five categories.

2.2.1 Opportunistic Multicast Scheduling

Opportunistic scheduling schemes, as the name suggests, are throughput maximizing

schemes that schedule UEs with the best channel states in a sub-frame. In [27], the

authors present an optimized version of Opportunistic Multicast Scheduling (OMS) that

achieves a balance between multicast gain and multi-user diversity. A fraction of UEs with

the best channel gains are scheduled in each time slot. Use of opportunistic multicasting

for Single Frequency Networks (SFNs) has been studied in [28]. The authors focus on

maximizing the spectral efficiency of the SFNs by opportunistically scheduling UEs who

report higher Channel Quality Indicator (CQI) values.

In [29], the authors propose a Frequency Domain Packet Scheduler (FDPS) for

MBMS that maximizes the minimum rate achievable by UEs in a PRB. It uses a conser-

vative approach in that it only minimizes the performance loss caused by the worst PRB

assignment. Moreover, the performance of the proposed policy has only been compared

to a blind FDPS policy that uses a static allocation that doesn’t change over time which

is not a good benchmark for comparison.

In [14], the use of a genetic algorithm for resource allocation is proposed for OFDMA

multicast followed by power allocation based on the technique proposed in [30]. The

resource allocation problem in [14] aims to maximize the total throughput subject to

power and fairness constraints. The authors, however, do not subgroup the UEs based on

their channel states. All UEs receiving the same content are put into a single multicast

group. Recently, there has also been some work on multicast transmissions in 5G satellite
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systems. In [31] and [32], the authors propose solutions for radio resource management

and subgrouping for multicast over 5G satellite systems. The optimization problems

formulated seek to maximize the aggregate data rate of the system. These papers also

assume a single CQI value corresponding to a multicast UE which means that all PRBs in a

sub-frame are equivalent for a UE. Maximizing the aggregate data rate is also the objective

function of [22] in which game-theoretic bargaining solutions are used for grouping and

resource allocation of multicast UEs.

Most of the literature considers only wideband CQI (i.e., a single CQI value for the

entire available bandwidth) for grouping and resource allocation in multicast transmission.

One work that explores the use of subband CQI values in multicast resource allocation

is [33]. The objective function here is still the maximization of the aggregate data rate as

in [34], [31] and [32]. However, with the consideration of different subband CQI values,

a closed-form solution for subgroup formation as given in [34] no longer remains feasible.

While all the papers mentioned in this section seek to maximize the aggregate data rate

in some way, in this work, we focus on providing a certain rate to each multicast UE

based on the service that it is subscribed to. While allocating resources, we also take into

consideration, the variation of CQIs of UEs across different PRBs in a sub-frame.

2.2.2 Joint Optimization for Unicast and Multicast

This section summarizes the literature that deals with the problems of joint resource al-

location to unicast and multicast UEs. In [35] and [15] joint delivery of unicast and mul-

ticast/broadcast transmission in LTE and OFDMA systems has been addressed. Policies

proposed in [15] guarantee a certain rate to all the multicast UEs and make use of unicast

transmission for serving UEs with the worst CQI values. In [15], the broadcast services

are also made available through unicast channels to minimize the probability of users

being in an outage. In [35], the performance of streaming over MBSFNs and file deliv-

ery over evolved MBMS (eMBMS) has been evaluated through simulations. Performance

indicators like outage probability, coverage and maximum supportable MCS have been

used to asses the feasibility of various MBMS configurations from the perspective of the

service providers.

In [36], authors deal with fair and optimal resource allocation in eMBMS. It is
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assumed that the video content is simultaneously available through unicast as well as

eMBMS, and the primary problem seeks to jointly optimize over the grouping of UEs

and allocation of resources to unicast and eMBMS. The resource allocation scheme pro-

posed in the paper allocates resources to groups proportional to the number of UEs in

the group. However, while allocating resources, the varying channel states of UEs over

different PRBs have not been considered. In [37], authors consider the problem of deter-

mining throughput maximizing resource allocation for an MBSFN area. They propose

a joint multicast/unicast allocation scheme that maximizes the total throughput while

guaranteeing a certain bit-rate to all the users.

None of these papers consider the varying channel states of UEs over different PRBs

while allocating resources. In all the problems addressed in this work, however, we account

for the fact that the CQIs of UEs may vary across sub-frames and also across PRBs of a

sub-frame. Due to these channel variations, all PRBs are not equivalent for a UE. This

makes the resource allocation problems considerably harder.

2.2.3 Multicasting of DASH and SVC Content

Dynamic Adaptive Streaming over HTTP (DASH) [38] is a streaming technique that

stores several different encoded bit-rates of a video and UEs are given a specific bit-rate

based on their channel states. In [39], the authors have used convex optimization to obtain

an optimal solution for multicasting DASH and Scalable Video Coding (SVC) streaming

content over LTE. The problem optimizes the resource allocation, the MCS, and the For-

ward Error Correction (FEC) code rates used. File Delivery over Unidirectional Transport

(FLUTE) [40] protocol has been used for sending DASH content over an eMBMS system.

UEs are grouped based on their distances from the eNB. UEs closer to the eNB receive

better quality videos than the ones farther away from it.

In [41], the authors use a pricing based scheme for allocating resources to multicast

groups streaming SVC video content. Users are divided into three multicast groups based

on the price they pay. UEs that pay the most receive the maximum number of enhance-

ment layers, and the base layer is provided to all. Allocation of resources is done based

on a multicast transmission score that is a function of the CQI values, past throughput,

the number of UEs in a group, and the price paid by that group. In [42], the authors
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investigate the use of Random Network Linear Coding (RNLC) for improving the per-

formance of multicast services. They use two different forms of RNLC for multicasting

H.264/SVC videos in a generic cellular system. The resource allocation problem formu-

lated by the authors aims at minimizing the number of coded packets required to be

transmitted for successfully delivering all the layers of the SVC video streams and pro-

viding the required QoS guarantees to at least a certain fraction of the users. Since the

resource allocation optimization problems are hard to solve, the authors have provided

efficient heuristics that provide solutions close to the optimal. The performance of the

proposed schemes has been studied on an LTE single-cell eMBMS system. The authors

in [43] deal with optimizing the delivery of network coded scalable video content using

eMBMS. They have made use of Unequal Error Protection (UEP) for ensuring the relia-

bility of multilayer video transmissions. They propose a UEP resource allocation model

that maximizes the profit to cost ratio of the system. The system profit is defined by

the number of video layers that the UEs can recover with a given probability, and the

cost captures the number of transport blocks used in transmitting the video content. It is

shown that the proposed UEP resource allocation model provides much better coverage

than conventional multi-rate transmission [44].

Problem of resource allocation for MBMS Operation On-Demand for SVC video

streams has been studied in [45] and [46]. The authors propose resource allocation schemes

that maximize Quality of Experience (QoE) instead of QoS. Power-efficient streaming of

high-quality SVC encoded videos via MBMS has been examined in [47]. The UEs are

grouped based on the content, the quality of content requested, and their physical prox-

imity. The algorithms proposed in [47] minimize the power consumption by sending traffic

in intermittent bursts, allowing UEs to sleep in between bursts. In [48], authors make

use of a multi-criteria decision-making tool called Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS) [49] for grouping and resource allocation in SVC

multicast video streaming. Grouping and resource allocation decisions are based on three

criteria, maximizing the throughput, maintaining fairness, and minimizing the dissatis-

faction of groups. TOPSIS has also been used in [50] for comparing the performance of

various multicast resource allocation schemes based on their aggregate data rate, fairness,

and spectral efficiency.
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Even though SVC provides an exciting new method of video encoding with various

benefits, H.264/AVC [51] continues to be the preferred method of encoding videos over the

Internet. Most of the popular streaming platforms like Netflix [52] and YouTube [53] use

non-layered coding formats like H.264/AVC and VP9 to encode their videos. Therefore,

in this thesis, we focus on multicast streaming of non-layered videos. As we shall discuss

in Chapter 3, the algorithms proposed by us can also be used for transmitting the base

layer while streaming layered videos. Enhancement layers can then be opportunistically

transmitted to users with good channels [54,55].

2.2.4 Auction Based Multicast Scheduling and Pricing

Auction mechanisms and other game-theoretic tools are being increasingly used for ad-

dressing various allocation problems in communication networks [56–64]. Auctions have

also been used in the literature for spectrum allocation [65], channel allocation in ve-

hicular networks [66] and resource allocation in Device-to-Device (D2D) multicast [67].

In [63], the authors study optimal pricing for SVC multicasting systems with stochastic

user arrivals. The interaction between subscribers and service providers is modeled as a

game. Multi-dimensional Markov Decision Process (MDP) has been used to model the

behavior of the users and determine their equilibrium actions. Pricing response of the

service providers is then determined to maximize their revenue. In [23], the authors pro-

pose a game-theoretic bargaining solution for multicast resource allocation in multi-carrier

systems like LTE-A. The proposed technique seeks to balance fairness among users with

system efficiency.

In [56, 57], the authors have proposed multi-dimensional auction mechanisms for

crowdsourcing in an adaptive bitrate [68] video streaming framework. Crowdsourcing en-

ables users to form cooperative groups to share their resources and download video frag-

ments for each other. The auction mechanisms determine which segment a user should

download and at what bitrate and how the user should be compensated for download-

ing a fragment for other users. In [59], the authors propose an auction-based subcarrier

allocation for SVC video transmission to maximize the net revenue gained by the sys-

tem. Allocation for SVC video transmission in 4G WiMAX has been discussed in [60]

and [61] using Vickrey-Clarke-Groves (VCG) auction mechanism. In [62], a social utility
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maximizing mechanism has been proposed for multi-rate multicast over the Internet. It

is assumed that the valuations of players are known to each other but are not known to

the central allocating entity.

All these auction based algorithms are designed to optimize a specific system pa-

rameter. Such algorithms cannot cater to a variety of services having different QoS re-

quirements. The auction based algorithm proposed by us in Chapter 5 can be used for

optimizing any system parameter. It can, therefore, serve a heterogeneous mix of users

and services simultaneously.

2.2.5 Broadcasting

In [69], the authors propose a scheduling scheme for eMBMS broadcast that is focused

on reducing the average latency of broadcast services in the system. The broadcast

content is divided into two categories based on popularity. The proposed scheme starts

transmission in unicast mode and gradually moves to the broadcast mode as the number

of UEs increases. The less popular content queue is served using a stretch scheduler [70]

while the more popular content queue is served using a round-robin scheduler. The

policy takes into account the impact of UE impatience reflected in departure and request

repetition. In [71], the authors deal with efficient broadcasting in LTE eMBMS. The

problem of broadcasting over Single Frequency Networks (SFN) is divided into two sub-

problems. The first sub-problem determines the optimal SFN configuration for all the

broadcast sessions active in the involved eNBs. The problem seeks to achieve a balance

between the diversity gain obtained by creating a large SFN and the multiplexing gains

that can be obtained by splitting the area into smaller SFNs. The second sub-problem

deals with resource allocation to the broadcast and unicast sessions in the cells. The SFN

configuration problem has been solved using heuristics for the minimum p-cut problem [72]

and the solution for the resource allocation problem uses a water filling form of the

proportional fair scheduling [73,74]. The proposed broadcasting mechanism has been given

the name of Broadcast over LTE (BoLTE). The authors have evaluated the performance

of BoLTE using a WiMAX testbed.

We propose the use of multi-connectivity multicast as a replacement for MBSFN

operations. MBSFNs require strict synchronization between eNBs in an MBSFN area and
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an extended cyclic prefix. The need for strict synchronization leads to significant control

overheads and the extended cyclic prefixes lead to reduction in the system throughput.

The proposed multi-connectivity multicast overcomes these issues while providing better

performance than MBSFNs.

2.3 Loss Tolerant Multicast Streaming

Owing to the interdependence of frames, video streams can tolerate some packet loss

without significantly affecting the quality perceived by the users. Present day decoders

can conceal as much as 40% packet loss in videos [13]. In the existing literature, no

resource allocation policy takes advantage of this unique loss tolerant nature of video

streams for optimizing resource allocation for multicast services. However, various forms

of source coding have been developed that make the video streams more resilient to

losses [75–77]. In [76, 77], the authors design variations of Distributed Source Coding

(DSC) frames for reducing error propagation, facilitating view switching and minimizing

the effect of packet loss in Interactive Multiview Video Streaming (IMVS). IMVS enables

users to switch between different views of a video stream. The authors design Drift

Elimination DSC (DE-DSC) frames that halt error propagation within the video stream

due to the dependence of frames on their predecessors. They also design uDSC frames

that facilitate view switching in addition to preventing the propagation of errors in IMVS.

Once the IMVS streams are encoded, the packetization and ordering of frames are done

to maximize the expected number of correctly decoded frames at the receiver.

The existing literature does not take advantage of the loss resilience of video streams

to improve resource utilization in multicast video streaming systems. We leverage the loss

tolerance of video streams in this work to design loss optimal resource allocation policies

for multicast streaming systems. These policies allow for some controlled packet losses

while providing users with the required video quality.

2.4 Network Coding for Multicast

The use of network coding in multicast has been studied in [78–88]. In [78], the authors

propose an online coding and queue update algorithm known as drop-when-seen that
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drops packets at the sender queue once all users have seen the packet. They use acknowl-

edgments on degrees of freedom instead of the actual decoding of packets. The resulting

algorithm provides significantly lower queue sizes than drop-when-decoded algorithms. A

feedback based adaptive network coding has been proposed in [79,86] to minimize decod-

ing and delivery delays in each transmission for applications that require in order delivery

of packets. The authors show that by taking channel memory into account in network

coding decoding can lead to considerably lesser decoding delays.

A distributed random linear network coding for transmission and compression in

multicast has been proposed in [80]. The coding approach asymptotically achieves the

capacity of multicast networks with network coding given in [81]. Throughput-smoothness

trade-offs in multicast streaming applications have been studied in [82] and [83]. The

authors consider streaming content that requires strict in order delivery, over an erasure

channel. The authors propose a variety of coding schemes that can be tuned to operate

at a point that achieves a suitable trade-off between the two parameters. The problem

of minimizing the playback delay in streaming over an erasure channel has been studied

in [84]. The authors analyze the expected playback delay with and without feedback and

show that they achieve the same asymptotic value as the bandwidth approaches infinity.

The authors in [87] study codes that can be tuned to obtain a trade-off between correcting

burst and isolated erasures. They propose a new class of codes called embedded-random

linear codes that achieve a balance between correcting these two types of erasures. The

extension of low delay erasure correction codes to multicast streaming has been studied

in [88]. They propose a new set of codes for the low delay regime that are shown to be

optimal in a subset of the regime.

2.5 Multi-Connectivity

In addition to multicast, we can make use of multi-connectivity for further enhancing

video streaming in LTE and 5G. Multi-connectivity allows devices to receive content from

multiple sources and over multiple Radio Access Technologies (RATs) simultaneously. In

the current state of literature and standards, the only form of multi-connectivity that

exists is Dual Connectivity (DC). DC capable devices can connect to at most two base
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stations at a time. In LTE, DC allows a user to connect to a primary macro base station

and a secondary micro or femto base station [89]. In 5G, DC refers to a UE being

connected to a primary LTE eNB and a secondary gNodeB (gNB) or vice versa [90]. DC

is expected to be a key enabler in 5G wireless networks [91]. The high data rate, ultra-

reliable low latency, and high mobility requirements of 5G necessitate the reduction of

radio link failures due to mobility. Use of DC makes it possible to avoid such failures and

ensure seamless connectivity for mobile users [92].

Even though the use of DC has been extensively studied by the research community

in the past few years for throughput and handover improvement [89, 93–95], its use in

multicast transmissions has not received much attention. We investigate the use of multi-

connectivity in multicast transmissions in this work. Our work reveals that the use of

multi-connectivity significantly improves the performance of multicast transmissions.

2.6 Open Research Problems

In this chapter, we have discussed some of the existing perspectives on grouping and re-

source allocation for multicast transmissions in cellular mobile networks. The resource

allocation policies in the literature focus on maximizing the system throughput, maintain-

ing fairness, or minimizing the dissatisfaction of users. We have also discussed various

methods proposed in the literature for halting error propagation and loss mitigation in

video streams. While methods like source coding have been previously investigated for

curtailing the effects of packet loss in video streaming, we leverage the inherent loss toler-

ance of videos to reduce their resource consumption without compromising on the quality

of streaming. In this thesis, we look to minimize the number of resources used for serving

the multicast streams while meeting their respective QoS requirements. We also investi-

gate the use of multi-connectivity with multicast transmissions and show that it can have

enormous benefits for improving the quality of multicast operations.

The current literature does not address the problem of satisfying the rate requirement

of all multicast UEs while minimizing the PRB utilization of multicast transmissions.

This is a critical problem because the practical success of multicast services strongly

depends on how well they can co-exist with the other vast number of services supported
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by LTE and the next-generation 5G networks [96]. While MBMS services are ideal for

real-time streaming applications, their resource utilization has to be such that sufficient

resources are available for the non-real-time applications being simultaneously provided

in the networks. Since the resources used for providing an MBMS service are essentially

disseminating common content to the MBMS UEs, over-provisioning of resources for

multicast must be avoided. The multicast UEs could simultaneously be using unicast

services along with other UEs in the cell, which may not be involved in the ongoing

MBMS sessions. Minimizing the resources used by the MBMS services ensures that the

impact of multicast services on the rest of the operations in the network is minimized.

A common shortcoming in the existing resource allocation literature is that the

channel states of the UEs are often assumed to be the same in all subcarriers/PRBs. This

makes the identity of the PRBs irrelevant, and the problem reduces to determining the

number of resources to be allocated to a group. In practice, however, the channel gain of

a UE can be different in each PRB of a sub-frame which makes the resource allocation

problem considerably harder. Throughout this work, we take the channel variations of UEs

over different PRBs in a sub-frame into consideration. Therefore, the resource allocation

policies designed specify the identities of the PRBs and not just the number of PRBs to

be assigned to a group/user.

None of the resource allocation algorithms in the literature employ the loss toler-

ance of videos for optimizing the allocation of resources to multicast video streams. In

Chapter 4, we design throughput optimal resource allocation policies for video stream-

ing services that use this unique property to optimize PRB allocation and improve the

overall system performance. The current literature also lacks in generalized allocation al-

gorithms that can be effectively used irrespective of the nature of services and allocation

objectives. The algorithms in the existing literature are built around a certain objective

function such as maximizing the system throughput [14, 37], ensuring fairness [23], or

maximizing revenue [59]. No single algorithm can be used for any objective function and

any range of services that might have completely different service requirements. In this

work, we design such a generalized auction-based algorithm in Chapter 5. The proposed

algorithm can be used to serve a heterogeneous mix of users and streaming services for

optimizing multiple objectives.
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The use of multi-connectivity for multicast transmissions also remains unexplored in

the current standards and literature. We discuss in Chapter 6 how multi-connectivity has

the potential to enhance the performance of wireless multicast greatly. Multi-connectivity

multicast also provides a simplified and flexible alternative to the concept of single fre-

quency networks in MBMS. We assess the impact of multi-connectivity on the performance

of multicast, define procedures for establishing multi-connectivity in LTE multicast, and

discuss the corresponding enhancements required in the existing 3GPP standards.

We begin by first examining the problem of minimizing the resources used by mul-

ticast services while meeting their specific rate requirements in the next chapter. We

construct the grouping and the resource allocation problems with this objective and pro-

pose various efficient algorithms for obtaining their solutions.





Chapter 3

Grouping and Resource Allocation

for Lossless Multicast Transmissions

In this chapter, we investigate the problems of optimal grouping and optimal resource

allocation in a lossless eMBMS system. We consider a constant rate model that requires

a certain rate (and hence a certain QoS) to be provided to all the users receiving mul-

ticast services in minimum possible number of PRBs. Minimizing the number of PRBs

used by the multicast services is extremely important from a practical standpoint because

the success of multicast operations strongly depends on how well they can co-exist with

the multitude of other services supported by the current LTE and next generation 5G

networks [96]. While eMBMS services are suitable for streaming, their resource utiliza-

tion has to be such that sufficient resources are available for non real time applications

being simultaneously provided in the cells. Minimizing the resources used by eMBMS

services ensures that their impact on other services is minimized. The optimal resource

allocation problem that minimizes the number of PRBs used subject to satisfying the

rate requirements of all the users is a Binary Linear Program (BLP). BLPs are inherently

hard to solve and require significant computational power even for small input sizes. The

optimal resource allocation problem is in fact an NP-hard [97] problem. The optimal

grouping problem aims to divide the users into groups such that, for any resource alloca-

tion policy, the average number of PRBs saved per sub-frame is maximized. As discussed

in Chapter 1, there is a trade-off involved between creating more groups and increasing

the number of users contained in a group. The grouping policy needs to strike a balance

31



32 Chapter 3. Grouping and Resource Allocation for Lossless Multicast Transmissions

between these factors. The optimal grouping problem is also NP-hard.

In most of the existing literature, the rate achievable by a UE is assumed to be

the same in all PRBs of a sub-frame. This assumption greatly simplifies the resource

allocation problem as the identities of the PRBs are no longer significant. In practice,

however, the channel quality experienced by a UE is different for different frequency

channels resulting in varying channel gains over different PRBs. In this work, we take

these channel variations into account. Also, a large portion of the literature including [14]

and [15] claims that the multicast grouping and resource allocation problems are ‘hard to

solve’ or ‘infeasible’. However, none of these provide any mathematical proof of hardness

of these problems. In this work we provide proofs of NP-hardness of both these problems.

Since both the problems we are trying to address here are NP-hard, we cannot determine

their optimal solutions in polynomial-time unless P=NP [97]. Therefore, we have to rely

on randomized searches and efficient heuristics for obtaining solutions close to the optimal.

We devise a randomized scheme for estimating the optimal resource allocation. It uses

Simulated Annealing (SA) to converge to the optimal solution with high probability. The

randomized scheme works in an iterative manner, exploring a large number of possible

allocations to converge to the optimal solution. As a result, it takes a long time to run and

is unsuitable for practical use. However, the output of this scheme provides a benchmark

for evaluating the performance of heuristic resource allocation schemes. We design two

efficient online heuristic resource allocation policies for use in practical systems. These

policies are specially suitable for streaming services. Our policies ensure that all the users

receive the video streams at a constant rate. The rate of transmission required by a

steaming service depends on the kind and quality of the video being streamed. In order

to see a consistent quality of streaming, the users must be served at a certain fixed rate.

The resource allocation policies proposed in this chapter achieve this objective. We also

design a two stage grouping policy that makes use of the knowledge of the average Signal

to Noise Ratio (SNR) of UEs to divide them into multicast groups. The performance of the

proposed grouping and resource allocation policies is compared with existing state of the

art through extensive simulations. Our simulation results clearly indicate the superiority

of the proposed policies for use in multicast transmission.

The rest of this chapter is organized as follows. In Section 3.1, we discuss the system
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model used. The optimal resource allocation and grouping problems are formally stated

and proved to be NP-hard in Section 3.2. The SA based randomized scheme and related

results are presented in Section 3.3. In Sections 3.4 and 3.5, we present the proposed

heuristic schemes for resource allocation and grouping respectively. The simulation results

are presented and analyzed in Section 3.6. We then discuss various generalizations of the

proposed policies in Section 3.7 and conclude in Section 3.8.

3.1 System Model

We consider an LTE cell with M UEs. All UEs are subscribed to the same eMBMS

service and are required to be served at a rate of R bits/sec. The required rate can be

provided to each UE by allotting one or more PRBs to its group in each sub-frame. We

denote the number of PRBs in a sub-frame by N . Let [n] = {1, . . . , n} and let |A| denote

the cardinality of a set A. Thus, [M ] and [N ] denote the set of multicast UEs and the

set of PRBs in a sub-frame, respectively. We assume that the channels between eNB

and the UEs are location and time varying. Thus, each UE has different channel gains

in different PRBs and also across different sub-frames. We assume block fading channel

model, and hence the channel gain of a UE is assumed to remain the same during a sub-

frame. Though we do not consider mobility explicitly, our approach can be extended to

cases where UE positions evolve at a slower time scale than the sub-frame duration. Let

hiu[t] denote the channel gain for UE u on ith PRB in sub-frame t. hiu[t] = hiu +Hiu[t], is

made up of 2 components. hiu denotes the average channel gain which accounts for path

loss and shadowing and is invariant across sub-frames. Hiu[t] is the fast-fading component

that varies across sub-frames. Hiu[t]’s are independent and identically distributed (i.i.d)

exponential random variables.

We assume that the eNB has full knowledge of the Channel State Information (CSI)

of all the UEs. This not a restricting assumption in the current state of the LTE systems

where CQI can be periodically fed back to the eNB by the users [7]. Corresponding to

the channel gain, the eNB assigns the maximum supportable rate, riu[t] bits/sec for UE u

on ith PRB in sub-frame t. Note that riu[t] is determined by the Modulation and Coding

Scheme (MCS) used, and thus can take finitely many values (15 as per current standards
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for LTE [7]). Next, we discuss grouping.

Since all multicast UEs want the same content in each sub-frame, the UEs can be

grouped together and served on common PRBs. We denote the number of groups formed

by L. A grouping strategy ∆ is defined as follows:

Definition 1. A grouping strategy ∆, defines a partition {G∆
1 , . . . , G

∆
L } of [M ], where

G∆
i ⊆ [M ] is referred to as the ith group.

Note that L ≤M . For L = M , we have the unicast case. Henceforth, unicast is not

dealt with separately. Throughout this chapter, we assume that groups once defined at

the beginning of an eMBMS session cannot be changed during the session. This is done

to avoid excessive control overhead that may result due to rapid changes in grouping.

One can relax this assumption and allow for grouping to be potentially changed every

K sub-frames, where K is large. This will allow the scheme to adapt in case of mobile

networks. The minimum supportable rate for a group Gj on ith PRB in sub-frame t (r∆
ij [t])

is equal to the minimum of the rates achievable by its constituent members, i.e., r∆
ij [t] =

minu∈G∆
i
{riu[t]}. This ensures that the content received by a group can be successfully

decoded by all its members. If we transmit content to a group at rates higher than this,

the weakest UE in the group will not be able to decode the received content successfully.

Once r∆
ij [t]’s are obtained, we need to decide how to allot resources to each group so that

the total number of PRBs used is minimized subject to giving each group at least the

minimum required rate R. This is a resource allocation problem. The formal definition

of a resource allocation policy is stated below.

Definition 2. For a given grouping ∆ a resource allocation policy Γ defines an assignment

of PRBs to the L multicast groups, {V ∆

1Γ, . . . , V
∆

LΓ}, where, V
∆

iΓ is the set of PRBs assigned

to group i by resource allocation policy Γ under grouping ∆. The allocation Γ should be

such that V
∆

iΓ ∩ V
∆

jΓ = φ whenever i 6= j and
⋃L
i=1 V

∆

iΓ ⊆ [N ].

Resource allocation policy Γ is said to be feasible if
∑∆

j∈V iΓ r
∆
ij [t] ≥ R for every i ∈ [L].

The other parameter used by us to characterize a resource allocation policy is the number

of PRBs left unused after resource allocation in a sub-frame t, S∆
Γ [t] = N − |

⋃L
i=1 V

∆

iΓ|.

We shall now formally state our resource allocation and grouping problems.
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3.2 Problem Definition

3.2.1 Problem 1: Optimal Resource Allocation B?
∆

Consider a fixed grouping policy ∆, and define indicators in sub-frame t as follows:

xij[t] =

1, if PRB j is assigned to group i

0, otherwise.

The optimal resource allocation can then be obtained as a solution to the following BLP

for every t:

(B?
∆) : min

∑
j∈[N]

∑
i∈[L]

xij[t],

subject to:
∑
j∈[N ]

xij[t]r
∆
ij [t] ≥ R, ∀ i ∈ [L], (3.1)

∑
i∈[L]

xij[t] ≤ 1, ∀ j ∈ [N ]. (3.2)

The objective function of B?
∆seeks to minimize the number of PRBs used in sub-frame

t. Constraint (3.1) guarantees that the rate given to each group is at least equal to the

required rate R and (3.2) ensures that each PRB is given to at most one group. Note

that B?
∆ gives the optimal resource allocation for any grouping ∆. Next, we establish the

hardness of B?
∆.

3.2.1.1 B?
∆ is NP-hard

Since B?
∆ is an optimization problem, in order to prove that it is NP-hard, we must

show the corresponding decision problem to be NP-complete. The decision problem cor-

responding to B?
∆ (denoted by B?

D) is defined as follows:

B?
D: Does there exist an assignment of binary variables {xij}i,j, i ∈ [L] and j ∈ [N ]

such that (3.1) and (3.2) of B?
∆ are satisfied?

B?
D determines whether or not there exists a feasible solution of B?

∆. In order to

prove that B?
∆ is an NP-hard problem, it is sufficient to show that B?

D is NP-complete. We

prove the NP-completeness of B?
D by reduction from a version of the 3-partition problem

(3P) defined below [98]:
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� Input: A set Y, of P = 3m positive integers, {ρ1, ρ2, . . . , ρP} such that B
4
< ρj <

B
2

for every ρj ∈ Y and
∑P

j=1 ρj = mB.

� Problem: Can we obtain a disjoint partition of Y, {Y1, Y2, . . . , Ym} such that∑
ρk∈Yi ρk = B and |Yi| = 3 for every Yi, i ∈ {1, 2, . . . ,m} and

⋃m
i=1 Yi = Y?

� Output: If the problem is feasible, the output is a suitable partition of Y, else, the

output states that the problem is infeasible.

The 3P problem is known to be NP-complete [98]. We now show the NP-completeness of

B?
D by reduction from 3P.

Algorithm 1: Pseudo-code for reducing 3P to B?
D

Input: 3-partition problem with set Y, of P = 3m positive integers,

{ρ1, ρ2, . . . , ρP} such that B
4
< ρj <

B
2
∀ ρj ∈ Y and

∑P
j=1 ρj = mB

Output: An instance of B?
Dwith

1 L← m

2 N ← P

3 R← B

4 rij = rj ← ρk ∀ j ∈ {1, 2, . . . , P} , i ∈ {1, 2, . . . ,m}

Theorem 1. B?
D is an NP-complete problem.

Proof. In order to prove that B?
D is NP-complete, we first need to show that B?

D belongs

to the class NP. Given a certificate for B?
D, we can verify in polynomial-time whether or

not it is a solution by checking if it satisfies the requirements stated in constraints (3.1)

and (3.2) of B?
∆. This can be done in O(LN) computations. Therefore, B?

D∈ NP.

Having proved that B?
D∈ NP, we now need to reduce 3P to an instance of B?

D

in polynomial-time. The pseudo-code for the algorithm used for the said reduction is

presented in Algorithm 1. For the purpose of this reduction, we assume that all the UEs

experience the same channel conditions in a particular PRB of a sub-frame, i.e. rij = rj

for every i ∈ [L]. We put L (number of groups) = m, N (number of PRBs) = P , R (rate

requirement of UEs per sub-frame duration) = R and rk (rates of the groups corresponding

to different PRBs of a sub-frame) = ρk for every k ∈ {1, 2, . . . , P}.
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Note that, to define an instance of B?
D, we need to define the number of groups,

number of available PRBs, rate requirement of groups (R) and the rates that can be

achieved by the groups in every PRB. These are defined in lines 1 through 4 of Algorithm 1

respectively. The reduction in Algorithm 1 can be accomplished in O(N) computations.

We now show that a solution for B?
∆ gives us a solution for 3P as well. Assume that

there exists a polynomial-time algorithm for solving B?
∆. If we try to solve B?

∆ using this

algorithm, it will either give us a feasible solution or tell us that B?
∆ is infeasible. We will

now show how each of these outputs can be mapped to a corresponding solution for 3P.

Say that the algorithm gives us a feasible solution for B?
∆. Let the feasible solution

be a matrix of binary values [x̃ij]i,j for i ∈ [L] and j ∈ [N ]. The corresponding solution

for 3P can be obtained from this solution in polynomial-time as follows:

For every i ∈ [m], Yi = {ρj : x̃ij = 1}.

The solution thus obtained is a feasible solution for 3P. To prove this, we need to show

that:

� The solution results in a disjoint partition of Y, {Y1, Y2, . . . , Ym}.

�

∑
ρj∈Yi ρj = B, for every i.

� |Yi| = 3 for every i.

We shall prove these by contradiction as follows:

1. Let’s first show that the resulting solution is a disjoint partition on Y. Suppose not.

Then, one of the following two things must happen:

(a) there exists Yi and Yi′ such that Yi ∩ Yi′ 6= φ or,

(b) there exists some j′ such that ρj′ /∈
⋃
i

Yi.

If 1a is true and there exist Yi and Yi′ such that Yi ∩ Yi′ 6= φ, it means that:

∃ j ∈ [P ] such that, x̃ij = 1 and x̃i′j = 1,

=⇒
∑
l

x̃lj ≥ 2,

which violates constraint (3.2) of B?
∆. This means that [x̃ij]i,j is not a feasible

solution of B?
∆ which is a contradiction. Therefore, Yi ∩ Yi′ = φ for every i and

i′ ∈ [m].
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If 1b is true and there exists j′ ∈ [P ], such that ρj′ /∈
⋃
i Yi, it means that x̃ij′ = 0

for every i. But, we have a feasible solution of B?
D which guarantees that the rate

requirement of every group is satisfied. So,

∑
ρj∈Yi

ρj ≥ B, ∀ i ∈ [m],

=⇒
P∑

j=1,j 6=j′
ρj ≥ mB, =⇒

P∑
j=1

ρj > mB,

which is a contradiction. Hence, 1b cannot be true.

Therefore, the resulting solution will be a partition on Y.

2. We now show that
∑

ρj∈Yi ρj = B, for every i. Suppose this is not true. Since [x̃ij]i,j

is a feasible solution of B?
∆, we have,

∑
ρj∈Yi ρj ≥ B, for every i ∈ [m]. Let us say

that at least one of these is a strict inequality. That is, there exists i′ ∈ [m] such

that
∑

ρj∈Yi′
ρj > B. This implies that

∑P
j=1 ρj > mB, which is a contradiction.

Therefore, we will have
∑

ρj∈Yi ρk = B, for every i.

3. Next, we prove that |Yi| = 3 for every Yi. Let us suppose, for the sake of contra-

diction, that one subset, Yi′ has less than 3 elements. Since the rate requirement

of every group is B, we have,
∑

ρj∈Yi′
ρj ≥ B. Also, from the problem definition

of 3P, we have, ρj <
B
2

. Since Yi′ can have a maximum of 2 members, we get,∑
ρj∈Yi′

ρj < B which is in contradiction to
∑

ρj∈Yi′
ρj ≥ B above. Thus, Yi′ cannot

have less than 3 elements. Therefore, |Yi| = 3 for every Yi, i ∈ [m].

We have now established that a feasible solution for B?
∆ also gives us a feasible solution

for 3P. All that is left to complete the proof, is to show that, if B?
∆ turns out to be

infeasible, then, 3P has to be infeasible as well. We prove this by contradiction as follows:

Let’s assume that 3P has a feasible solution even when B?
∆ is infeasible. This means

that, there exists a disjoint partition of Y, {Y1, . . . , Ym} such that,
∑

ρj∈Yi ρj = B and

|Yi| = 3 for every Yi, i ∈ [m]. This solution can be mapped to a corresponding solution

for B?
∆ as follows:

xij =

 1, if ρj ∈ Yi,

0, otherwise.
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So, for every i, we have:

N∑
j=1

xijrij =
∑
ρj∈Yi

rj =
∑
ρj∈Yi

ρj = B = R.

Also, since Yi’s form a disjoint partition of Y, we will have,
∑N

i=1 xij ≤ 1 for every j. This

means that [xij]i,j is a feasible solution for B?
∆ which is a contradiction. Therefore, 3P

has to be infeasible every time B?
∆ is infeasible.

Thus, a polynomial-time solution for B?
D results in a polynomial-time solution for 3P

as well which is not possible unless P = NP. Therefore, there is no polynomial-time

algorithm for solving the optimal resource allocation problem. Hence, B?
D is an NP-

complete problem.

Lemma 1. Optimization B?
∆ is NP-hard.

Proof. The proof follows from Theorem 1. Since the decision version of B?
∆ is NP-

complete, B?
∆ is an NP-hard problem.

3.2.2 Problem 2: Optimal Grouping C?

Recall that S∆
Γ [t] denotes the number of PRBs left unutilized under grouping policy ∆ in

sub-frame t when using resource allocation scheme Γ. Note that these PRBs can be used

for other services in the system. Define,

S
∆

Γ = lim inf
T→∞

1

T

T∑
t=1

S∆
Γ [t]. (3.3)

Thus, S
∆

Γ is the average number of unutilized PRBs per sub-frame under grouping policy

∆ and resource allocation policy Γ. The optimal grouping problem can be defined for any

Γ. The definition of the optimal grouping problem is stated below:

(C?) : Determine the optimal grouping policy ∆? such that S
∆?

Γ ≥ S
∆

Γ for every ∆.

We note that determining S
∆

Γ for a general grouping ∆ and resource allocation Γ

itself is a very hard, if not an impossible problem. The value of S
∆

Γ depends on the

combined channel states of all the UEs in various sub-frames. We show in the following

result that the problem of determining ∆? for a given Γ is NP-hard.
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3.2.2.1 C? is NP-hard

Before addressing the hardness of the optimal grouping problem, we wish to point out that,

given a grouping policy, ∆, calculating S
∆

in polynomial-time is itself hard. Computing

S
∆

is non-trivial even when the channels are independent across UEs. We prove the

NP-hardness of C? by reduction from the Set Cover problem which is an NP-complete

problem [99] and is defined as follows [99]:

� Input: Set Cover takes as input a universe, U = {u1, . . . , um} containingm elements

and a set S = {S1, . . . , Sn} of subsets of U such that
⋃n
j=1 Sj = U .

� Problem: Any collection of subsets from S form a set cover if their union is equal

to the universe. The Set Cover problem is required to determine the smallest such

collection of subsets.

� Output: The output is the smallest collection of subsets from S that form a set

cover.

We now show the NP-hardness of C? by reduction from Set Cover.

Lemma 2. For a fixed Γ, the problem of determining ∆? is NP-hard.

Proof. In order to prove that C? is NP-hard, we first need to show that C? belongs to

the class NP. Given a certificate for C?, we can verify in polynomial-time whether or not

it is a solution by checking if it satisfies the requirements stated in Definition 1. This can

be done in O(L2) computations. Therefore, C?∈ NP.

We now prove that C? is NP-hard by reducing Set Cover to an instance of C?. The

pseudo-code for the algorithm used for this reduction is presented in Algorithm 2. The

reduction can be accomplished in O(MN) computations. We define the total number of

multicast UEs to be m and the number of PRBs in a sub-frame to be n. The kth UE in

C? maps to the variable uk in Set Cover. Let rmax denote the maximum rate achievable

in any PRB. The rate achievable by a UE k in PRB j, rkj is defined to be equal to rmax

if uk ∈ Sj and equal to 0 otherwise. We define the rate requirement of the groups to be

R < rmax.

Let us now assume that there exists a polynomial-time algorithm for solving C?.

Using this algorithm to solve C? will output some grouping {G1, . . . , Gl}. We now show
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how to map this output to a solution for Set Cover in polynomial-time. Since the rate

achievable by a UE in any PRB can either be rmax or 0, all the UEs that are grouped

together will be able to achieve rmax in some PRB and the number of PRBs needed to

satisfy the groups will be exactly l because 1 PRB will be sufficient for providing the

required rate. Let the nth
i PRB be that PRB for group Gi. Hence, uk ∈ Gi, rkni =

rmax =⇒ uk ∈ Sni . Therefore, the corresponding solution for the Set Cover problem is

{Sn1 , . . . , Snl}. By the definition of a grouping we have ∪li=1Gi = [m] =⇒ ∪li=1Sni = U .

Therefore, the resulting solution is a valid set cover of U .

We now show that this is indeed the smallest such collection that covers the universe

U . Suppose that this is not true. Then, there exists a collection of subsets from S smaller

than l that forms a set cover. Let’s denote this optimal solution as S ′ = {Sn′1 , . . . , Sn′z}, z <

l. We can then construct the following grouping from this set cover:

G1 = Sn′1 , G2 = Sn′2 \ Sn′1 , G3 = Sn′3 \
2⋃
j=1

Sn′j , . . . , Gz = Sn′z \
k⋃
j=1

Sn′j .

Since S ′ is a set cover for U , we have
⋃z
i=1Gi = [M ] and by construction of the groups,⋂z

i=1 = φ. Hence, {G1, . . . , Gz} is a valid grouping. Moreover, the number of PRBs

needed to satisfy the UEs under this grouping will be z < l which is a contradiction to

the grouping {G1, . . . , Gl} being the optimal solution of C?. Therefore, {Sn1 , . . . , Snl} is

the optimal solution of the Set Cover problem.

Thus, a polynomial-time solution for C? results in a polynomial-time solution for Set

Cover as well which is not possible unless P = NP. Therefore, there is no polynomial-time

algorithm for solving C? i.e. C? is an NP-hard problem.

Algorithm 2: Pseudo-code for reducing Set Cover to C?

Input: Set Cover problem with a universe U = {u1, . . . , um} of m variables and

set S = {S1, . . . , Sn} of subsets of U such that
⋃n
i=1 Si = U ,

Output: An instance of C?

1 M ← m, N ← n, kth UE← uk

2 rkj =

rmax, if uk ∈ Sj,

0, otherwise.
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Since we have proved that both optimal grouping and optimal resource allocation

problems are NP-hard, no polynomial-time algorithms exist for determining their optimal

solutions. We can, however, use some intelligent heuristic schemes to obtain near optimal

solutions. In the following section, we formulate an iterative randomized scheme for

estimating the optimal resource allocation.

3.3 Randomized Algorithm for Optimal Resource Al-

location

As stated in the previous section, no polynomial-time algorithm exists for determining the

optimal resource allocation for the system under consideration. We can, however, estimate

the optimal solution using randomized algorithms that iteratively explore the possible

solutions to finally converge to the optimum. The randomized scheme proposed here

serves dual purpose, 1) it provides near optimal solutions in much lesser computational

power than that required to solve B?
∆ and, 2) its output can be used as a benchmark for

evaluating the performance of heuristic resource allocation schemes. We now describe the

randomized algorithm.

The allocation of resources in LTE is done in every sub-frame. So, for brevity, we fix

a sub-frame t and omit it from notations in this section. Grouping strategy ∆ impacts

resource allocation via r∆
ij , which is the rate achievable by group i in PRB j under ∆.

Here, we deal with resource allocation for any given ∆. So, we omit ∆ from the notations

as well for better readability.

We refer to the randomized resource allocation algorithm proposed in this section

as the Randomized Scheme (RS). The RS is based on Simulated Annealing (SA), a well

known Markov Chain Monte Carlo (MCMC) technique [100]. SA is a randomized algo-

rithm used for obtaining the optimal solution of an optimization problem. In SA, we

construct a Markov chain on the states of the problem under consideration and transition

between the states to ultimately converge to at the global optimum with high probability.

Here, states correspond to possible resource allocations to the multicast groups. There-

fore, a state, sd of the Discrete Time Markov Chain (DTMC) is a possible distribution

of PRBs, {V 0d, V 1d. . . . , V Ld} where V id is the set of PRBs assigned to group Gi, i ∈ [L]
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in state sd. G0 is a dummy group that is assigned all the unused PRBs. The state space

χ corresponds to all possible PRB allocations to groups. Let `di denote the total rate

achieved by the ith group in allocation sd. Thus, `di =
∑

j∈V id rij. Moreover, let qd denote

|{i : `di ≥ R}|, i.e. qd is the number of satisfied groups in allocation sd. In SA, each state

has an associated reward that defines how good the state is. For our DTMC, we define

the real valued reward function E as follows:

E(sd) = |V 0d| −
L∑
i=1

[R− `di]+ + qd, (3.4)

where [y]+ = max{y, 0} and |V 0d| is the number of unused PRBs in state sd. The reward

function is a monotonically increasing function of the number of satisfied groups and the

number of unused PRBs. It also decreases proportionally with the difference between the

required and achieved rates of the groups. Thus, intuitively, maximizing E will maximize

the number of unused PRBs while satisfying all the groups. We prove this formally in the

next result.

Lemma 3. Let B?
∆ has a feasible solution and sd? ∈ arg maxsd E(sd). Define x?ij = 1 if

j ∈ V id? and 0 otherwise. Then, {x?ij}i,j is the optimal solution of the BLP B?
∆.

Proof. We have sd? ∈ arg maxsd E(sd) i.e. E(sd?) ≥ E(sd) for every sd ∈ χ. The solution

for the BLP B?
∆ corresponding to the state sd? , {x?ij}i,j is obtained as follows:

x?ij =

1, ∀ j ∈ V id? ,

0, otherwise.

In LTE, the rates achievable in a PRB are discrete and can take 15 different values

corresponding to the 15 CQI values [7]. We denote the minimum rate that can be provided

in a single PRB by rmin. Since the value of E(.) depends on the value of R, two cases

arise:

• R ≤ rmin : In this case, we can satisfy all groups by allocating a single PRB

to every group. This is a trivial case and so, it is sufficient to consider the case with

R > rmin.

• R > rmin : Before proving that {x?ij}i,j is the optimal solution of B?
∆, we will first

show that {x?ij}i,j is a feasible solution of B?
∆. Suppose {x?ij}i,j is not a feasible solution
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of B?
∆. This means, that there exists i ∈ [L] such that

∑N
j=1 x

?
ijrij < R. Then the reward

of sd? will be:

E(sd?) =

N −∑
i∈[L]

∑
j∈[N ]

x?ij

− L∑
i=1

[R− `d?i]+ + qd? . (3.5)

Note that qd? < L because {x?ij}i,j is infeasible. Depending on the value of
∑

i∈[L]

∑
j∈[N ] x

?
ij,

two cases arise:

1.
∑

i∈[L]

∑
j∈[N ] x

?
ij < N : For this case, consider a state sd obtained from sd? by

allotting one of the PRBs, j′ ∈ V 0d? to one of the unsatisfied groups i′. On allocating

j′ to i′, one of two things can happen:

� Rate requirement of the group i′ is satisfied: This means that qd = qd? + 1.

The reward of the resulting sd will be:

E(sd) = E(sd?) + (R− `d?i′).

Since group i′ was unsatisfied in state sd? , (R− `d?i′) > 0. Therefore, E(sd) >

E(sd?) which is a contradiction because E(sd?) ≥ E(sd) for every sd ∈ χ.

� Rate requirement of the group i′ is not satisfied: In this case, the reward of

the state sd will be:

E(sd) = E(sd?)− 1 + (`di′ − `d?i′).

Here, (`di′ − `d?i′) is the additional rate provided to group i′ by the PRB j′

which is why it can be no less than rmin. Since rmin > 1, E(sd) > E(sd?) which

is a contradiction.

2.
∑

i∈[L]

∑
j∈[N ] x

?
ij = N : Here, the reward of sd? is:

E(sd?) = qd? −
L∑
i=1

[R− `d?i]+ .

Since B?
∆ is feasible, let sd′ be a state corresponding to a feasible solution {xij}i,j.

The reward of sd′ will be:

E(sd′) =

N −∑
i∈[L]

∑
j∈[N ]

xij

+ L > Esd? ,



3.3. Randomized Algorithm for Optimal Resource Allocation 45

which is a contradiction.

Therefore, {x?ij}i,j has to be a feasible solution of B?
∆. All we need to complete the

proof is to show that {x?ij}i,j is also an optimal solution of B?
∆. We show this as follows:

Suppose {x?ij}i,j is not an optimal solution of B?
∆. Let’s denote the optimal solution

of B?
∆ by {xij}i,j and the corresponding resource allocation state by sd. Since {x?ij}i,j is

not the optimal solution, we will have,
∑

i∈[L]

∑
j∈[N ] x

?
ij >

∑
i∈[L]

∑
j∈[N ] xij The reward

of sd will be:

E(sd) =

N −∑
i∈[L]

∑
j∈[N ]

xij

+ L,

=⇒ E(sd) >

N −∑
i∈[L]

∑
j∈[N ]

x?ij

+ L = E(sd?),

which is a contradiction. Therefore, {x?ij}i,j is an optimal solution of B?
∆.

Thus, determining a state that maximizes the reward function is equivalent to de-

termining the optimal solution of B?
∆. Note that the proposed approach uses a DTMC

on χ where |χ| = (L + 1)N . Recall that L denotes the number of groups and N denotes

the number of PRBs available in a sub-frame. Hence, the Transition Probability Matrix

(TPM) corresponding to the DTMC will have dimensions exponential in N . So, for guar-

anteeing computational feasibility of the proposed approach, one must ensure that the

TPM need not be stored, rather, given the current state, transition probability to the

neighboring states can be determined in time polynomial in system parameters. Next, we

elaborate how such a DTMC can be constructed.

3.3.1 DTMC Construction

Let E? denote the maximum value of the reward function E(·) defined in (3.4), i.e. E? =

maxsd E(sd). Suppose we construct a DTMC {Xn}n≥1 on χ such that

lim
n→∞

P (E(Xn) = E?) = 1.

If we simulate this DTMC for a large enough time, say τ , the probability that the

state of the DTMC at τ yields the optimal resource allocation should be very close to

one. Towards this end, we first define a time homogeneous DTMC {XT
n }n≥1 on χ. We
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will subsequently define the DTMC {Xn}n≥1 with parameter T varying as a function of n.

As we will see in the following sections, transition probabilities of the constructed DTMC

are a function of T . Therefore, variation of T as a function of n makes {Xn}n≥1 non time

homogeneous. For defining the DTMC {XT
n }n≥1, it is enough to specify its TPM, which

we do next.

3.3.1.1 Neighboring States

Consider any state sd ∈ χ. A state sd′ is a neighbor of sd if it can be obtained from sd

using one of the following actions:

� Swap (A1): Swap takes two PRBs j1 and j2 from groups i1 and i2 respectively and

assigns j1 to i2 and j2 to i1. Only allocation to groups i1 and i2 are changed through

this action. Mathematically, sd′ is obtained from sd using swap if:

1. j1 ∈ V i1d and j2 ∈ V i2d,

2. V id′ = V id for all i 6= i1, i2 and

3. V i1d′ = (V i1d \ {j1}) ∪ {j2}, V i2d′ = (V i2d \ {j2}) ∪ {j1}.

� Drop (A2): The drop action takes a PRB j1 from a group i1 (i1 6= 0) and assigns it

to group G0. Here, only allocation of groups i1 and 0 is changed by dropping the

PRB j1. Mathematically, sd′ is obtained from sd using drop if:

1. j1 ∈ V i1d,

2. V id′ = V id for all i 6= i1, 0 and

3. V i1d′ = V i1d \ {j1}, V 0d′ = V 0d ∪ {j1}.

� Add (A3): The add action takes a PRB j1 from V 0d and assigns it to a group i1 6= 0.

Here, only allocation of groups i1 and 0 is changed by assigning the PRB j1 to group

i1. Mathematically, sd′ is obtained from sd using add if:

1. j1 ∈ V 0d,

2. V id′ = V id for all i 6= i1, 0 and

3. V i1d′ = V i1d ∪ {j1}, V 0d′ = V 0d \ {j1}.
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Note that the neighboring relation defined here is symmetric in nature. This is proved in

the following result.

Lemma 4. The neighboring relation of the DTMC {XT
n }n≥1 is symmetric. Moreover, if

transition from sd to sd′ occurs due to a swap action, then transition from sd′ to sd can

also take place using a swap action only. Similarly, if transition to sd from sd′ occurs due

to add (drop, respectively), the transition from sd′ to sd can only result from drop (add,

respectively).

Proof. To prove the required result, we need to show that if a state sd′ is a neighbor of

the state sd, then, sd is also a neighbor of sd′ . Since neighbors are defined using three

different actions, we consider the cases corresponding to each action separately:

� Swap: Consider that sd′ is obtained from sd by swapping PRBs j1 and j2 belonging

to groups i1 and i2 respectively. Then, from the definition of the swap action,

V id′ = V id for all i 6= i1, i2, V i1d′ = (V i1d\{j1})∪{j2} and V i2d′ = (V i2d\{j2})∪{j1}.

Now, let us see if state sd can be obtained from sd′ . Say PRBs j1 and j2 are picked

for swapping in sd′ . Note that in sd′ , j1 ∈ V i2d′ and j2 ∈ V i1d′ . For the resulting

state sd′′ , we have:

V id′′ = V id′ = V id,∀ i 6= i1, i2,

V i1d′′ = (V i1d′ \ {j2}) ∪ {j1} = V i1d,

V i2d′′ = (V i2d′ \ {j1}) ∪ {j2} = V i2d.

Therefore, V id′′ = V id for all i which implies that sd′′ ≡ sd. So, sd is also a neighbor

of sd′ and can be obtained from sd′ using a swap action only.

� Add: Consider that sd′ is obtained from sd by adding PRB j1 to group i1. Then,

from the definition of the add action, V id′ = V id for all i 6= i1, 0, V i1d′ = V i1d ∪ {j1}

and V 0d′ = V 0d \{j1}. Now, let us see if state sd can be obtained from sd′ . Say PRB

j1 is picked for a drop action in sd′ . Note that in sd′ , j1 ∈ V i1d′ . For the resulting

state sd′′ , we have:

V id′′ = V id′ ,∀ i 6= i1, 0,

V i1d′′ = V i1d′ \ {j1} = V i1d,

V 0d′′ = V 0d′ ∪ {j1} = V 0d.
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Therefore, V id′′ = V id for all i which implies that sd′′ ≡ sd. So, sd is also a neighbor

of sd′ and can be obtained from sd′ using a drop action only.

� Drop: The proof for drop action is very similar to that for add. It can be shown

in the same manner that if sd′ is obtained from sd using a drop action, sd can be

obtained from sd′ using an add action and so sd is also a neighbor of sd′ .

We now define the transition probability matrix.

3.3.1.2 Transition Probability Matrix

Let pdd′ denote the probability that the DTMC transitions to sd′ in the next step from the

current state sd. The transition happens in two steps. 1) In state sd, we first randomly

choose one of the three actions A1(swap), A2(add) or A3 (drop) and then randomly choose

a neighboring state sdp that can be obtained from sd by performing the chosen action.

The state sdp is referred to as the proposed future state. 2) Based on the reward values

E(sd) and E(sdp), the proposed transition from sd to sdp is either accepted, i.e. sd′ = sdp

or rejected, i.e. sd′ = sd. We discuss these steps in detail below.

� Step 1 : In this step, one of the three actions is picked. Since different actions lead to

different sets of potential neighboring states, we use sdAi to denote a state that can

be obtained from sd by performing action Ai, i ∈ {1, 2, 3}. Probability of picking

every action is different. Action A1 is picked with probability (w.p.)

βddA1
=

1

3
.

A2 is picked w.p.

βddA2
=

2

3
× N − |V 0d|
L(|V 0d|+ 1) + (N − (|V 0d|+ 1))

.

A3 is picked w.p.

βddA3
=

2

3
× L|V 0d|
L|V 0d|+ (N − |V 0d|)

.

With the remaining probability, the state of the DTMC remains unchanged. A3

corresponds to the add action and so, is chosen with a probability directly propor-

tional to the number of unused PRBs (|V 0d|) and the number of multicast groups
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(L). Therefore, for a large number of groups and unused PRBs, the algorithm is

more likely to choose the add action. Similarly, for a greater number of used PRBs

(N − |V 0d|), the algorithm is more likely to choose the drop action.

Now we explain how one of the neighboring states is chosen for potential transition

given the chosen action. If the chosen action is A1, the two PRBs to be swapped, j1

and j2 are chosen uniformly at random from [N ]. The swap of j1 and j2 is then per-

formed as discussed in Section 3.3.1.1. For A2, the PRB to be dropped, j1 is picked

uniformly at random from [N ] \ V 0d and dropped as discussed in Section 3.3.1.1.

Similarly for A3, a group i1 is picked uniformly at random from [L] and a PRB to

be added to it, j1 is chosen uniformly at random from V 0d. The addition of j1 to

i1 is then done as discussed in Section 3.3.1.1. In the next step, we discuss how the

exact values of the transition probabilities are determined.

� Step 2 : Let sd′ denote the state chosen for transition using the procedure in Step

1. If sd′ has reward greater than or equal to that of sd, the DTMC transitions to

sd′ . Otherwise, the transition to sd′ takes place w.p. e(−(E(sd)−E(sd′ ))/T ). Thus, the

probability that the DTMC will transition to sd′ is

αdd′ = min
(
1, e(−(E(sd)−E(sd′ ))/T )

)
.

Here, T is a parameter commonly known as ‘temperature’ in SA [100]. For a fixed

T > 0, {XT
n }n≥1 denotes the corresponding time homogeneous DTMC.

sdA1
, sdA2

and sdA3
denote the states resulting from sd due to actions A1, A2 and A3

respectively. Then the corresponding transition probabilities take the following form :

pddA1
= βddA1

× 1

N(N − 1)
× αddA1

, (3.6)

pddA2
= βddA2

× 1

N − |V 0d|
× αddA2

, (3.7)

pddA3
= βddA3

× 1

|V 0d|
1

L
× αddA3

, (3.8)

pdd′ = 0, if sd′ is not a neighbor of sd. (3.9)

Note that (3.6), (3.7), (3.8) and (3.9) completely describe the TPM. pddA1
is the

probability of transitioning from sd to sdA1
. In (3.6), βddA1

is the probability of picking
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action A1, the second term, 1
N(N−1)

accounts for choosing any 2 PRBs for swapping and

αddA1
is the probability with which the DTMC transitions to the resulting state sdA1

. Thus,

pddA1
is the overall probability of transitioning to state sdA1

from sd. Similarly, in (3.7)

and (3.8), βddA2
and βddA3

are the probabilities of picking actions A2 and A3 respectively,

1
N−|V 0d|

is the probability of choosing one of the allocated PRBs for dropping, 1
|V 0d|

1
L

is

the probability of choosing a PRB for addition from V 0d times the probability of picking

a group to which the PRB can be assigned, αddA2
and αddA3

are the probabilities with

which the DTMC transitions to the resulting states sdA2
and sdA3

respectively. In (3.9),

pdd′ = 0 because the DTMC cannot jump from sd to a state that is not a neighbor of sd.

Algorithm 3: Algorithm for the Randomized Scheme

Input: Rates rij∀ i ∈ [L] and j ∈ [N ], max iter = 105

1 Initialize: s0, initial random allocation state

2 sd ← s0

3 for n = 1 : max iter do

4 sd′ ← sd

5 T ← 1
log(n)

6 Pick action A1, A2 or A3 w.p. βddA1
, βddA2

and βddA3
respectively

7 if action=A1 then

8 Pick any two PRBs, j1, j2 ∈ [N ]. Say, j1 ∈ V i1d′ & j2 ∈ V i2d′

9 V i1d′ = V i1d′ \ {j1} ∪ {j2}, V i2d′ = V i2d′ \ {j2} ∪ {j1}

10 else if action=A2 then

11 Pick a PRB, j ∈ ∪Li=1V id′ . Say, j ∈ V id′

12 V id′ = V id′ \ {j}, V 0d′ = V 0d′ ∪ {j}

13 else

14 Pick any j ∈ V 0d′ and any i ∈ {1, 2, . . . , L}

15 V id′ = V id′ ∪ {j}, V 0d′ = V 0d′ \ {j}

16 end

17 sd ← sd′ , if E(sd′) ≥ E(sd)

18 sd ← sd′ w.p. e(−(E(sd)−E(sd′ ))/T ), otherwise

19 end

20 sd is the proposed resource allocation
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In the randomized scheme here, we aim to simulate the constructed DTMC with

these transition probabilities. The steps involved in the randomized scheme are presented

in the form of a pseudo-code in Algorithm 3. Note that the TPM of the DTMC is

not being stored in this algorithm and the transition probabilities defined above can

be determined in polynomial-time. Thus, the TPM satisfies all the conditions stated

earlier for computational feasibility of the algorithm. In the next result, we prove certain

important properties of the constructed DTMC.

Lemma 5. The constructed time homogeneous DTMC {XT
n }n≥1 is finite, aperiodic and

irreducible for every T ∈ (0,∞).

Proof. � Finite: The DTMC is finite because the total number of possible resource

allocation states is (L+ 1)N .

� Aperiodic: The DTMC has self loops because there is a positive probability of

remaining in the same state at a transition epoch. Hence, the DTMC is aperiodic.

� Irreducible: The DTMC can transition from any state sd to any other state sd′ by

first dropping all the used PRBs into G0 by choosing the drop action repeatedly.

Then, the PRBs can be added one by one according to the assignment in state sd′

by choosing the add action repeatedly. Thus, there exists at least one finite length

path from any state sd to any other state sd′ . Therefore, the DTMC is irreducible.

Having established that the constructed DTMC is finite, aperiodic and irreducible,

it is guaranteed to have a unique steady state distribution. In the following result, we

determine this steady state distribution.

Theorem 2. For any fixed T > 0, the steady state distribution of the DTMC {XT
n }n≥1

is given by

πTd =
eE(sd)/T∑
sd
eE(sd)/T

∀ sd ∈ χ. (3.10)

Proof. To prove the required, we show that the transition probabilities in (3.10) satisfy

πTd pdd′ = πTd′pd′d for every sd, sd′ . This will imply that the DTMC is reversible [101] and

has steady state distribution πTd = eE(sd)/T∑
sd
eE(sd)/T ,∀ sd ∈ χ.
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Suppose sd and sd′ are not neighboring states, then pdd′ = pd′d = 0. Hence, the

required follows trivially. Thus, it suffices to consider the case when sd and sd′ are neigh-

bors. If sd and sd′ are neighbors, there are three possibilities, that sd′ is obtained from sd

by 1) swap action, 2) drop action or 3) add action. We consider each case separately:

� Swap: If the transition from sd to sd′ occurs due to a swap action, then pdd′ and

pd′d take the form given by (3.6). For E(sd) ≥ E(sd′) we have:

eE(sd)/T∑
d∈χ e

E(sd)/T

1

3

1

N(N − 1)
e−(E(sd)−E(sd′ ))/T

=
eE(sd′ )/T∑
d∈χ e

E(sd)/T

1

3

1

N(N − 1)
,

which is true. Therefore, the given πTd satisfies πTd pdd′ = πTd′pd′d for the swap action.

This can be similarly shown for E(sd) < E(sd′) as well.

� Add: If the transition from sd to sd′ occurs due to an add action, pdd′ and pd′d will

be given by (3.8) and (3.7) respectively. For E(sd) ≥ E(sd′), we have:

2πTd
3
(
L|V 0d|+ (N − |V 0d|)

)e−(E(sd)−E(sd′ ))/T

=
2πTd′

3
(
L(|V 0d′ |+ 1) + (N − (|V 0d′ |+ 1))

) . (3.11)

Since sd′ is obtained from sd using an add action, |V 0d| = |V 0d′ | + 1 which means

that L|V 0d|+ (N − |V 0d|) = L(|V 0d′|+ 1) + (N − (|V 0d′ |+ 1)) in (3.11) above. So,

(3.11) becomes:

πTd e
−(E(sd)−E(sd′ ))/T = πTd′ ,

=⇒ eE(sd)/T∑
d e

E(sd)/T
e−(E(sd)−E(sd′ ))/T =

eE(sd′ )/T∑
d e

E(sd)/T
,

which is true. Therefore, the given πTd satisfies πTd pdd′ = πTd′pd′d for the add action.

This can be similarly shown for E(sd) < E(sd′) as well.

� Drop: If the transition from sd to sd′ occurs due to a drop action, pdd′ and pd′d

will be given by (3.7) and (3.8) respectively. Also, in this case, |V 0d′ | = |V 0d| + 1.

Following the same steps as for the add action, it can be shown that the given πTd

satisfies πTd pdd′ = πTd′pd′d for the drop action as well.
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Therefore, we conclude that the steady state distribution of the DTMC {XT
n }n≥1 is given

by πTd = eE(sd)/T∑
sd
eE(sd)/T ∀ sd ∈ χ.

For a fixed value of T , the DTMC is time homogeneous with steady state distribution

πTd as given in Theorem 2. However, when T varies as a function of time n, the DTMC no

longer remains time homogeneous and the steady state distribution cannot be determined

in the same manner. We require this non time homogeneous DTMC {Xn}n≥1 to converge

to a reward maximizing state. In the following theorem, we show that this does indeed

happen.

Theorem 3. For the non time homogeneous DTMC {Xn}n≥1, limn→∞ P (Xn = sd) exists,

call it πd. Moreover, πd = limT→0 π
T
d . Specifically,

πd =

1/| arg maxdE(sd)|, ∀ d ∈ arg maxdE(sd),

0, otherwise.

(3.12)

Thus, πd is a uniform distribution over the optimal reward maximizing resource allocation

states.

Proof. The result follows directly from Theorem 1 of [102].

We have mentioned the parameter T above, while discussing the TPM. Now, we

elaborate its significance in greater detail. SA involves an exploration versus exploitation

trade-off. Exploration involves transitioning to new states even if their rewards are lower

than the current state of the DTMC whereas exploitation refers to only transitioning to

a new state if it provides a reward greater than the current one. SA achieves a balance

between exploration and exploitation through this parameter T . T is kept very high in

the beginning so that the algorithm can explore a large number of states quickly. As the

time index increases, T goes on decreasing and so does the likelihood of transitioning to

lower reward states. T = 1/ log(n), n being the time index is known to be the optimal

cooling schedule [102]. This form of T ensures that the algorithm escapes local optima

faster and converges to the global optimum as T goes to 0. Specifically, by varying T , we

can achieve the required limn→∞ P (E(Xn) = E?) = 1. In the next section, we compare

the results of the RS with the optimal solution obtained by solving the BLP B?
∆ for small

input sizes.
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Table 3.1: Performance comparison of RS and BLP

No. of groups RS BLP % Error

2 93.53 96 2.57

3 90.05 94 4.2

4 86.54 91 4.9

3.3.2 Performance comparison of the RS and the BLP

The optimal resource allocation can be obtained by solving BLP B?
∆ from Section 3.1.

BLPs, as mentioned before, are inherently hard to solve. They can however be solved

for small input sizes. Using the computing power at our disposal (Intel i7, 2.90 GHz

quad-core processor with 16 GB RAM), we were able to obtain a solution of B?
∆ for an

input size of up to 4 groups. Note that the search space scales as (L+ 1)N where L is the

number of groups and N is the number of PRBs in a sub-frame. So, even for 4 groups and

100 PRBs, the search space consists of 5100 states which is why the BLP fails to give a

solution for more than 4 groups. The outputs of the BLP and the RS for up to 4 groups,

averaged over 100 different channel conditions are tabulated in Table 3.1. As we can see,

the output of the RS is close (difference in number of PRBs saved < 5%) to the optimal

obtained by solving the BLP.

The randomized scheme works iteratively to obtain an optimal solution. It can take

several thousand iterations to converge and so, it is not guaranteed to converge within

the sub-frame duration of 1 ms. We require resource allocation schemes that can output

a near optimal solution (if not optimal) every sub-frame. We now present two heuristic

schemes that give us a reasonably good performance in a time efficient manner. We

compare the output of one of the proposed schemes with the output of the RS and show

that it gives a solution very close to the optimum and takes significantly less time to run

than the RS.
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3.4 Heuristic Schemes for Resource Allocation

In this section, we propose two heuristic schemes for resource allocation in multicast. The

first scheme allocates PRBs greedily and the second one makes use of Linear Programming

(LP) relaxation of the BLP. Allocation of resources in LTE is done in every sub-frame.

So, for brevity, we fix a sub-frame t and omit it from notations in this section. Grouping

strategy ∆ impacts resource allocation via r∆
ij , which is the rate achievable by group i in

PRB j under policy ∆. Our aim is to propose resource allocation schemes for any given

∆. So, we fix ∆ and omit it from the notations as well.

3.4.1 Greedy Allocation

Algorithm 4: Greedy Resource Allocation Scheme

Input: Rates rij for all i ∈ [L] and j ∈ [N ]

1 Initialize: N = [N ], L = [L] and xij = 0 for every i, j

2 while N ∩ L 6= φ do

3 Assign (i?, j?) = arg max(i,j)∈N×L rij

4 xi?j? ← 1, N ← N \ {j?}

5 if
∑

j∈[N ] xi?jri?j ≥ R then

6 L ← L \ {i?}

7 end

8 end

The pseudo code for this scheme is given in Algorithm 4. N and L denote the unal-

located PRBs and the groups whose rate requirements are not yet satisfied, respectively.

These quantities are updated every iteration and are monotone non-increasing. The al-

gorithm terminates when either of the two sets becomes empty. In each iteration, the

algorithm determines indices i? and j? from L and N , respectively, that correspond to

the maximum rij. PRB j? is allotted to group i? and is removed from N . Also, if the total

sum rate on all the PRBs allotted to i? is greater than or equal to the requirement R, then

i? is also removed from L. Next iteration starts with the new values of N and L. Note

that N is monotone decreasing, thus, the algorithm terminates in at most N iterations.
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At the termination, if only N = φ and L is non-empty, then the greedy resource allocation

scheme fails to output a feasible resource allocation, else variables xij’s yield the required

resource allocation. The algorithm has a complexity of O(LN2). The resource allocation

thus obtained is inherently fair as the algorithm provides the minimum required rate R

to all the UEs.

3.4.2 LP-relaxation Based Allocation

Recall that the optimal resource allocation can be obtained as a solution to the BLP B?
∆.

BLPs are inherently hard to solve and cannot be solved in reasonable time except for

very small input sizes. A standard approach used for obtaining an approximate solution

of BLPs is to do LP-relaxation of the BLP i.e., relax the binary variables (in our case,

xijs) to take values in the interval [0, 1]. The resulting LP can be solved in polynomial-

time. Let x̃ij for all i, j denote the optimal solution of the relaxed LP. Now, x̃ijs are real

numbers and we need to convert them to binary values without violating the constraints

of B?
∆. To do so, we use the greedy algorithm given in Algorithm 5. In each iteration,

PRB j is assigned to an unsatisfied group i if it has the largest value of x̃ij for that PRB.

This is intuitive, as a higher value of x̃ij indicates that group i was assigned a larger

share of PRB j by the LP. The algorithm has a complexity of O(LN2). Note that the

resource allocation obtained using this scheme is inherently fair as the algorithm ensures

that the required rate R is provided to all the UEs. We shall refer to this scheme as the

LPr scheme from this point onwards.

3.4.2.1 Performance Comparison of RS and LPr

In order to compare the performance of the LPr scheme to that of the RS, we simulate

an LTE cell with all the multicast UEs requiring the same content from the eNB. PRBs

are allocated to the UEs using the RS as well as the LPr scheme. We gradually increase

the number of UEs in the cell starting from 10 UEs and go up to 100, adding 10 UEs at a

time. For each of the resulting 10 scenarios, the PRB allocation is done for 100 different

fading variations using both the schemes. The average number of PRBs saved is used

as a measure for performance comparison. The results of the simulations are plotted in

Figure 3.1. Each point in the curves has been obtained by averaging over 100 different
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Algorithm 5: Rounding off algorithm for LP-relaxation

Input: x̃ij for all i ∈ [L] and j ∈ [N ]

1 Initialize: N = [N ], L = [L] and xij = 0 for every i, j

2 while N ∩ L 6= φ do

3 Assign (i?, j?) = arg max(i,j)∈N×L x̃ij

4 xi?j? ← 1, N ← N \ {j?}

5 if
∑

j∈[N ] xi?jri?j ≥ R then

6 L ← L \ {i?}

7 end

8 end
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Figure 3.1: Number of PRBs saved under LPr and RS.

channel gain variations. Note that all the groups achieved the required rates at all points

in the two curves. Both the algorithms show a similar trend as the number of UEs in the

cell increases. Even though the RS saves more PRBs throughout, the ratio of the number

of PRBs saved by the RS to the number of PRBs saved by the LPr scheme is no more

than 1.25.
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Table 3.2: Time taken in seconds to run RS and LPr

No. of UEs RS LPr Ratio

20 0.082 0.015 5.47

40 0.086 0.019 4.53

60 0.089 0.021 4.24

80 0.097 0.017 5.71

100 0.096 0.018 5.33

3.4.2.2 Time Comparison of RS and LPr

Recall that, in LTE, the allocation of PRBs is done every sub-frame. Since a sub-frame

spans only 1 ms in time, it is important for whatever resource allocation scheme we

employ, to be time efficient. We now do a time comparison of RS and LPr schemes.
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Figure 3.2: Variation of the reward of the state of RS with the increasing number of

iterations.

The RS is an iterative algorithm and cannot be guaranteed to converge within the

span of a sub-frame. While simulating the RS in this chapter, we run 105 iterations.

However, for the time comparison here, we first see how the reward of the current state

of the RS changes as a function of the number of iterations. Figure 3.2 illustrates the
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change in the reward of the current state of the RS as a function of the number of

iterations for different number of UEs in the cell. We can observe from the figure that

the output saturates well before 2000 iterations in each curve. So, for the sake of time

comparison with the LPr scheme, we consider the time taken by just 2000 iterations of

the RS. Table 3.2 illustrates the time taken by the RS and the LPr scheme for different

number of UEs in the cell. The time taken is averaged over 200 different channel gains.

We observe that the RS takes about 5 times more time to run than the LPr scheme even

with just 2000 iterations while providing only marginal performance gains as seen in the

previous section. Note that in practice, depending upon the system, we might need to

run the algorithm for a much larger number of iterations.

From the performance and time comparisons of the LPr and the RS, we conclude

that LPr performs nearly as well as the RS in 5 times lesser duration than the RS. Thus,

the LPr scheme is a suitable resource allocation scheme for practical implementation. In

the next section, we present a heuristic scheme for the grouping of UEs for multicast

transmission.

3.5 Heuristic Scheme for Grouping

We proved in Section 3.1 that obtaining the optimal grouping strategy ∆? that maximizes

the performance measure S
∆?

is an NP-hard problem. Indeed, even quantifying S
∆

for

a given grouping strategy ∆ is a very difficult task as the channel gains and hence the

rates vary over time. This is because obtaining the optimal resource allocation in a

given sub-frame itself is an NP-hard problem (Lemma 1). However, even if some genie

provides us with the value S
∆

for any given ∆, determining the optimal ∆? is still NP-

hard (Lemma 2). Hence, in this section, we present the following heuristic algorithm for

grouping.

3.5.1 Hybrid Grouping Policy

Under the hybrid grouping policy, the eNB fixes the SNR thresholds for groups and then

UEs are assigned to various groups based on their average SNR values. 3GPP standards

for LTE [7] define 15 CQI values with 15 indicating the best and 1 indicating the worst
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channel. In keeping with the number of CQI values, we fix the number of grouping

intervals to be 15. In LTE, a range of SNR values get mapped to a CQI value [7] (many

to one map). Let the minimum SNR that can be mapped to a CQI value c be denoted

by SNRmin(c). We define a threshold corresponding to CQI c such that with a large

probability (0.9), the instantaneous SNR of every UE in that group will stay above or at

SNRmin(c). Specifically, a threshold D(c) is defined such that,

P{SNR ≥ SNRmin(c)|SNRavg = D(c)} = 0.9. (3.13)

To compute D(c), we need the distribution of SNR which depends on the distribution

of hiu[t]. Hiu[t] (the fast-fading component of hiu[t] as defined in Section 3.1) are i.i.d

exponential with mean 1. Given that the average SNR is equal to D(c), the distribution

of the instantaneous SNR is exponential with parameter D(c). Therefore, (3.13) can be

written as:

e−
SNRmin(c)

D(c) = 0.9, (3.14)

=⇒ D(c) =
SNRmin(c)

log(10/9)
. (3.15)

Now that the thresholds have been defined, UEs are classified into groups on the basis of

their average SNR values. UEs with average SNR values greater than or equal to D(15)

are classified into Group 1 and those with SNR below D(2) are grouped into Group 15.

UEs with average SNR between D(14) and D(15) are put into Group 2 and so on. Thus,

Group 1 (Group 15) corresponds to the UEs with the best (worst) channel.

As the size of a group grows, the probability that one or more of the UEs in that

group will experience a poor channel increases. Therefore, the performance of the grouping

scheme may start worsening with increasing group sizes. To prevent this, we propose a

second layer of grouping. If the number of UEs in a group exceeds a certain maximum

value, it is divided into smaller groups. We fix the maximum group size such that all the

UEs in a group experience a good channel in at least 10% of the PRBs in a sub-frame.

Since the thresholds have been set so that the instantaneous SNR of a UE remains above

SNRmin(c) with probability 0.9 and the channels are independent across UEs and across

PRBs, this probability is given by:

p =
N∑

j=b0.1Nc

(
N

j

)
0.9kj(1− 0.9k)(N−j), (3.16)
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where k denotes the group size. We need this probability to be large. For example, in

the 20 MHz LTE system with N = 100, p = 0.9452 for k = 18. Therefore, we would

fix the maximum group size at 18 for this system and whenever a group grows beyond

18 UEs, the group would be split into smaller groups of size 18 or less. Note that p is a

monotonically decreasing function of k.

After the UEs are classified into groups, the rate for a particular group is set at the

value corresponding to the weakest UE in the group. Once the achievable rate for each

group is determined using the 3GPP mappings [7], the PRB allocation is done according

to the resource allocation schemes discussed in the previous section.

3.6 Simulations

Our simulation setup is comprised of an LTE cell of radius 375 m in accordance with

the simulation parameters for macro cell propagation model in [1]. We have used the

MATLAB [103] LTE simulator designed in [104] to conduct our simulations. LTE spe-

cific physical layer conditions have been created using channel models recommended by

3GPP [1]. The SNR to CQI and CQI to rate mapping has also been done according to

3GPP specifications [1].

An eNB located at the center of the cell multicasts the eMBMS content to all the

multicast groups. Rate requirement for each UE (R) is taken to be 1 Mbps. The UEs

are distributed uniformly at random within the cell and are grouped using the hybrid

grouping policy proposed in Section 3.5. For dividing the UEs into groups, we need to

determine the average SNR received at the UEs. For calculating the average SNR, we use

shadowing and path loss models provided in 3GPP specifications [1]. The channel gain

of each UE may be different in different PRBs. The channel gains are determined by:

1): Path Loss, 2): Shadowing and 3): Multipath due to reflections from the surrounding

environment. After the grouping is done, PRBs are allocated using the policies proposed

in Section 3.4. Resource allocation policies make use of the instantaneous SNR values

for taking the allocation decisions. To determine the instantaneous SNR of users, we

take Rayleigh fading into account in addition to path loss, shadowing and multipath.

We compare the performance of the proposed schemes with unicast transmission. The
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Table 3.3: System Simulation parameters [1]

Parameters Values

System bandwidth 20 MHz

Center frequency 2 GHz

eNB cell radius 375 m

Path loss model L = 128.1 + 37.6 log 10(d), d in kilometers

Shadowing Log Normal Fading with 10 dB standard deviation

White noise power density −174 dBm/Hz

eNB noise figure 5 dB

eNB transmit power 46 dBm

PRB width 180 kHz

Number of PRBs 100 per sub-frame

ITU path loss model ITU-R M.2135-1 [105]

performance of the resource allocation policies is also compared to that of the widely used

Proportional Fair (PF) policy [14, 30, 36]. Other parameters relevant to our simulations

are given in Table 3.3.

For a given grouping and resource allocation, the system performance is affected by

two sources of randomness, (1) channel variations around mean on account of fast fading

and (2) average channel gain variations on account of user positions. We evaluate the

performance of our schemes by averaging over these two sources of randomness. Towards

this end, we consider 100 random UE placements and the performance of each placement

is evaluated and averaged over 1000 sub-frames with different channel gains. In addition

to unicast and the proposed grouping policy, we also simulate a random grouping where

each UE is placed in one of 10 groups uniformly at random. Under the proposed hybrid

grouping policy, a maximum of 15 groups can be formed. However, the actual number of

groups formed will depend upon the average SNR of the users. The average number of

groups formed during the simulations is given in Table 3.4.
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3.6.1 Results

Figure 3.3 illustrates the plot of the number of PRBs saved against the number of UEs

in the cell for greedy and LPr schemes under various grouping policies. The following

observations can be made from these plots:

� Unicast performs the worst and is unable to support the rate requirements of more

than 20 UEs successfully.

� Random grouping is able to support up to 30 UEs successfully. The number of

PRBs saved rapidly decreases to 0 beyond 30 UEs.

� With hybrid grouping, greedy allocation saves greater than 10 PRBs for up to 70

UEs. Using LPr saves around 20 PRBs even for 100 UEs.

Figure 3.4 illustrates the number of sub-frames (out of 1000) for which the allocations

are rendered infeasible for greedy and LPr allocation under various grouping policies. We

observe that:

� Unicast and random grouping quickly become completely infeasible beyond 40 UEs

under greedy scheme and beyond 50 under the LPr scheme.

� Using greedy allocation, the number of infeasible cases for hybrid grouping is zero

for up to 40 UEs. Using LPr, the allocation is always feasible.

We have also conducted simulations for a rate requirement of R = 2 Mbps. The

corresponding results are plotted in Figure 3.5 and Figure 3.6. We observe a similar

relative performance of the policies as that for R = 1 Mbps.

Figure 3.7 and Figure 3.8 illustrate the number of PRBs saved at the eNB for different

UE placements. For every M number of UEs in the cell, 100 different placements have

been considered. Out of these, 90% closest to the mean have been plotted as a scatter

plot. The means of the observations have also been indicated in the figures. The following

conclusions can be drawn from these plots:

� For varying UE placements, the number of PRBs saved at the eNB is between ±5

PRBs around the mean number saved for all the schemes.
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Table 3.4: Average number of groups formed

No. of UEs No. of groups No. of UEs No. of groups

10 5.39 20 6.94

30 7.75 40 7.96

50 8.45 60 8.39

70 8.66 80 8.77

90 8.77 100 9
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Figure 3.3: Number of PRBs saved under various policies

� Overall trend of the number of PRBs saved as the UE count increases is the same

as observed in Figure 3.3.

In addition to QoS, it is also important to guarantee a good QoE in video streaming.

QoE is known to be a function of various QoS parameters of the network [106]. The QoE

of a video stream primarily depends on the delay, delay jitter and the packet loss rate

in the network [107, 108]. To study the impact of our policies on the QoE of users, we

evaluate their performance using data from an actual video stream. For this purpose, we

use an H.264/AVC encoded video of Star Wars IV (obtained from (http://trace.eas.

asu.edu)) [16]. For transmitting this video stream, the required rate R is changed every

(http://trace.eas.asu.edu
(http://trace.eas.asu.edu
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Figure 3.5: Number of PRBs saved under various resource allocation policies for R = 2

Mbps

sub-frame according to the requirement of the video frame being transmitted. Under our

policies, packets of the video are transmitted as soon as they arrive. As a result, the access

network does not induce any additional delay and jitter in the video stream. The users
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Figure 3.6: Number of infeasible cases under various resource allocation policies for R = 2

Mbps

only experience the delay incurred due to the core network. Therefore, our allocation

policies do not introduce any QoE degradation. Figure 3.9 and Figure 3.10 show the

histograms of the number of PRBs saved while transmitting the frames of the Star Wars

IV video over the LTE multicast environment. The proposed resource allocation policies

are able to meet the requirements of the video stream in far lesser number of resources

than unicast transmission. Under greedy allocation, multicast always saves more than 70

PRBs in a sub-frame whereas unicast is never able to save more than 50 PRBs. Under

LPr, multicast transmission nearly always saves 80 or more PRBs in a sub-frame and

unicast is unable to save more than 50 PRBs.

These simulation results clearly establish the feasibility of the proposed grouping and

resource allocation algorithms for use in multicast systems. The hybrid grouping policy

provides a significant advantage over unicast and random grouping. The poor performance

of random grouping reinforces the importance of proper grouping algorithms. It clearly

shows that if users are randomly thrown together without taking their channel conditions

into account, multicast transmission may not provide any advantage over unicast. Among

the proposed resource allocation policies, LPr scheme does better than the greedy policy.
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Figure 3.7: Number of PRBs saved for different UE placements under the Greedy scheme
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Figure 3.8: Number of PRBs saved for different UE placements under the LPr scheme

It satisfies the multicast users in a lesser number of PRBs and successfully meets their

rate requirements in every sub-frame.

Next, we compare the performance of our resource allocation policies with the widely

used Proportional Fair (PF) policy from the existing literature. Since we have already

established that the LPr policy performs better of the two proposed policies, we only use
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Figure 3.9: Histogram of number of PRBs saved for a real-time video stream under the

Greedy scheme

Figure 3.10: Histogram of number of PRBs saved for a real-time video stream under the

LPr scheme

LPr for comparison in the next set of simulations.

For comparing our LPr policy to PF, we consider a scenario with both multicast
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Figure 3.11: Comparison of the average system throughput under LPr and PF

and unicast UEs present in the system. We use the system throughput and user rate

satisfaction as the metrics for comparison. In order to compare our scheme with PF, we

first allocate the required number of PRBs to multicast groups using the proposed LP

relaxation. Allocation to the unicast UEs is then done using the PF policy since the rate

requirements of the unicast UEs are not fixed.

In Figure 3.11, we see the average sum throughout provided by LPr and PF allo-

cation. As can be observed from the figure, LPr results in a significantly better system

throughput. Even though it first uses a chunk of PRBs to satisfy the rate requirement of

the multicast UEs, LPr policy still provides a better overall throughput. In Figure 3.12,

we plot the percent of unsatisfied multicast groups as a function of the number of users

in the system. The PF policy nearly always fails to meet the rate requirements of the

multicast users. Even with no constraint on the amount of resources it can use, it fails

to meet the rate requirements of the multicast groups and does not even do better in

terms of the overall system throughput. On the other hand, LPr meets the requirements

of all the multicast groups in minimum number of PRBs and also results in a significantly

better system throughput.

These simulation results clearly indicate that suitability of the proposed policies for
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Figure 3.12: Comparison of the percent unsatisfied groups under LPr and PF

use in multicast transmissions. While PF schemes work well in a unicast only scenario,

they are not suitable for rate constrained streaming systems that require a certain rate

to be provided to the subscribers in every sub-frame. Grouping users according to the

hybrid grouping policy and allocating resources using the LPr policy provides the best

performance in terms of resource utilization and user satisfaction. In the next section, we

discuss some generalizations of the proposed policies.

3.7 Generalizations

In this chapter, we have primarily focused on grouping and resource allocation for mul-

ticast streaming for non-layered video coding such as H.264/AVC. Each eMBMS service

has a certain rate associated with it at which all the users subscribed to it are served.

There are, however, several ways in which a streaming service may differ from the one

considered in this chapter. For instance, the network might need to handle layered video

coding, introduce rate adaptation or switch to the next generation 5G system. The pro-

posed policies can be adapted for use in these and many more scenarios with little or no

changes. We now discuss some of these generalizations in greater detail.

� Heterogeneous quality demands : The users subscribed to the same eMBMS service
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may want to see different qualities of the same video stream. Some users may want

ultra HD quality while others may prefer a lower quality video for a lesser price. This

heterogeneity in user demands can be handled by treating the users who require the

same quality as a separate group with a specific rate requirement. The proposed

allocation policies can be used for allocating resources in such a system.

� Rate adaptation: The proposed policies can also be used in streaming systems with

rate adaptation as long as the rate adaptation takes place on a slower time scale

than a sub-frame (1 ms). When the rate requirements change, the grouping of users

can be changed accordingly. As discussed in Section 3.1, we can allow for the groups

to change every K sub-frames, where K is large. Even if rate adaptation occurs on

the order of a few seconds, K would be of the order of a few 1000 sub-frames. Thus,

the proposed policies can also be used in systems with rate adaptation.

� SVC : When SVC is used for encoding the streaming content, different sets of users

may require a different number of enhancement layers of the video. The base layer,

however, needs to be transmitted to all the users. The algorithms proposed in

this chapter can then be used for transmitting the base layer to all the subscribed

users and separate algorithms can then be used on top of these policies for oppor-

tunistically transmitting the enhancement layers to the groups with good channel

conditions [54,55].

� 5G : Even though the policies proposed in this chapter have been discussed in the

context of an LTE system, the policies can be used in next generation 5G systems as

well. The proposed hybrid grouping policy makes use of the SNR to CQI mappings

to define the grouping thresholds. Similar mappings are also defined in 5G [109]

which can be similarly used to define the SNR thresholds. The proposed resource

allocation policies are technology agnostic. The bandwidth in 5G is also divided into

PRBs [110] and the proposed policies can be used to determine resource allocation

for 5G systems without any changes.

Thus, the proposed grouping and resource allocation policies are suitable for use in

a versatile range of systems and can also be easily adapted for use in the next generation

5G systems.
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3.8 Conclusions

In this chapter, we have formulated the problems of grouping and resource allocation for

multicast systems that require a certain rate to be provided to all the multicast users.

These problems are aimed at satisfying the rate requirements of the users in minimum

possible number of PRBs. We have proved that both, the optimal grouping problem and

the optimal resource allocation problem, are NP-hard and therefore, no polynomial-time

algorithms exist for determining their optimal solutions. We have designed a Randomized

Scheme (RS) that works iteratively for estimating the optimal resource allocation. The

output of the RS provides a benchmark for performance evaluation of heuristic resource

allocation schemes. We have proposed two efficient heuristics for resource allocation, a

greedy and an LP-relaxation based scheme. The LP-relaxation scheme results in feasible

resource allocations that save nearly as many PRBs as that saved by using the RS in about

one-fifth the time taken by the RS. We have proposed a heuristic scheme for multicast

group formation as well. We call this grouping scheme as the hybrid grouping policy. It

divides the users subscribed to a multicast service into groups based on their average SNR

values such that the users in a group experience similar channel gains. Using extensive

simulations, we have shown that using the proposed policies for grouping and resource

allocation results in significant resource conservation. Therefore, using these policies for

multicast streaming can help alleviate the burden on our network resources. In addition

to the multicast system discussed here, the proposed resource allocation policies can

be easily adapted for use in more general systems such as those with rate adaption and

scalable video content streaming. The proposed grouping and resource allocation schemes

can act as an enhancement to eMBMS. These enhancements will not only improve the

performance of eMBMS but will also make its multicast operations more flexible and

versatile.

The resource allocation policies proposed in this chapter are constrained to serve all

the users in every sub-frame. This makes the performance of multicast groups dependent

on the weakest user in the group. However, if the users can tolerate a certain amount of

packet loss, the system will no longer be constrained to serve every user in every sub-frame

allowing for more flexibility in resource allocation. In the next chapter, we address the

problem of resource allocation in such a loss tolerant multicast system.



Chapter 4

Resource Allocation for Loss

Tolerant Multicast Video Streaming

For lossless multicast streaming discussed in Chapter 3, resource allocation policies need

to serve all users in each sub-frame. Hence, the streaming content for a multicast group

cannot be transmitted at rates higher than what can be decoded by the weakest user in

the group. This makes the system performance dependent upon the users experiencing

the worst channel states. It also results in dissatisfaction of users with good channel states

who can achieve much higher data rates with unicast transmissions. In this chapter, we

address these issues using loss tolerant video streaming. Video streams can tolerate a

certain amount of packet loss without any significant degradation in the quality of video

perceived by the users. In fact, video streams are tolerant of packet losses as high as

40% [13]. For an H.264 encoded video, decoders like FFmpeg and JM can conceal as

much as 39% packet loss with no observable deterioration of video quality [13]. This

property can be leveraged to selectively allow some packet loss in video streams as long as

the users receive the desired video quality. We model such a loss tolerant multicast system

for video streaming and show that it significantly reduces the bandwidth consumption of

video streams. The loss tolerant nature of video streaming has not been exploited for

performance improvement of multicast in the existing literature.

In this chapter, we design efficient resource allocation algorithms for multicast video

streaming that allow for some controlled packet losses, depending upon the video quality

requirements of users. Allowing for some losses in a multicast stream gives us the flexibility

73
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of not having to serve all users in a multicast group in each sub-frame. This means that the

weakest user may no longer be a bottleneck. The transmission rates in some sub-frames

can be higher than what can be decoded by the weakest user. This leads to increased

system throughput and greater user satisfaction.

We model a loss tolerant MBMS system in which each user may have a different loss

tolerance. We convert the problem of resource allocation in this system to the problem of

stabilizing a virtual queueing system. We prove that stabilizing the token queues in this

virtual queueing system is equivalent to satisfying the loss requirements of the users. For

allocating resources in loss tolerant MBMS systems, we propose two online loss optimal

policies that do not require any statistical information of the channel states of users for

making allocation decisions. Channel states can vary arbitrarily and can also be correlated

across users. The proposed policies are throughput optimal in the sense that they can

stabilize the queueing system whenever any other policy, including offline policies with

complete information of the channel states, can do so. A mechanism for a polynomial-

time implementation of the proposed policies using Maximum Weight Bipartite Matching

(MWBM) is also presented.

We evaluate the performance of the proposed policies using extensive simulations.

Since the proposed policies are primarily designed for video streaming services, we make

use of video traces from actual videos to simulate realistic video traffic patterns for the

simulations. We use traces from five different videos obtained from the video trace library

of Arizona State University (http://trace.eas.asu.edu/) [16, 17]. We compare the

performance of our policies to that of the throughput optimal Exponential (Queue length)

(EXP-Q) rule [18]. The EXP-Q rule proposed in [18], is designed for use in a single channel

system where multiple flows are contending for obtaining the channel. We modify the

EXP-Q rule for use in a more complicated multi-channel multicast system. Under the

modified EXP-Q rule, several users encounter losses greater than their thresholds. On the

other hand, our proposed policies successfully meet the loss requirements of all users. By

allowing for some loss, we are able to satisfy the video quality requirements of a larger

number of users.

The rest of this chapter is organized as follows. We discuss the system model and the

problem formulation in Section 4.1. The construction of the queueing system and related

http://trace.eas.asu.edu/
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results are presented in Section 4.2. In Section 4.3, we present the proposed resource

allocation algorithms and in Section 4.4, we discuss the polynomial-time implementation

of these algorithms. The details of the simulations are given in Section 4.5 and we conclude

in Section 4.6.

4.1 System Model and Problem Formulation

In this section, we first explain the system model in detail and then we define the resource

allocation problem for a loss tolerant MBMS system.

4.1.1 System Model

Our system consists of an LTE cell with L different MBMS sessions. There are M UEs

in the cell that can subscribe to any of these sessions. [M ] and [L] denote the set of

UEs and the set of multicast groups, respectively. UEs subscribed to the ith video stream

form multicast group Gi and we use i(k) to denote the index of the group to which UE

k belongs. The number of UEs in Gi is denoted by Ki. Each MBMS group is allocated

one PRB in each sub-frame. A resource allocation policy Γ decides which PRB will be

allocated to which group in each sub-frame. We define an allocation vector BΓ[t] for

policy Γ in sub-frame t. BΓ[t] is a vector of length L that specifies which PRB, if any,

has been assigned to each group. Note that Γ is completely defined by the value of BΓ[t]

in each sub-frame. We use BΓ
i [t] to denote the ith entry of vector BΓ[t]. If Gi is not

scheduled for reception in sub-frame t, then BΓ
i [t] = 0, otherwise BΓ

i [t] takes the value of

the PRB number allocated to Gi. The ith MBMS service requires data to be transmitted

to its subscribers at rate Ri. Whenever a PRB is allocated to multicast group Gi, data is

transmitted in that PRB at the corresponding rate Ri. For each MBMS stream, a data

packet arrives at the beginning of a sub-frame and is transmitted in the same sub-frame.

The channel states of UEs vary across time and frequency. As a result, the channel

experienced by a UE varies from one sub-frame to another and also across PRBs within

a sub-frame. Depending on the CQI of UE k in PRB j of sub-frame t, there is a certain

maximum MCS that can be supported in that PRB for this UE [7] and a corresponding

maximum rate, rkj[t] that it can successfully decode. As a result, a UE may not receive
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the transmitted content successfully even after a PRB has been assigned to its multicast

group. When a UE successfully receives data in a sub-frame, we say that the UE has

been ‘served’ in that sub-frame. Note that a UE being scheduled and being served is not

the same. We distinguish between these two terms below:

� We say that a UE has been scheduled in a sub-frame if a PRB is allocated to its

group in that sub-frame. For instance, UE k ∈ Gi is said to have been scheduled

for reception in sub-frame t under policy Γ if BΓ
i [t] 6= 0.

� We say that a UE has been served in a sub-frame if it has been scheduled in that

sub-frame and is able to successfully decode the received content. For instance, UE

k ∈ Gi is said to have been served in sub-frame t under Γ if BΓ
i [t] = j 6= 0 and

Ri ≤ rkj[t].

We denote the loss encountered by UE k under policy Γ in sub-frame t by `Γ
k [t]. For

k ∈ Gi and BΓ
i [t] = j 6= 0, we have:

`Γ
k [t] =

0, if Ri(k) ≤ rkj[t],

1, otherwise.

(4.1)

For BΓ
i(k)[t] = 0, the UE is not scheduled for reception and so, `Γ

k [t] = 1.

The video streams can tolerate a certain amount of packet loss without significant

quality degradation. Each UE in the system has some loss tolerance depending upon its

channel state and the video resolution chosen by it. A higher resolution would typically

mean a lower loss tolerance and vice versa. We use ˜̀
k to denote the fractional loss tolerable

by UE k. ˜̀̀̃̀̃ = [˜̀1, . . . , ˜̀
M ] denotes the loss tolerance vector for the system.

A compressed video stream is made up of Groups of Pictures (GoPs). A GoP com-

prises a series of Intra-coded (I), Predicted (P) and Bidirectional predicted (B) frames. I

frames are self-contained and do not require other frames to be decoded. P frames are

dependent on their preceding I frames for being correctly decoded, and B frames are de-

pendent on both preceding and following I and/or P frames for being correctly decoded.

Due to this, it is difficult to estimate the impact of loss of I and P frames on the video

quality [16]. Therefore, we assume that all I and P frames of the videos are transmit-

ted without any loss and we use loss tolerant streaming only for transmitting B frames.
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For I and P frames, the eNB can allocate sufficient resources so that these frames are

transmitted without any loss. We now formally define the resource allocation problem.

4.1.2 Problem Definition

We begin by stating some important definitions that will be used in formulating the

problem.

Definition 3. Feasible resource allocation: Resource allocation in a sub-frame is said to

be feasible if it assigns at most one PRB to each multicast group such that no two groups

are assigned the same PRB. In other words, a feasible resource allocation in sub-frame t

corresponds to an allocation vector BΓ[t] such that no two non-zero elements of the vector

are equal i.e., if BΓ
i [t] 6= 0, then BΓ

i [t] 6= BΓ
i′ [t] for every i′ 6= i.

Definition 4. Feasible resource allocation policy: A feasible resource allocation policy Γ

is a policy that chooses a feasible allocation vector in each sub-frame.

A resource allocation policy can make use of the knowledge of current channel states

of UEs, allocation information of the previous sub-frames, loss tolerance of UEs and losses

encountered by UEs in the past to make allocation decisions in a sub-frame. It could even

be an off-line policy that could make allocation decisions in advance with the knowledge

of the channel states of users in all sub-frames including the ones in future.

Definition 5. Average packet loss: We denote the average packet loss encountered by a

UE k under resource allocation Γ by ¯̀Γ
k . It is the total packet loss per unit time and can

be mathematically expressed as follows:

¯̀Γ
k = lim sup

T→∞

1

T

T∑
t=1

`Γ
k [t].

¯̀Γ̄`Γ̄`Γ = [¯̀Γ
1 , . . . ,

¯̀Γ
M ] denotes the system loss vector for policy Γ.

Definition 6. Feasible region of a policy: The feasible region of a resource allocation

policy Γ, LΓ, is the set of all loss tolerance vectors, ˜̀̀̃̀̃s that can be satisfied by Γ i.e.,

˜̀̀̃̀̃> ¯̀Γ̄`Γ̄`Γ with probability (w.p.) 1.

Definition 7. Feasible region of the system: The feasible region of the system is the set

of loss vectors L =
⋃

Γ LΓ where the union is over all feasible Γ.
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Definition 8. Optimal policy: The optimal resource allocation policy Γ? is a policy whose

feasible region is the set of loss vectors LΓ? =
⋃

Γ LΓ.

Our objective here is to determine the optimal resource allocation policy Γ?. We

design this optimal policy using results from queueing theory. Towards this end, we

convert the resource allocation problem in a loss tolerant MBMS system to the problem

of stabilizing a virtual queueing system and prove that stabilizing the resulting system is

equivalent to meeting the loss requirements of UEs.

4.2 Queueing System for Resource Allocation in Loss

Tolerant MBMS Systems

We convert the problem of resource allocation in a loss tolerant MBMS system to the

problem of obtaining a throughput optimal policy for a queueing system. Towards this

end, we first discuss the construction of the queueing system.

4.2.1 Construction

We construct a virtual queueing system (Figure 4.1) with fictitious queues corresponding

to each user. The length of the queue of a user is an indicator of how much loss a user has

encountered. The state of this queueing system is completely described by the lengths of

these queues. The arrival and departure processes of these queues is defined below. Note

that, since these queues are virtual, no physical entities arrive or depart from the queues.

Arrivals and departures merely represent an increase or a reduction of the queue lengths.

We use the term ‘token’ to refer to the virtual entities that make up these queues and

refer to the queues as ‘token queues’.

The arrival process for the token queue of kth UE is denoted by {λk[t]}t≥1. λk[t] is a

binary random variable indicating arrival of a virtual token to kth queue in sub-frame t,

and has the expected value λk = 1− ˜̀
k. This value of the expected arrival rate will mean

that stabilizing this virtual queue will ensure that, in the actual system, UE k is served

in more than 1 − ˜̀
k of the sub-frames. Arrivals across sub-frames are assumed to be

independent and identically distributed. Across users, the arrival processes are assumed
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to be independent. Let λλλ = [λ1, . . . , λM ] denote the system arrival rate vector.

We define another indicator random variable µΓ
k [t] that indicates whether or not

UE k has been served in sub-frame t under Γ. µΓ
k [t] = 1 if and only if (iff) k is served

in sub-frame t. Thus, a departure from the token queue corresponds to the successful

delivery of a packet in the actual physical system. If BΓ
i(k)[t] = j, then, µΓ

k [t] = 1 iff j 6= 0

and Ri(k) ≤ rkj[t]. Otherwise, µΓ
k [t] = 0. Let QΓ

k [t] denote the length of queue k at the

beginning of sub-frame t under Γ. Note that,

QΓ
k [t+ 1] = max{QΓ

k [t] + λk[t]− µΓ
k [t], 0}.
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Figure 4.1: Virtual queueing system model

Now, the stability region of the queueing system thus constructed can be defined as

follows:

Definition 9. Stability region of the queueing system: The queueing system is said to be

stable if the expected queue lengths stay finite for every queue i.e., supt E[Qk[t]] < ∞ for
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every k. Note that, for our corresponding physical system, this will mean that each UE

k is served in at least 1 − ˜̀
k of the sub-frames and hence, its loss requirements are met.

A resource allocation policy that stabilizes the system is called a stable resource allocation

policy. The stability region of a resource allocation policy Γ is the set of arrival rate vectors

for which the system is stable under Γ. The stability region of the queueing system is the

union of the stability regions of all feasible Γ’s. We denote it as S.

Definition 10. Throughput optimality: A resource allocation policy Γ is said to be

throughput optimal if Γ can stabilize the queueing system if some policy can do so. This

means that if the queueing system is at all stabilizable, Γ will stabilize it.

This virtual queueing system can be maintained at the eNB as illustrated in Fig-

ure 4.1. Since the eNB knows the loss requirements of UEs as well as their channel states,

it has all the information needed to maintain the queueing system. In the next section,

we examine the stability region of the constructed queueing system and relate it to the

feasible region of the optimal resource allocation policy.

4.2.2 Feasible Region of the Optimal Resource Allocation Policy

and Stability Region of the Queueing System

In this section, we prove that stabilizing the constructed queueing system is equivalent

to meeting the loss requirements of the multicast UEs in the loss tolerant MBMS system.

This is stated in the following result.

Theorem 4. The loss requirement of a UE is met iff its token queue in the queueing

system is stable. Therefore, the feasible region of the optimal allocation policy Γ?, LΓ? is

equivalent to the stability region of the queueing system S i.e., ˜̀̀̃̀̃ ∈ LΓ? iff (111 − ˜̀̀̃̀̃) ∈ S.

Here, 111 is a vector of ones of same size as ˜̀̀̃̀̃.

This will establish the equivalence of the stability region of the constructed queueing

system and the feasible region of the optimal resource allocation policy. We now present

a few results that are needed for proving Theorem 4. We begin by defining a few terms.

Define a set B = {B1, . . . , B|B|} containing all possible PRB allocation vectors to L

groups. The cardinality of this set |B| =
(
N
L

)
× L!. In LTE, channel states are quantified
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in terms of CQI values. According to 3GPP standards [7], a total of 15 CQI values are

defined in LTE. Since the number of CQI values is finite, the possible channel states of

UEs can take finitely many values. We define a set C that contains all possible channel

state combinations of all UEs in the system. C will, therefore, be a set of 15M CQI vectors,

each of size M . Let g be the probability distribution over C. That is, the channel state

of the system in a sub-frame t, C(t) = C w.p. g(C). We denote by µBiCµBiCµBiC , the vector of

service rates of UEs corresponding to allocation Bi in CQI state C ∈ C. Note that µBiCµBiCµBiC ’s

are binary vectors of size M . We use µCµCµC = {µBiCµBiCµBiC}Bi∈B to denote the set of possible service

rate vectors in channel state C. For a given C ∈ C, define a distribution wC = {wBiC}

over the set of µBiCµBiCµBiC ’s where wBiC denotes the probability of choosing allocation Bi in

channel state C ∈ C. Using these definitions, we define the following Linear Program

(LP):

LP (δ) :
∑
C∈C

∑
Bi∈B

g(C)wBiCµBiCµBiCµBiC = λλλ+ δ,

wBiC ≥ 0 ∀ Bi ∈ B, C ∈ C,∑
Bi∈B

wBiC = 1, ∀ C ∈ C,

where δ is a non-negative real number. Note that {wC}C∈C are the variables in this LP.

Denote by Λ(δ) the set of arrival rate vectors λλλ such that the feasible region of LP (δ) is

non-empty. Define two sets, Λ◦ =
⋃
δ>0 Λ(δ) and Λ =

⋃
δ≥0 Λ(δ). In the next result, we

establish the relation between Λ◦, Λ and stability region of the queueing system S. This

result is essential for relating the feasible region of the optimal resource allocation policy

to the stability region of the queueing system.

Theorem 5. Λ◦ ⊆ S ⊆ Λ.

Proof. We begin by constructing the following randomized resource allocation policy Γδ

based on LP (δ) defined in Section 4.2.2:

Definition 11. Randomized allocation policy Γδ: Γδ chooses an allocation vector in a

sub-frame according to a feasible solution wC of LP (δ). If the system is in channel state

C, Γδ chooses allocation vector Bi w.p. wBiC i.e., P (BΓδ [t] = Bi|C(t) = C) = wBiC ∀ t

and decisions across sub-frames are independent. δ is an input parameter for Γδ.
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The definition of Γδ will be used for proving various results in this and the following

sections. Consider λλλ ∈ Λ◦. By the definition of Λ◦, this means that, there exists δ > 0

such that LP (δ) is feasible for arrival rate vector λλλ. Let wC = {wBiC} denote a feasible

solution of LP (δ). Therefore, we can use policy Γδ to make scheduling decisions in each

sub-frame according to wC. Let Ak[t] denote the arrival process of queue k. Ak[t] = 1 if

there is an arrival to queue k in sub-frame t and 0 otherwise. DΓδ
k [t] denotes the departure

process of k under Γδ. D
Γδ
k [t] = 1 if a token departs from k under Γδ in sub-frame t and

0 otherwise. We have:

QΓδ
k [t+ 1] = max{(QΓδ

k [t] + Ak[t]−DΓδ
k [t]), 0},

where QΓδ
k [t] is the length of the token queue of UE k at time t under policy Γδ. For

simplicity of notation, we omit the Γδ superscript from QΓδ
k [t] and DΓδ

k [t] through the rest

of this section. Since a departure from queue k means that UE k has been successfully

served, the corresponding service rate µΓδ
k [t] = 1 and we can write the above equation as:

Qk[t+ 1] = max{(Qk[t] + Ak[t]− µΓδ
k [t]), 0}.

The state of the queueing system in a sub-frame can be completely defined by the

queue lengths of all the token queues in that sub-frame. We denote the state of the

system in sub-frame t by the vector Q[t] = [Q1[t], . . . , QM [t]]. Since scheduling decisions

made under Γδ only consider the current state of the system, the evolution of states of the

system {Q[t]}t≥0 under Γδ forms a Discrete Time Markov Chain (DTMC). This DTMC

is countable, irreducible and aperiodic. We prove this in the following result.

Lemma 6. The DTMC {Q[t]}t≥0 is countable, irreducible and aperiodic.

Proof. We prove these properties as follows:

� Countable: The state space of the DTMC is the set of allM -tuples (Q1[t], . . . , QM [t])

where Qk[t] ∈ N (N denotes the set of natural numbers). It forms an M dimensional

Cartesian product of N which is a countable set. Therefore, the state space of the

DTMC and hence the DTMC itself is countable (by Theorem 2.13 in [111]).

� Irreducible: Let Q and Q′ denote any two states of the DTMC. The DTMC can

transition from any state Q to a state Q′ in the following steps:
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– Step 1: Schedule all UEs for service until all queues are empty. This is accom-

plished in maxkQk sub-frames.

– Step 2: For the next maxkQ
′
k sub-frames, the token queue of UE k has

an arrival and no departure for the first Q′k sub-frames. In the remaining

(maxkQ
′
k −Q′k) sub-frames, there is no new arrival and no departure in queue

k. At the end of this step, the DTMC is in state Q′.

These steps define at least one path of length (maxkQk + maxkQ
′
k) from any state

Q to any other state Q′. Therefore, the DTMC is irreducible.

� Aperiodic: If the DTMC is in state Q[t] and no new token arrives in any queue

and no queue is scheduled for service in sub-frame t, the state of the DTMC remains

unchanged. Therefore, self loops exist and the DTMC is aperiodic.

We now begin the proof of Theorem 5.

Proof. We prove Theorem 5 in two steps. We first establish that Λ◦ ⊆ S in Lemma 7 and

then show that S ⊆ Λ in Lemma 8.

Lemma 7. Every λλλ ∈ Λ◦ is a stabilizable arrival rate vector. Hence, Λ◦ ⊆ S.

Proof. To prove this, we first show using Foster’s theorem [112] that DTMC {Q[t]}t≥0 is

positive recurrent and hence the queue lengths do not grow infinitely under Γδ. Using the

Lyapunov function f(Q[t]) =
∑M

k=1Q
2
k[t], we have:

f(Q[t + 1])− f(Q[t])

≤
M∑
k=1

[(Ak(t)− µΓδ
k [t])2 + 2Qk[t](Ak[t]− µΓδ

k [t])].

Hence,

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤ E
[
(
∑M

k=1[(Ak(t)− µΓδ
k [t])2 + 2Qk[t](Ak[t]− µΓδ

k [t])])|Q[t]
]
,

≤M + 2E
[
(
∑M

k=1 Qk[t]Ak[t]−
∑M

k=1Qk[t]µ
Γδ
k [t])|Q[t]

]
,

≤M + 2
∑M

k=1Qk[t]λk − 2
∑M

k=1 Qk[t]E
[
µΓδ
k [t]|Q[t]

]
.
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From LP (δ), we have E
[
µΓδ
k [t]|Q[t]

]
= λk + δ. Therefore,

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤M + 2
∑M

k=1Qk[t]λk − 2
∑M

k=1 Qk[t](λk + δ),

≤M − 2
∑M

k=1Qk[t]δ.

Defining set A = {Q :
∑M

k=1Qk ≤ M+1
2δ
}, we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] <

−1, ∀ Q[t] /∈ A,

∞, otherwise.

Thus, by Foster’s theorem [112], the DTMC is positive recurrent so the expected queue

lengths in the queueing system are finite. Therefore, Γδ stabilizes the system for arrival

rate vector λλλ ∈ Λ◦. Thus, λλλ ∈ S which implies that Λ◦ ⊆ S.

This proves the first part of our result. We now need to show that S ⊆ Λ. In the

interest of simplicity of notation, we assume that under a policy Γ that stabilizes the

system, the following limit exists w.p. 1.

lim
T→∞

1

T

T∑
t=1

1Γ
BiC

[t], (4.2)

where 1Γ
BiC

[t] is an indicator random variable that is 1 if allocation vector Bi is chosen by

Γ under channel state C in sub-frame t and zero otherwise. Now consider the following

sets of sample paths:

� A1 : the set of sample paths on which Strong Law of Large Numbers (SLLN) holds

for the arrival rates i.e.,
∑t
i=1 λk[t]

t
→ λk as t → ∞, ∀ k. This is a probability 1 set

i.e., P (A1) = 1.

� A2 : set of sample paths on which
∑t
i=1 1{C(t)=C}

t
→ g(C) as t → ∞, ∀ C (SLLN

holds) where 1{C(t)=C} is an indicator random variable that is 1 if the channel state

in sub-frame t is C and 0 otherwise. Since g is a probability distribution over the

set of channel states C, we have, P (A2) = 1.

� A3 : the set of sample paths on which service rate under Γ is ≥ λλλ. Since Γ stabilizes

the system, we have P (A3) = 1.
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� A4 : the set of sample paths over which the limit in (4.2) exists. Since we assume

that this limit exists w.p. 1, P (A4) = 1.

Since A1, A2, A3, A4 are probability 1 sets, their intersection,

A =
4⋂
i=1

Ai (4.3)

is also a probability 1 set. We refer to the sample paths belonging to this set A as

non-trivial sample paths.

We now prove the second part of our result.

Lemma 8. If λλλ /∈ Λ, then λλλ /∈ S. Thus, S ⊆ Λ.

Proof. We prove this result using a contradiction. Let λλλ /∈ Λ be a stabilizable arrival rate

vector i.e., λλλ ∈ S. Since λλλ is a stabilizable arrival rate vector, there exists some allocation

policy Γ that can stabilize the system for arrival rate λλλ.

We observe the scheduling decisions made by this Γ along a non-trivial sample path

from the set A defined in (4.3). Let vBiC denote the fraction of time for which Γ chooses

the allocation vector Bi in channel state C along such a sample path. Since Γ stabilizes

the system, the rate of departures must equal the arrival rate in the system. Therefore:

∑
C∈C

∑
Bi∈B

g(C)vBiCµBiCµBiCµBiC = λλλ,

where vBiC ≥ 0 ∀ Bi ∈ B, C ∈ C,∑
Bi∈B

vBiC = 1 ∀ C ∈ C.

This implies that vvv = {vBiC} is a feasible solution of LP (δ) and that,

λλλ ∈ Λ(0) =⇒ λλλ ∈ Λ, (4.4)

which is a contradiction. Therefore, λλλ /∈ Λ is not stabilizable i.e., any stabilizable λλλ

must be contained in Λ. Hence, S ⊆ Λ.

From Lemmas 7 and 8, we have, Λ◦ ⊆ S ⊆ Λ, which is the required result. This

concludes the proof.
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From here onwards, we consider Λ◦ to be the stability region of the queueing system.

We now prove the main result of this section, stated in Theorem 4 above. We state the

theorem again for ease of the reader.

Theorem 4. The loss requirement of a UE is met iff its token queue in the queueing

system is stable. Therefore, the feasible region of the optimal allocation policy Γ?, LΓ? is

equivalent to the stability region of the queueing system S i.e., ˜̀̀̃̀̃ ∈ LΓ? iff (111 − ˜̀̀̃̀̃) ∈ S.

Here, 111 is a vector of ones of same size as ˜̀̀̃̀̃.

Proof. We need to show that the loss requirement of a UE is met iff its token queue

is stable. We first argue that the stability of the queueing system implies that the loss

requirements of UEs are met. If the queue corresponding to UE k is stable, it means that

there exists a policy Γ that stabilizes the queue for λλλ ∈ Λ◦. We can, therefore, construct a

randomized policy Γδ as defined in Definition 11. Under Γδ, the rate of service for queue

k is greater than λk which means that UE k is served in greater than (1− ˜̀
k) of the sub-

frames. Therefore, the loss encountered by UE k is less than ˜̀
k and its loss requirement

is met.

Now, let us assume that the loss requirement of UE k is met. We show that this

ensures the stability of its token queue. Since the loss requirement ˜̀
k is achievable, there

exists a policy Γ that satisfies the loss requirement. This means that, under Γ, the UE is

served in greater than (1− ˜̀
k) fraction of sub-frames. Since the arrival rate λk = (1− ˜̀

k),

the queue is served at a rate greater than the arrival rate. Hence, Γ stabilizes the token

queue. From these arguments, we conclude that the loss requirement of a UE is met

iff its corresponding token queue is stable. Therefore, the feasible region of the optimal

allocation policy Γ?, LΓ? is equivalent to the stability region of the queueing system,

S.

We have now established that the stability region of the constructed queueing system

is same as the feasible region of the optimal resource allocation policy Γ?. Therefore, here

onwards, we do not explicitly consider meeting the loss requirements of UEs. Instead, we

focus our attention on stabilizing the token queues corresponding to each UE knowing

that stabilizing the token queues of UEs will ensure that their respective loss requirements

are met.
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4.3 Proposed Resource Allocation Algorithms

In this section, we propose online loss optimal policies for resource allocation in loss

tolerant MBMS systems. We also present their efficient polynomial-time implementations

in a later section.

4.3.1 Loss Optimal Resource Allocation

Loss Optimal Resource Allocation (LORA) makes scheduling decisions in a sub-frame t

based on the token queue lengths of users Qk[t]’s. Note that the queues being scheduled

here are the fictitious queues of the constructed virtual queueing system. Scheduling

of a token queue here is equivalent to the corresponding UE being served in the actual

system. For ease of notation, we use Γ0 to denote LORA in notations and equations1. In

each sub-frame t, Γ0 chooses service vector µΓ0 [t]µΓ0 [t]µΓ0 [t] according to the following optimization

problem.

µΓ0 [t]µΓ0 [t]µΓ0 [t] = arg max
µΓ0 [t]µΓ0 [t]µΓ0 [t]∈µCµCµC

M∑
k=1

Qk[t]µ
Γ0
k [t], (4.5)

where µΓ0
k [t] is the service rate of UE k in sub-frame t under policy Γ0. Γ0 maximizes the

sum of the queue lengths of UEs served in sub-frame t. This corresponds to those users

being served in the actual system who have experienced the highest packet losses. It has

a brute force computational complexity of O(M
(
N
L

)
L!). We have already established in

Section 4.2 that stabilizing the token queues ensures that the loss requirements of UEs

are met. Therefore, to prove that Γ0 can successfully meet the loss requirements of the

multicast UEs, it is sufficient to show that Γ0 stabilizes the constructed queueing system.

We prove this in the following result.

Theorem 6. For any stabilizable arrival rate vector λλλ, Γ0 stabilizes the queueing system.

This theorem implies that as long as the system is stabilizable, i.e., there exists some

policy Γ that can stabilize the queueing system, so can Γ0. Note that Γ is not restricted

to using the same information that is available to Γ0. Γ could be using information of the

1The names of policies (e.g., LORA) and their symbols (e.g., Γ0) are used interchangeably throughout

this chapter.



88 Chapter 4. Resource Allocation for Loss Tolerant Multicast Video Streaming

past and future allocations and channel conditions to make allocation decisions. Despite

that, we claim that Γ0 will successfully stabilize the system using only the knowledge of

the current state of the queueing system to make the scheduling decisions.

Proof. Let DΓ0
k [t] denote the departure process of queue k under Γ0. We have:

QΓ0
k [t+ 1] = max{(QΓ0

k [t] + Ak[t]−DΓ0
k [t]), 0},

where QΓ0
k [t] denotes the queue length of the token queue of k at time t under Γ0. For the

sake of simplicity of notation, we omit the Γ0 superscript from QΓ0
k [t] and DΓ0

k [t] through

the rest of this section. Since a departure from queue k means that UE k was successfully

served, the service rate µΓ0
k [t] = 1 and we can write the above equation as:

Qk[t+ 1] = max{(Qk[t] + Ak[t]− µΓ0
k [t]), 0}.

The state of the queueing system is completely defined by the vector Q[t] = [Q1[t], . . . , QM [t]].

The evolution of Q[t] forms a DTMC since the scheduling decisions made by Γ0 in t are

based solely on the state of the system in sub-frame t. The DTMC is countable, irre-

ducible and aperiodic. The proof that the DTMC has these properties follows the same

arguments as in Lemma 6 in Section 4.2.2. We now show using Foster’s theorem [112]

that this DTMC is positive recurrent and hence the token queues do not grow infinitely.

Using the Lyapunov function f(Q[t]) =
∑M

k=1 Q
2
k[t], we have:

f(Q[t + 1])− f(Q[t])

=
M∑
k=1

[(Ak(t)− µΓ0
k [t])2 + 2Qk[t](Ak[t]− µΓ0

k [t])].

Hence,

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

= E

[
(
M∑
k=1

[(Ak(t)− µΓ0
k [t])2 + 2Qk[t](Ak[t]− µΓ0

k [t])])|Q[t]

]
,

≤M + 2
M∑
k=1

Qk[t]λk − 2E

[
(
M∑
k=1

Qk[t]µ
Γ0
k [t])|Q[t]

]
. (4.6)

Let µΓδ
k [t] denote the service rate for UE k in sub-frame t under the randomized

policy Γδ (Definition 11). Then, from (4.5), we have:

M∑
k=1

Qk[t]µ
Γ0
k [t] ≥

M∑
k=1

Qk[t]µ
Γδ
k [t]. (4.7)
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Therefore, from (4.6) and (4.7):

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤M + 2
M∑
k=1

Qk[t]λk − 2E

[
(
M∑
k=1

Qk[t]µ
Γδ
k [t])|Q[t]

]
,

≤M + 2
M∑
k=1

Qk[t]λk − 2
M∑
k=1

Qk[t](λk + δ),

≤M − 2
M∑
k=1

Qk[t]δ.

Now for set A = {Q :
∑M

k=1 Qk ≤ M+1
2δ
}, we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] <

−1, ∀ Q[t] /∈ A,

∞, otherwise.

Thus, by Foster’s theorem [112], the DTMC is positive recurrent which means that the

expected queue lengths in the queueing system will be finite. Therefore, Γ0 stabilizes the

system and hence meets the loss requirements of UEs.

We now have a loss optimal policy that meets the loss requirements of users by

making allocation decisions based on the UE token queue lengths. However, in addition

to the amount of packet loss in a video stream, we would also like to control the pattern

in which these losses occur. Even if a user has a high tolerance for loss, we would like

to avoid large number of consecutive packet losses. Starving users for a large number of

consecutive sub-frames may lead to user dissatisfaction and result in users leaving the

multicast session. Therefore, a loss tolerant resource allocation policy should also restrict

the amount of consecutive packet losses encountered by a UE in addition to the long

term average packet loss. We propose such a policy in the next section. This policy

improves upon LORA by increasing the scheduling probability of a UE every time it is

left unserved. This ensures that users do not remain unserved for long periods at a stretch

which leads to better loss performance, reduced burstiness of packet losses, and improved

user satisfaction.
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4.3.2 Priority Loss Optimal Resource Allocation

Priority Loss Optimal Resource Allocation (p-LORA) also makes scheduling decisions in

a sub-frame based on the queue lengths Qk[t]’s in that sub-frame. However, in p-LORA,

we use an additional priority vector to increase the probability of serving a previously

unserved queue. Here also, the queues being scheduled are the fictitious queues of the

constructed virtual queueing system. Scheduling of a token queue here is equivalent to

the corresponding UE being served in the actual system. We use ΓP to denote p-LORA in

notations and equations. In every sub-frame t, ΓP chooses service vector µΓP [t]µΓP [t]µΓP [t] according

the following optimization problem:

µΓP [t]µΓP [t]µΓP [t] = arg max
µΓP [t]µΓP [t]µΓP [t]∈µCµCµC

M∑
k=1

(Qk[t] + (ck[t] + 1)× s)µΓP
k [t], (4.8)

where µΓP
k [t] is the service rate of UE k in sub-frame t under ΓP , ck[t] is the priority

weight ascribed to the token queue of UE k, s is a positive constant. ck[t] is defined as:

ck[t] =

0, if µk[t− 1] = 1,

min(ck[t− 1] + 1, κ), otherwise.

κ is the maximum value that the priority weights can take. Also, ck[0] = 0,∀ k. We

use c̄[t] = [c1[t], . . . , cM [t]] to denote the vector of priority weights of all the queues in

sub-frame t. Since increasing ck[t] increases the contribution of UE k in (4.8), it is more

likely to be served by the resource allocation policy. ΓP has a brute force computational

complexity of O(M
(
N
L

)
L!).

When using policy ΓP for resource allocation, the state of the queueing system can

be completely defined by the queue lengths of all the token queues and the value of the

priority counter of each queue. We denote the state in sub-frame t under policy ΓP by the

vector QΓP [t] = [QΓP
1 [t], . . . , QΓP

M [t], c̄[t]]. Since scheduling decisions under ΓP in a sub-

frame are based only on the state of the system in that sub-frame, the evolution of states

of the system form a DTMC. In the next result we prove that this DTMC is countable,

irreducible and aperiodic.

Lemma 9. The DTMC formed by the evolution of the states under ΓP

QΓP [t] = [QΓP
1 [t], . . . , QΓP

M [t], c̄[t]] is countable, irreducible and aperiodic.
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Proof. For the sake of simplicity of notation, we omit the ΓP superscript from the nota-

tions in this proof.

� Countable: The state of the DTMC Q[t] comprises the queue lengths of M UEs

and their priority weights. We have already shown in Lemma 6 that the state

space of queue lengths (Q1[t], . . . , QM [t]) is a countable set. The state space of

the priority weights of UEs is an M dimensional Cartesian product over the finite

set {1, 2, . . . , κ} and is therefore a finite countable set (Theorem 2.13 in [111]).

Therefore, the states of the DTMC Q[t] form a 2M dimensional Cartesian product

over two countable sets, the state space of queue lengths and the state space of

priority weights. Therefore, the state space of the DTMC and hence the DTMC

itself is countable (Theorem 2.13 of [111]).

� Irreducible: Consider that the DTMC is in state Q = {Q1, . . . , QM , c̄k}. We will

show that a finite length path exists from Q to any state Q′ = {Q′1, . . . , Q′M , c̄′k}.

The DTMC can transition from Q to Q′ in the following steps:

– Step 1 : Schedule all UEs for service until all queues are empty. This is accom-

plished in maxkQk sub-frames.

– Step 2 : A new token arrives in every queue and no queue is scheduled for service

for the next minkQ
′
k sub-frames. At the end of this step, all queue lengths are

equal to minkQ
′
k and all priority weights are equal to min(minkQ

′
k, κ).

– Step 3 : For the next maxkQ
′
k −minkQ

′
k sub-frames, UEs in arg maxkQ

′
k see

one arrival and no departure. Every other UE k′ see an arrival and no departure

for the first (Q′k′ −minkQ
′
k) sub-frames and one arrival and one departure for

the remaining maxkQ
′
k − Q′k′ sub-frames. At the end of this step, the queue

length of UE k is equal to Q′k.

– Step 4 : In the next sub-frame, there is one arrival and one departure in every

queue. This makes the priority weights all equal to 0 while the queue lengths

remain unchanged.

– Step 5 : In the next maxk c
′
k sub-frames, there is no arrival and no departure for

UEs in arg maxk c
′
k. For every other UE k′, there is an arrival and a departure
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in the first (maxk c
′
k− c′k′) of these sub-frames and no arrival and no departure

in the remaining c′k′ sub-frames. At the end of this step, the DTMC is in the

desired state Q′.

This defines one finite length path from any state Q to any other state Q′ of length

(maxkQk + maxkQ
′
k + 1 + maxk c

′
k). Hence, the DTMC is irreducible.

� Aperiodic: Consider state Q[t] where all queues are empty and all priority weights

are 0. If there is one arrival in each queue in slot (t+ 1) and every queue is served,

the queues remain empty and the priority weights remain 0. Therefore, this state

has a self loop and hence has period 1. Since we have already shown that the DTMC

is irreducible, all states have period 1 because periodicity is a class property. Hence,

the DTMC is aperiodic.

We now prove that ΓP is throughput optimal, i.e., ΓP will stabilize the queueing

system if any other policy can do so.

Theorem 7. For any stabilizable arrival rate vector λλλ, ΓP stabilizes the queueing system.

Theorem 7 implies that if the queueing system under consideration is at all stabiliz-

able, ΓP will stabilize it.

Proof. Let DΓP
k [t] denote the departure process of queue k under ΓP . We have:

QΓP
k [t+ 1] = max{(QΓP

k [t] + Ak[t]−DΓP
k [t]), 0},

where QΓP
k [t] is the queue length of queue k at time t under ΓP . For simplicity of notation,

we omit the ΓP superscript from QΓP
k [t] and DΓP

k [t] in the rest of this section. Since a

departure from queue k in sub-frame t means that µΓP
k [t] = 1, we can write the above

equation as:

Qk[t+ 1] = max{(Qk[t] + Ak[t]− µΓP
k [t]), 0}.

Under this policy, the evolution of the state of the queueing system Q[t] = [Q1[t], . . . , QM [t], c̄[t]]

forms a DTMC. We have proved in Lemma 9 that this DTMC is countable, irreducible

and aperiodic. We now show using Foster’s theorem [112] that this DTMC is positive

recurrent and hence the queues do not grow infinitely.
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Using the following Lyapunov function f(Q[t]) =
∑M

k=1Q
2
k[t], we have:

f(Q[t + 1])− f(Q[t])

=
M∑
k=1

[(Ak(t)− µΓP
k [t])2 + 2Qk[t](Ak[t]− µΓP

k [t])].

Hence, as in (4.6), we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤M + 2
M∑
k=1

Qk[t]λk − 2E

[
(
M∑
k=1

Qk[t]µ
ΓP
k [t])|Q[t]

]
. (4.9)

Let µΓδ
k [t] denote the service rate for UE k in sub-frame t under the randomized policy

Γδ. Then, from (4.8), we have:

M∑
k=1

(
Qk[t]µ

ΓP
k [t] + (ck[t] + 1)sµΓP

k [t]
)

≥
M∑
k=1

(
Qk[t]µ

Γδ
k [t] + (ck[t] + 1)sµΓδ

k [t]
)
. (4.10)

Therefore, from (4.9) and (4.10):

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] ≤M + 2
∑M

k=1 Qk[t]λk

−2E
[
(
∑M

k=1 Qk[t]µ
Γδ
k [t] + (ck[t] + 1)(µΓδ

k [t]− µΓP
k [t])s)|Q[t]

]
,

≤M + 2
∑M

k=1Qk[t]λk − 2
∑M

k=1Qk[t](λk + δ)

−2E
[
(
∑M

k=1−(κ+ 1)s
]
,

≤M − 2
∑M

k=1Qk[t]δ + 4Ms. (for κ = 1)

Defining set A = {Q :
∑M

k=1Qk ≤ 4Ms+M+1
2δ

}, we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] <

−1, ∀ Q[t] /∈ A,

∞, otherwise.

Thus, by Foster’s theorem [112], the DTMC is positive recurrent meaning that the ex-

pected queue lengths in the queueing system will be finite. So, ΓP stabilizes the system

and hence meets the loss requirements of all UEs.
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In the next section, we discuss a generalization of the Exponential (Queue length)

rule (EXP-Q) which was proposed in [18]. We use the EXP-Q rule as a benchmark for

performance evaluation of our policies since it is a well known throughput optimal policy

for scheduling multiple flows over a time varying wireless channel. The EXP-Q rule

also minimizes the maximum delay encountered in the system [113]. The rule, however,

considers that there is a single channel that can be used by one flow at a time. We

generalize the EXP-Q rule for use with multicast transmission and with multiple time

varying channels so that it can be used for scheduling in the system under consideration.

4.3.3 Modified Exponential (Queue length) Rule (ΓE)

The EXP-Q rule is a throughput optimal policy [18] that schedules a single queue k in a

time slot t such that:

k ∈ arg max
k

γkµk[t] exp

(
akQk[t]

β + [Q̄[t]]η

)
, (4.11)

where µk[t] is the rate of service of queue k in sub-frame t, ak, γk and η are constants

and Q̄[t] = (1/N)
∑

k akQk[t]. The EXP-Q rule is designed for use in a system where a

single time varying channel is shared by multiple flows. We generalize the EXP-Q rule

to include multicast transmission and multiple channels (in the form of PRBs) available

for scheduling multiple multicast and unicast flows. In the existing form, the EXP-Q

rule cannot be used for resource allocation in such a system. Therefore, we modify it as

follows.

We use ΓE to denote the modified EXP-Q rule. Since we have multiple channels

available and multiple groups can be scheduled for service in a sub-frame, the policy has

to determine an allocation vector BΓE [t] instead of choosing a single entity to be scheduled

in a sub-frame. As defined in Section 4.1, BΓE [t] is a vector that specifies which PRB

is allocated to which multicast group. We define ΓE as the policy that chooses service

vector µΓE [t]µΓE [t]µΓE [t] according to the following optimization problem:

µΓE [t]µΓE [t]µΓE [t] = arg max
µΓE [t]µΓE [t]µΓE [t]∈µCµCµC

M∑
k=1

γkµ
ΓE
k [t] exp

(
akQk[t]

β + [Q̄[t]]η

)
, (4.12)

where µΓE
k [t] is the service rate of UE k in sub-frame t under ΓE. In (4.12), we sum the

quantity defined in (4.11) over all users in the system. ΓE chooses the service vector that
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maximizes this quantity. It then determines the allocation vector BΓE [t] corresponding

to the service vector µΓE [t]µΓE [t]µΓE [t]. Note that the queue lengths in (4.12) correspond to the

fictitious queues of the constructed virtual queueing system. Scheduling of a token queue

here is equivalent to the corresponding UE being served in the actual system. The allo-

cation vector BΓE [t] gives the allocation for the actual system. ΓE can also be used for

joint allocation of resources to unicast and multicast transmissions. It has a brute force

computational complexity of O(M
(
N
L

)
L!).

4.3.4 Computational Complexity

The resource allocation policies discussed in this section have a brute force computational

complexity of O(M
(
N
L

)
L!). This makes them unsuitable for use in practical systems

unless we design efficient mechanisms for their implementation. The policies discussed

in this section can be implemented in polynomial-time using Maximum Weight Bipartite

Matching (MWBM) [97] based algorithms. We discuss the details of this implementation

in the next section. We first present the algorithm for implementing Γ0 in detail. The

same algorithm can be used for implementing ΓP and ΓE by replacing the edge weights

of Γ0 with those of ΓP and ΓE respectively.

4.4 Polynomial-time Implementation of LORA, p-LORA

and Modified EXP-Q

We make use of MWBM for efficient polynomial-time implementations of the resource

allocation policies proposed in Section 4.3. MWBM brings down the computational com-

plexity of their implementation to O(NL2). The policies can thus be implemented in

polynomial-time. We begin with the construction of the underlying bipartite graph which

is the same for all the policies except for the edge weights which change according to the

policy under consideration. We discuss the implementation of Γ0 in detail. The procedure

and proof involved can be directly used for ΓP and ΓE with modified edge weights. The

modifications for ΓP and ΓE are given at the end of this section.

We construct a bipartite graph G = (U, V,E) where vertex set U is the set of L

multicast groups, vertex set V is the set of N PRBs, E is the set of edges connecting
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nodes in U to nodes in V . We define the service rate of UE k ∈ Gi in PRB j in sub-frame

t as follows:

νjk[t] =

0, if Ri > rkj[t]

1, otherwise.

The weight of an edge connecting vertex i ∈ U to vertex j ∈ V , wji [t] is the sum of

the products of the queue lengths of UEs in group Gi and their achievable service rates

in PRB j in sub-frame t i.e., wji [t] =
∑

k∈Gi Qk[t]ν
j
k[t]. The resulting bipartite graph is

illustrated in Figure 4.2. A MWBM of G that matches every node in U to a unique node

from V results in an allocation equivalent to Γ0. We prove this in the following result.
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Figure 4.2: Bipartite graph between multicast groups and PRBs

Lemma 10. Maximum weight bipartite matching for graph G results in resource allocation

according to policy Γ0.

Proof. A matching for graph G selects edges that share no common vertices. This means

that each group from U will be matched to exactly one PRB from V and each PRB from

V will be matched to at most one group from U . Therefore, the requirement of assigning

no more than 1 PRB to each group is satisfied. Since PRBs in V are matched to no

more than one group from U , we have BΓ
i [t] 6= BΓ

i′ [t] ∀ {i, i′ ∈ [L] : BΓ
i [t], BΓ

i′ [t] 6= 0} as

required by Definition 12. Thus, the solution of the MWBM gives us a feasible resource

allocation. Next, we show that the resulting allocation is consistent with the allocation

decisions made by policy Γ0.
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MWBM picks edges such that the sum of the weights of the edges chosen is max-

imized. Therefore, it maximizes the quantity
∑

i∈U
∑

k∈Gi Qk[t]ν
j
k[t] =

∑M
k=1Qk[t]µ

Γ0
k [t]

which is same as in (4.5). Hence, resource allocation done using MWBM on G is consistent

with policy Γ0.

The same algorithm can be used for implementing ΓP and ΓE by changing the edge

weights. For ΓP we have:

wji [t] =
∑
k∈Gi

(Qk[t] + (ck[t] + 1)× s) νjk[t]. (4.13)

For ΓE the edge weights are:

wji [t] =
∑
k∈Gi

γkν
j
k[t] exp

(
akQk[t]

β + [Q̄[t]]η

)
. (4.14)

Proof similar to that of Lemma 10 follows to show that the MWBM for graph G with the

edge weights defined in (4.13) and (4.14) results in the implementation of policies ΓP and

ΓE respectively.

In the next section, we present the results of the simulations performed for evaluating

the performance of the resource allocation algorithms proposed in this work.

4.5 Simulation Results

We study the performance of the proposed allocation algorithms in an LTE MBMS

system. We simulate an LTE cell with L different MBMS video streams and UEs dis-

tributed uniformly at random throughout the cell. All UEs are subscribed to one of the

L streams. UEs subscribed to the same MBMS service receive the relevant content on

common PRBs. We use the MATLAB [103] based LTE simulator designed in [104] for

these simulations. The channels and 3GPP mappings used are the same as specified in

Section 3.6. Other relevant simulation parameters are given in Table 4.1.

Each multicast service has a certain rate requirement and each UE can tolerate some

amount of packet loss. The loss tolerable by a UE depends on the quality of video required

by it and its channel conditions. PRBs are allocated to the multicast groups according

to the resource allocation policies discussed in Section 4.3. We observe the packet loss
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Table 4.1: System Simulation parameters [1]

Parameters Values

System bandwidth 20 MHz

eNB cell radius 150 m

Path loss model
L = 128.1 + 37.6 log 10(d), d in kilome-

ters

Lognormal shadowing
Log Normal Fading with 10 dB stan-

dard deviation

White noise power density −174 dBm/Hz

eNB noise figure 5 dB

eNB transmit power 46 dBm

PRB width 180 kHz

Number of PRBs 100 per sub-frame

encountered by UEs and compare the performance of the proposed schemes with that of

the modified EXP-Q rule [18]. In rest of this section, we refer to the modified EXP-Q rule

as simply the EXP-Q rule for brevity. It should be noted that it is the modified EXP-Q

rule defined in Section 4.3.3 that is used in all the simulations.

Since the proposed policies are primarily meant for use with video streaming services,

we use traces from actual videos to generate traffic for these simulations. We have used

video traces of five different videos in these simulations. The video traces have been

obtained from the video trace library available at http://trace.eas.asu.edu/ [16, 17].

The videos used are those of Silence of the Lambs, Star Wars IV, Tokyo Olympics, NBC

News and Sony Demo. The videos are all H.264/AVC encoded with a GoP size of 16 with

15 B frames in each group.

As discussed in Section 4.1.1, I and P frames are needed for decoding other frames in

a GoP. Therefore, we ensure that all I and P frames of the videos are transmitted without

any loss and we use lossy allocation policies only for sending the B frames. This is a

recommended practice in network simulations with video traces [16] since it is difficult

to estimate the impact of loss of I and P frames on the video quality [16]. For sending

http://trace.eas.asu.edu/
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Figure 4.3: Tolerable loss versus loss encountered using LORA
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Figure 4.4: Tolerable loss versus loss encountered using p-LORA

I and P frames, we allocate sufficient resources to the groups and transmit at the rate

corresponding to the weakest UE to ensure that those frames are successfully received by

all users.

Figures 4.3, 4.4 and 4.5 compare the losses encountered by UEs to their respective
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Figure 4.5: Tolerable loss versus loss encountered using EXP-Q

loss tolerances. For these plots, we run the simulations for the entire duration of all

5 videos and then average the results. Figures 4.3 and 4.4 illustrate this comparison

for LORA and p-LORA respectively. Both these policies succeed in meeting the loss

requirements of all UEs in the system. The virtual queueing system corresponding to the

actual loss tolerant MBMS system is, thus, stable under both the proposed loss optimal

policies. Figure 4.5 plots the losses encountered under the modified EXP-Q rule. We

observe that several UEs experience losses significantly greater than their tolerable limits

and the queueing system is rendered unstable.

Figure 4.6 compares the plots of the average losses encountered by UEs under the

three policies. For this, the losses encountered per second have been exponentially av-

eraged for a UE. Every point in the plot is then obtained by averaging over all UEs.

We observe that the EXP-Q rule results in a better loss performance than LORA. Even

though the EXP-Q rule results in better average loss performance than LORA, it fails to

meet the loss requirements of several UEs. On the other hand, despite a greater average

system packet loss, LORA is able to meet the loss requirements of all UEs. p-LORA leads

to the least average packet loss among the three policies.

Figure 4.7 illustrates the Peak Signal-to-Noise Ratio (PSNR) degradation encoun-

tered by each video under the three policies. PSNR degradation is calculated as the
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Figure 4.6: Comparison of average losses in LORA, EXP-Q and p-LORA schemes
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Figure 4.7: PSNR degradation of different videos

difference between the PSNR of the actual video and that of the received video. We

observe that the EXP-Q rule results in the highest degradation in PSNR. LORA and

p-LORA result in a significantly less loss in PSNR of the received video streams.

As discussed in Section 4.3, in addition to the amount of packet loss, the patterns

in which the losses occur also have a major bearing on the users’ experiences. While
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Figure 4.8: Loss pattern of a UE (losses per sub-frames)

some amount of packet loss spread more or less uniformly through a session may lead to

no degradation in quality at all, a concentrated packet loss can be extremely annoying

in a video stream and may even lead to UEs quitting the MBMS session. To observe

the temporal pattern of packet loss encountered under the three policies, we plot the

percentage packet loss pattern of a user with high loss tolerance, under heavy traffic

conditions. This is plotted for all the policies as a function of time in Figure 4.8. The EXP-

Q rule results in the most variable loss pattern. The losses per second see jumps as high as

10% from one second to another. LORA does better than the EXP-Q rule. However, p-

LORA provides the most uniform loss pattern of the three policies. It, therefore, controls

the burstiness of the losses encountered and ensures that no UE is starved for long periods

at a stretch.

These simulation results clearly establish the effectiveness and superiority of the

proposed loss optimal policies. The use of traces of actual videos further strengthens the
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case for using loss tolerant allocation policies for streaming video content.

4.6 Conclusions

Video streams can tolerate a certain amount of packet loss without affecting the quality

perceived by the end users. In this chapter, we leverage this property to improve the

performance of wireless multicast video streaming. We consider an MBMS system where

users can tolerate a certain amount of packet loss depending on various factors, such as

the type of video stream and the channel quality experienced by them. We address the

problem of resource allocation in such a system. We construct a fictitious virtual queueing

system to represent the actual loss tolerant MBMS system. We convert the problem of

determining the optimal resource allocation policy for the said system to the problem

of stabilizing the constructed virtual queueing system. We propose two loss optimal

policies, namely, LORA and p-LORA, for resource allocation in loss tolerant multicast

video streaming systems. Since the proposed policies are computationally expensive to

implement, we propose an MWBM based algorithm that provides an efficient polynomial-

time implementation of the proposed policies.

We also modify the EXP-Q rule [18] for use in multicast transmission with multiple

channels. The EXP-Q rule does scheduling of virtual queues of the constructed queueing

system which is translated to resource allocation for the actual system. The EXP-Q rule

is a known throughput optimal policy, and we use its modified version as a benchmark

for evaluating the performance of our policies. We perform extensive simulations to study

and compare the performance of LORA, p-LORA, and modified EXP-Q policies. To

generate realistic video traffic patterns, we use video traces from actual video streams [16]

in our simulations. Simulation results indicate that among these policies, p-LORA results

in the least packet loss and the best PSNR of the delivered video streams. Using this

policy for streaming video content in wireless multicast systems can significantly improve

the system performance and reduce resource utilization of video streaming services.

The policies proposed in this chapter are specifically designed to cater to a loss

tolerant video streaming system. In practice, a system may need to handle several different

kinds of services simultaneously. While a set of streaming services may be loss tolerant, a

high priority service running in parallel may have entirely different service requirements.
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Therefore, there is a need for allocation mechanisms that can cater to a heterogeneous

variety of services. In the next chapter, we design such a generalized resource allocation

mechanism.



Chapter 5

Resource Allocation and Pricing for

Heterogeneous User Demands

In Chapters 3 and 4, we have addressed resource allocation problems in a lossless and a

loss tolerant multicast system, respectively. For a lossless multicast system, we have de-

signed resource allocation policies that meet the rate requirements of users in a minimum

possible number of resources. For a loss tolerant multicast system, we have proposed

allocation policies which ensure that packet losses encountered by users stay within some

acceptable thresholds. Like most of the literature on resource allocation, all these policies

are designed around a specific objective. In practice, the objective of resource allocation

may be governed by several different criteria because the base station handles a variety of

user traffic simultaneously. The base station may be catering to multicast video streams,

unicast transmissions, voice calls, video calls, browsing requests, some high priority traf-

fic, and best-effort services all at once. All these applications may have different QoS

requirements. Therefore, resource allocation algorithms designed for meeting one specific

objective or for a specific type of service cannot cater to such a heterogeneous mix of

users and services. In the current literature on resource allocation, there is no generalized

resource allocation algorithm that can be used for simultaneously allocating resources to

all types of users and services with varying QoS requirements.

In this chapter, we design a generalized auction based resource allocation algorithm

that addresses the issues discussed above. The proposed algorithm provides a unified

mechanism for allocating resources to different kinds of services simultaneously. It can be

105
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used irrespective of the parameter being optimized by the allocation policy. Additionally,

the algorithm also provides a method to determine the prices to be paid by users accord-

ing to the QoS experienced by them. The proposed algorithm is equipped to handle a

combination of multicast and unicast traffic as well as traffic with different priorities and

QoS requirements simultaneously.

The proposed algorithm is based on the Vickrey-Clarke-Groves (VCG) [114] mecha-

nism. It makes the allocation decisions using the bids conveyed by the interested users.

The bids of users represent their eagerness for being scheduled. We prove that the pro-

posed algorithm is strategy-proof, i.e., it can successfully elicit the true valuations of the

resources from the users. This is an essential property for an auction based resource

allocation mechanism since it ensures that users only bid according to their actual re-

quirements so that the decisions made by the policy are socially optimal. The proposed

algorithm is suited for use in any cellular mobile system and can be used for simultaneous

resource allocation to all kinds of traffic. We also propose a computationally efficient

implementation of the proposed mechanism that enables its polynomial-time implemen-

tation. Through extensive simulations in an LTE environment, we show the effectiveness

of the proposed algorithm for handling a heterogeneous mix of users.

The rest of this chapter is organized as follows. We discuss the system model and

formulate the problem in Sections 5.1 and 5.2, respectively. The proposed mechanism

for resource allocation is presented in Section 5.3. The polynomial-time implementation

of the mechanism is discussed in Section 5.4 and the simulation results are discussed in

Section 5.5. Section 5.6 concludes the chapter.

Remark 2. Throughout this chapter, we discuss the resource allocation problem in the

context of an LTE system. However, the problem and the proposed algorithm are general

and applicable to a wireless mobile communication system irrespective of the technology

being used.

5.1 System Model

Th system model is analogous to that of Chapter 4 except that we also consider unicast

users here, in addition to multicast groups. The system comprises an LTE cell with M UEs
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and S MBMS services that the UEs can subscribe to. UEs either subscribe to one of the

MBMS services or receive unicast service. The UEs subscribed to an MBMS service form a

multicast group that is considered as a single entity for resource allocation. We denote by

L the total number of entities inclusive of all unicast UEs and multicast groups. Without

loss of generality, we will refer to all the entities as MBMS groups/services, keeping in

mind that a unicast UE is simply an MBMS group containing just one UE. The ith MBMS

group is denoted by Gi, and we use i(k) to denote the index of a group to which UE k

belongs. [M ] and [L] denote the set of UEs and the set of MBMS groups, respectively.

Each group has an associated rate of transmission at which the UEs belonging to it need

to be served. Ri denotes the required rate corresponding to Gi. rkj[t] is the maximum

rate achievable by UE k in PRB j in sub-frame t. Say UE k belongs to Gi and PRB j is

allocated to this group in sub-frame t, then, data will be transmitted in j at rate Ri and

UE k can successfully receive this data only if rkj[t] ≥ Ri. Accordingly, we define the loss

encountered by UE k in PRB j in sub-frame t as:

`kj[t] =

0, if Ri(k) ≤ rkj[t],

1, otherwise.

(5.1)

Each UE in the system has a certain valuation for being scheduled for service in a

sub-frame. We use vk[t] to denote this valuation for UE k in sub-frame t. The valuation

captures the resource requirement of a UE which could be a function of any number of

factors like the data plan of a UE, the quality of video it requires, or the amount of packet

loss it has encountered in the past. The valuation of a UE is its private information and is

unknown to the eNB and other UEs in the system. In this model, we assume no structure

and place no restrictions whatsoever on what the valuations can be. Thus, the proposed

algorithm and the results presented in this chapter are independent of the nature of the UE

valuations. Note that even though the system comprises multicast groups, valuations are

individually calculated by all the users. A unique valuation is not defined for a multicast

group. In the next section, we discuss the problem formulation.
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5.2 Problem Formulation

We seek to determine an auction based resource allocation policy that is capable of satisfy-

ing the service requirements of a heterogeneous mix of unicast users and multicast groups

based on their valuations. There are two main challenges in designing such a policy

1. Since the valuations of users are unknown to the eNB, it has to rely on the reported

valuations for making the allocation decisions. Malicious users can report false

valuations to bias the policy and hog resources. This may degrade the system

performance and result in starvation of other users. It is therefore essential that the

resource allocation policy successfully elicit the true valuations from the UEs.

2. The second challenge arises due to the existence of multicast groups. Valuations

are calculated by users individually and not as a single value that represents the

multicast group. Therefore, the policy has to make allocation decisions based on

the valuations of individual UEs but allocate the same PRB to the entire group.

However, because of distinct channel conditions of the UEs in a group, some of them

may not receive the transmitted content successfully. Despite this, the policy should

be able to meet the QoS requirements of all the users.

Before stating the problem, we define few essential terms and recall some notations.

Recall that each group is allocated one PRB in a sub-frame. We denote a resource

allocation policy by Γ and define an allocation vector of length L, AΓ[t] that contains

the identities of the PRBs allocated to each group by Γ in sub-frame t. For instance, if

its first element AΓ
1 [t] = 2, it means that PRB 2 has been assigned to G1 in sub-frame

t. We also define an allocation indicator random variable xΓ
ij[t] that indicates whether or

not PRB j has been assigned to Gi in sub-frame t under Γ. So,

xΓ
ij[t] =

1, if AΓ
i [t] = j,

0, otherwise.

Definition 12. Feasible resource allocation: Resource allocation in a sub-frame is

said to be feasible if it assigns at most one PRB to each multicast group such that no

two groups are assigned the same PRB. In other words, a feasible resource allocation in

sub-frame t corresponds to an allocation vector AΓ[t] such that no two elements in it are

equal, i.e., AΓ
i [t] 6= AΓ

i′ [t] for every i′ 6= i.
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In this chapter, we aim to design an auction based resource allocation policy. We

assume that each UE k communicates a bid value bk[t] to the eNB at the beginning of sub-

frame t. The resource allocation in a sub-frame is performed based on the bids received

in that sub-frame. In addition to resource allocation, the eNB also calculates the prices

that the users have to pay for the services. We assume that the users are rational and

selfish. Thus, they may report a bid value which is not same as their true valuations if

doing so benefits them. These concepts are formalized in the following definitions.

Definition 13. Auction based resource allocation policy: An auction based re-

source allocation policy Γ takes the bids of UEs (bk[t]’s) as input and outputs a feasible

allocation vector AΓ[t] and prices to be paid by the UEs (pΓ
k [t]’s) in every sub-frame t.

Definition 14. Utility of a UE: The utility of UE k in sub-frame t under policy Γ,

uΓ
k [t] is defined as the difference between the valuation of the UE and the price pΓ

k [t] it

pays for being served in that sub-frame i.e. uΓ
k [t] = vk[t]− pΓ

k [t]. If a UE is not scheduled

for reception in sub-frame t, its utility in that sub-frame is 0.

Definition 15. Social utility: The social utility of the system in sub-frame t under

policy Γ, V Γ[t] is defined as the sum of the valuations of the UEs scheduled for service

by Γ in that sub-frame. Using the definition of `kj[t] and xΓ
ij[t], we can write V Γ[t] =∑

k vk[t]
∑

j x
Γ
i(k)j[t](1− `kj[t]).

Equipped with these definitions, we can now define the problem as follows.

Let Λ denote the set of all possible resource allocation policies. Our aim is to deter-

mine the optimal auction based resource allocation policy Γ? ∈ Λ that provides a feasible,

social utility maximizing resource allocation in every sub-frame.

In the next section we propose such a resource allocation policy.

5.3 A VCG Based Mechanism for Generalized Re-

source Allocation and Pricing

The VCG mechanism [114] is a form of sealed bid auction mechanism that maximizes the

social utility of the system. It takes the bids of buyers as input and allocates items to the

highest bidders. The price paid by the winning bidders is equal to the ‘damage’ caused
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by them to the rest of the bidders. We explain how this ‘damage’ is calculated later on

this section. It is a known result that in VCG mechanism, bidding of the buyers’ true

valuations is a dominant strategy [115]. This means that rational participants have no

incentive to not report their true valuations of the items. These features make the VCG

mechanism suitable for resource allocation. However, in most cases, implementing a VCG

mechanism is NP-hard. We now discuss the proposed VCG based resource allocation

mechanism.

All the allocations and pricing calculations take place on a sub-frame basis. There-

fore, we fix a sub-frame t and eliminate it from the notations in the rest of this chapter

for the sake of notational simplicity. Consider PRBs in a sub-frame to be commodities

that UEs want to acquire. UEs act as bidders who have certain valuations for acquiring

these commodities. Since each group is allotted one PRB in a sub-frame, it follows that

each UE can acquire at most one PRB. Also, since all the UEs in an MBMS group are to

be served on the same PRB, our system is further bound to allocate the same commod-

ity to all the UEs that belong to the same multicast group. The objective of the VCG

mechanism here, is to determine a feasible allocation in each sub-frame that maximizes

the sum of winning bids subject to these allocation constraints.

Recall that the valuation of UE k for obtaining a PRB is vk and the bid submitted

by it is denoted by bk. The VCG mechanism chooses an allocation that maximizes the

sum of winning bids given by:

∑
k

∑
j

bkx
Γ
i(k)j(1− `kj). (5.2)

Let {xΓ−k
ij } be the allocation indicators under policy Γ in the absence of UE k. Then, the

price paid by UE k for service (i.e., the damage caused by it to the other bidders) is:

pΓ
k =

∑
q

∑
j

bqx
Γ−k
i(q)j(1− `qj)−

∑
q 6=k

∑
j

bqx
Γ
i(q)j(1− `qj).

The utility of the UE under this allocation is uΓ
k = vk − pΓ

k .

The proposed allocation mechanism Γ? works as follows:

1. Step 1: The UEs report their bids, bk’s to the eNB at the beginning of the sub-

frame.
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2. Step 2: The eNB determines the allocation vector AΓ and the corresponding xΓ
ijs

that maximize the quantity
∑

k

∑
j bkx

Γ
i(k)j(1− `kj) and allocates PRBs accordingly.

3. Step 3: The price to be paid by UE k, pΓ
k is calculated for every k. These are

periodically transmitted to and stored at the Policy and Charging Rules Function

(PCRF) for charging purposes.

In the VCG mechanism, there is no incentive for a bidder to misrepresent its valuation

since the utility gained by reporting a false valuation is never greater than that achieved

by reporting the actual valuation. Therefore, the system can allocate items in an optimal

manner without malicious users hogging resources by misrepresenting their requirements.

This property is referred to as ‘strategy-proofness’ of the mechanism. It is this property

that makes VCG a social utility maximizing mechanism. Since all bidders are forced to

bid their true valuations, maximizing the sum of winning bids is equivalent to maximizing

the utility of the system. The strategy-proofness of Γ?, however, does not obviously follow

from the strategy-proofness of the conventional VCG mechanism due to the structure of

the resource allocation problem under consideration. Here, a single commodity is allocated

to an entire group of bidders, some of whom may still gain no utility whatsoever. So, the

strategy-proofness of Γ? needs to be proved. We do this in the following result.

Theorem 8. Γ? is strategy-proof.

Proof. Since we will be dealing with policy Γ? throughout this proof, we drop Γ? from the

notations for simplicity e.g., the allocation vector will simply be denoted by A instead of

AΓ? .

Consider a UE k with its true valuation being vk. Let B denote the sum of winning

bids under Γ? when all UEs report their true valuations and let A be the corresponding

allocation vector. We use B−k to denote the sum of winning bids in the absence of UE k.

Then, the price paid by k if it is scheduled under Γ? is pk = B−k− (B− vk) and its utility

is uk = B − B−k. If k is not scheduled, then uk = pk = 0. If k reports its true valuation,

it either gets scheduled by Γ? or it doesn’t. We look at both these cases separately.

Case 1 : UE k gets scheduled by reporting bk = vk truthfully. Now, let us say that

it reports bid b′k instead. Then, one of the following cases arise:



112 Chapter 5. Resource Allocation and Pricing for Heterogeneous User Demands

� b′k > vk: If UE k bids a value greater than its valuation, it should continue to be

scheduled. Suppose that this is not the case and k is not scheduled when it bids b′k.

Let B′ be the sum of winning bids in this case, the rest of the bids being same as

for B. Since b′k > vk, b
′
k− bk = δ > 0. If allocation vector A is used in this scenario,

k will be scheduled and the resulting sum of winning bids will be B′′ = B′+ b′k > B′

which is a contradiction since Γ? maximizes the sum of winning bids. Therefore, UE

k will be scheduled when it bids b′k > vk resulting in sum of winning bids B′ = B+δ.

Let us now look at the utility obtained by it.

The price paid by k in this case will be p′k = B−k − (B′ − b′k) = pk and its utility

is u′k = vk − (B−k − (B′ − b′k)) = B′ − B−k − δ = B − B−k = uk. Since the utility

gained by UE k remains unchanged, it has no incentive in reporting b′k instead of

bk.

� b′k < vk and k is not scheduled: This is a trivial case since u′k = 0 < uk. The utility

gained by the UE is reduced and so, there is no incentive for it to bid b′k instead of

bk.

� b′k < vk and k is still scheduled: Since b′k < vk, bk−b′k = δ > 0. Note that B′ = B−δ.

Here, p′k = B−k − (B′ − b′k) = pk and its utility is u′k = vk − (B−k − (B′ − b′k)) =

B′−B−k +δ = B−B−k = uk. Since the utility gained by UE k remains unchanged,

it has no incentive in bidding b′k instead of bk.

Case 2 : UE k does not get scheduled by reporting bk = vk truthfully. In this case

uk = 0. Now, let us say that it bids b′k instead. One of the following cases arise:

� b′k > vk and k is still not scheduled: This is a trivial case since u′k = 0 = uk. Here

also, the utility gained by UE k remains unchanged and there is no incentive for it

in bidding b′k instead of bk.

� b′k > vk and k is scheduled: Since b′k > vk, b
′
k − bk = δ > 0. Note that B′ − B ≤ δ.

The price paid by k, p′k = B−k− (B′− b′k) = B− (B′− b′k) ≥ b′k− δ = vk. Therefore,

its utility is u′k = vk − p′k ≤ 0. Since UE k does not gain any additional utility, it

has no incentive in bidding b′k instead of bk even if it does get scheduled.
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� b′k < vk: If UE k bids a value lower than its valuation, it should continue not being

scheduled. Suppose that this is not the case and k is scheduled when it bids b′k. Let

B′ be the sum of winning bids in this case, the rest of the bids being the same as

for B. Let A′ be the corresponding allocation vector. Now, if the same allocation

vector is used when the UEs bid their true valuations, the resulting sum of winning

bids will be B′′ = B+vk which is a contradiction since B is the maximum bid value

obtainable with true valuations. Thus, it is not possible for k to get scheduled when

it bids b′k. Therefore, there is no incentive in bidding b′k instead of bk.

We have shown for all possible cases that manipulating the actual valuations in any

manner does not result in any utility gain for the UEs under allocation policy Γ?. This

proves that Γ? is strategy-proof.

5.3.1 Computational Complexity of Γ?

The brute force implementation of Γ? requires going through all possible resource alloca-

tions and calculating the sum of winning bids for each allocation. The optimal allocation

can then be obtained by choosing the one that maximizes the sum of winning bids. The

computational complexity of this algorithm is O(L
(
N
L

)
L!). This is computationally very

expensive and unsuitable for practical implementation. However, in the problem under

consideration here, the proposed mechanism can be implemented in polynomial-time using

a Maximum Weight Bipartite Matching (MWBM) based algorithm. In the next section,

we present this polynomial-time implementation of Γ?.

5.4 MWBM Implementation of Γ?

We propose a MWBM based implementation of Γ? that has a computational complexity of

O(L2N). We first construct the bipartite graph for the matching and then we prove that

determining a maximum weight matching for it is equivalent to determining the resource

allocation according to Γ?. Construct a bipartite graph G = (U, V,E) where U is the set

of all the MBMS groups [L] and V is the set of all PRBs [N ] as shown in Figure 5.1. E

denotes the set of edges between the two sets of nodes. The weight of the edge between
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vertex i ∈ U and vertex j ∈ V is defined as:

wji =
∑
k∈Gi

bk × (1− `kj).

MWBM of G is the social utility maximizing resource allocation given by Γ?. We prove

this in the following result.
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Figure 5.1: Bipartite graph between multicast groups and PRBs

Lemma 11. MWBM for graph G = (U, V,E) results in the same resource allocation as

that given by Γ?.

Proof. Let us first establish that MWBM of G results in a feasible resource allocation. By

definition of a matching, MWBM of G selects edges with no common vertices. Therefore,

a vertex from U is matched to at most one vertex from V and vice-versa. This means

that each group is given a single PRB in a sub-frame. It also ensures that, in the resulting

allocation vector A, Ai 6= Ai′ ∀ {i, i′ ∈ U}. Hence, by Definition 12, the resulting resource

allocation is feasible. All that is left to show is that this feasible allocation also maximizes

the quantity given in (5.2).

Since MWBM searches for a maximum weight matching with no common nodes, it

effectively maximizes the quantity,∑
i,j

wjix
Γ
ij =

∑
j

∑
i

∑
k∈Gi

bk(1− `kj)xΓ
i(k)j =

∑
j

∑
k

bkx
Γ
i(k)j(1− `kj),

which is the same quantity that is maximized by Γ? as given in (5.2). Thus, MWBM for

G successfully implements the allocation mechanism of Γ?.
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Table 5.1: System Simulation parameters [1]

Parameters Values

System bandwidth 20 MHz

Path loss model L = 128.1 + 37.6 log 10(d), d in kilometers

Shadowing
Log Normal Fading with 10 dB standard

deviation

White noise power density −174 dBm/Hz

eNB noise figure 5 dB

eNB transmit power 46 dBm

Number of PRBs 100 per sub-frame

5.5 Simulations

To study the performance of the proposed allocation mechanism, we implement it in an

LTE environment. We first discuss the simulation setup and then present the results. We

consider an LTE cell with 100 UEs distributed uniformly at random throughout the cell.

The channel models used are in accordance with the 3GPP specifications [1]. There are

5 different MBMS streams available for subscription and all UEs in the cell are either

subscribed to one of them or are receiving a unicast service. We run the simulations for

a period of 105 sub-frames. Other relevant simulation details are given in Table 5.1.

As discussed in Section 5.1, we do not place any restrictions on what the valuations

of users can be. For the purposes of these simulations, we assume that each UE has a

certain packet loss requirement that needs to be met. The loss tolerable by a UE could

be a function of factors like the streaming quality required by it, its channel state, or the

kind of video service it has subscribed to. This requirement is known to the UE alone.

The valuation of the UEs in a sub-frame is some function of their loss tolerance and the

loss they have encountered in the past. The UEs report their respective valuations to the

eNB. The eNB then allocates a PRB to each MBMS group using the algorithm detailed

in Section 5.4. We compare the performance of our policy with that of a greedy policy

ΓG that maximizes the system throughput.
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Figure 5.3: Average loss pattern over time

Figure 5.2 shows the plot of the loss tolerance of UEs and the actual loss encountered

by them under Γ? and ΓG. We observe that the loss encountered by every UE remains

within its tolerable limit under Γ? whereas ΓG fails to meet their loss requirements. Γ?

succeeds in meeting the loss requirements of all the UEs even though the eNB has no
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knowledge of their loss tolerance or the manner in which the user valuations are calculated.

In fact, the eNB is not even aware that the resource allocation algorithm is trying to

control the losses encountered by the users. Thus, the proposed algorithm provides a

resource allocation mechanism that can be used for optimizing any system parameter. In

order to see how the loss patterns evolve over time, we also observe the average percent

packet loss under the two policies as a function of time. This is shown in Figure 5.3. We

observe that Γ? results in significantly lower losses than the greedy policy.

5.6 Conclusions

Traditionally, resource allocation policies have been designed to optimize a specific pa-

rameter, such as maximizing the system throughput or fairness of allocation. A practical

cellular mobile system, however, may need to optimize different parameters for different

types of traffic that it is serving. There could be services like multicast video streaming,

voice calls, or file downloads simultaneously active in a cell. The current literature on

resource allocation lacks a generalized resource allocation policy that can be used irrespec-

tive of the parameter we may need to optimize. In this chapter, we design such a policy

based on auctions. The proposed policy provides a generalized framework for resource

allocation that can be used for allocation irrespective of the types of users and services

in the system. It can serve a heterogeneous mix of users and services having diverse QoS

requirements.

The policy is based on the popular VCG auction mechanism. We have shown that

the proposed policy is strategy-proof. Hence, there is no incentive for rational users in

the system to misrepresent their valuations for the system resources. The policy takes

allocation decisions based on the reported user valuations. The valuations of users are

private, unknown to the eNB and other users. Through simulations in an LTE environ-

ment, we have shown that the proposed policy succeeds in meeting the QoS requirements

of all the users present in the system even though these requirements are not known to

the allocating entity. Though VCG mechanisms are generally NP-hard to implement, we

have shown that, for the problem under consideration, the proposed mechanism can be

implemented in polynomial-time using a maximum weight bipartite matching.
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In the next chapter, we propose the idea of using multi-connectivity in multicast

transmissions. To the best of our knowledge, as of writing this thesis, multi-connectivity

has never been considered for use in multicast transmissions.



Chapter 6

Multi-Connectivity Multicast

Streaming

In this chapter, we propose the use of Multi-Connectivity (MC) in multicast transmissions.

Multi-connectivity has a potential to significantly improve the performance of multicast

video streaming services. It allows users to potentially connect to and receive content

from multiple eNBs and over multiple Radio Access Technologies (RATs) simultaneously.

Multi-connectivity, specifically Dual Connectivity (DC), is an essential part of the next

generation of mobile cellular networks. DC capable devices can connect to at most two

Base Stations (BSs) at a time. DC allows users to connect to a primary macro BS

and a secondary micro or femto BS [89]. DC is expected to be a key enabler in 5G

wireless networks [91]. The high data rate, ultra-reliable low latency, and high mobility

requirements of 5G necessitate the reduction of radio link failures due to mobility. The

use of DC makes it possible to avoid such failures and ensures seamless connectivity for

mobile users [92]. Even though DC has received considerable attention from the research

community in the past few years for throughput and handover improvement [89, 93–95],

its use with multicast transmissions has not been considered.

Allowing UEs to receive content from several BSs at once is particularly suitable for

multicast streaming services. As we shall discuss in Section 6.1, various features of MBMS

make it particularly feasible to use multi-connectivity in MBMS transmissions. The only

context in which delivery of multicast content from multiple sources is considered in the

current 3GPP standards is in the use of Multimedia Broadcast multicast service Single

Frequency Networks (MBSFN). In MBSFNs, multiple eNBs in an MBSFN area trans-

119
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mit the same content to the users in synchronization [10]. MBSFN transmissions require

strict synchronization between all eNBs in the MBSFN area and an extended Cyclic Pre-

fix (CP) so that users can successfully combine the content received from multiple eNBs.

The extended CP reduces the system throughput and the need for tight synchronization

between eNBs results in significant control overheads. Multi-connectivity multicast ad-

dresses these issues. It provides all the benefits of MBSFNs without the need for strict

synchronization and extended CPs. Each eNB can independently optimize its resource

allocation and choose the most suitable PRBs for transmitting the multicast content.

All users in an MBSFN area can receive the same content from all eNBs and experience

improved quality of service.

Since use of multi-connectivity in MBMS has not been considered before, the asso-

ciated methods have not been standardized in the current 3GPP standards. Therefore,

procedures need to be defined for enabling the use of multi-connectivity in MBMS. We

define these procedures and the associated control signaling in this chapter. We also

formulate the resource allocation problem for a multi-connected multicast system to max-

imize the number of multicast users served. We prove that this resource allocation problem

is NP-hard. Since a multi-connected system involves users receiving content from multiple

eNBs, the optimal resource allocation needs to consider a global view of the system to

make optimal allocation decisions. This requires the presence of a controller that makes

allocation decisions in a centralized manner. We propose a centralized greedy approxi-

mation algorithm for solving the resource allocation problem. The proposed algorithm

provides an approximation ratio of (1 − 1
e
), which means that the solution provided by

it is within (1 − 1
e
) of the optimal solution. This is, in fact, the best possible approx-

imation for the problem. We also propose a distributed greedy allocation policy and

compare its performance to that of the centralized policy. Through extensive simulations,

we demonstrate the performance improvements provided by multi-connectivity in multi-

cast transmissions. We compare the performance of a multi-connected multicast system

with that of single connected and dual connected multicast systems. Our simulation re-

sults reveal that multi-connectivity significantly improves the performance of multicast

transmissions.

The rest of this chapter is organized as follows. We discuss the proposed concept
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of multi-connectivity multicast in Section 6.1. We define the procedures for establishing

multi-connectivity in MBMS in Section 6.2. The system model and the resource allocation

problem formulation are discussed in Section 6.3. In Section 6.4, we prove NP-hardness

of the resource allocation problem. We present the centralized greedy approximation

algorithm and prove its approximation ratio in Section 6.5. We then examine the use of

distributed resource allocation for MC multicast in Section 6.6. Finally, we present the

simulation results in Section 6.7 and conclude in Section 6.8.

6.1 MBMS and Multi-Connectivity

MBMS, as defined in 3GPP standards, is an idle mode procedure [11]. This means that,

a UE does not have to be in RRC connected mode to receive MBMS services. Most

of the control information relating to MBMS operations is carried on a separate logical

channel, the Multicast Control Channel (MCCH) [116]. The only MBMS related infor-

mation sent over the Broadcast Control Channel (BCCH) is the information needed by

UEs to acquire the MCCH(s). This information is carried by the MBMS specific Sys-

temInformationBlock, SystemInformationBlockType13 (SIB13) [116]. MBMS user data is

carried over Multicast Traffic Channels (MTCH). Using the information provided over the

MCCH, a UE can read the MTCH corresponding to the MBMS session that it is inter-

ested in. MBMS user plane protocol architecture defines an additional Synchronization

(SYNC) protocol layer on the transport network layer for content synchronization [117].

It is defined to carry additional information for identifying transmission times and de-

tecting packet loss. The SYNC protocol is terminated in Broadcast Multicast Service

Centre (BM-SC) and the eNBs. MBMS session content is forwarded to MBMS GateWay

(MBMS-GW) by BM-SC. MBMS-GW then IP multicasts the content to the eNBs.

The streaming content sent to eNBs in a particular region emanates from the same

BM-SC. As a result, MBMS contents arriving at these eNBs are in sync. UEs can, there-

fore, receive and combine multiple copies of the same content received from these eNBs.

We propose the use of multi-connectivity in multicast transmissions to take advantage of

this inherent synchronization in MBMS systems. MC multicast enables multicast users

to obtain multicast content from multiple sources without the need for any additional
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synchronization. Moreover, since MBMS is an idle mode procedure, we do not require

UEs to establish an RRC connection to any eNB for using MC multicast. A UE may use

MC multicast while being in RRC idle mode.

We propose a different dynamic between the primary and secondary eNBs of users

than what is traditionally defined for DC in unicast transmissions [90]. Firstly, depending

on its capability, a UE can connect to any number of eNBs and receive multicast content

from all of them. A UE can also stay in the RRC idle mode if it is not connected to any

eNB and receive content from any number of eNBs. For a UE using MC multicast in the

RRC idle mode, ‘primary’ eNB refers to the eNB that it is camped on. For a UE in RRC

connected mode, ‘primary’ eNB refers to the eNB that it is connected to. All other eNBs

that the UEs may receive content from are referred to as secondary eNBs. Secondly,

in MC multicast, primary and secondary eNBs of a UE do not work in a traditional

master-slave configuration. The secondary eNBs are not dictated by the primary eNB in

their interaction with the UE. A multicast UE can receive relevant control information

and multicast data from multiple eNBs independent of each other. As such, there is no

real distinction between the ‘primary’ and ‘secondary’ eNBs for a user. Each eNB that

serves the UE under MC multicast is equivalent for the UE. Note that, we still use the

terms ‘primary’ and ‘secondary’ eNB in various places in this chapter for the ease of

distinguishing between the various eNBs that a UE is receiving data from.

Multi-connectivity multicast has a potential to provide all the benefits of MBSFN

transmissions in a considerably simpler framework. Like in MBSFNs, UEs can receive

multicast content from a number of eNBs, resulting in improved SNR, especially for

the cell edge users. However, unlike MBSFN operations, eNBs are not required to use

the same time and frequency resources (PRBs) for streaming the multicast content. In

MC multicast, the same MBMS services are streamed through multiple eNBs and each

eNB allocates PRBs to the multicast streams independently. Each eNB can, therefore,

optimize the resource allocation to various services in its cell. The resulting frequency

diversity significantly improves the probability of reliable reception of the MBMS content.

A multicast UE can combine or choose one of the multiple copies of the content received

by it. As we shall see in Section 6.7, multi-connectivity results in significant performance

improvement of multicast operations.
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6.2 Procedures for Establishing Multi-Connectivity

in Multicast Transmissions

In this section, we propose the procedures required for establishing multi-connectivity

in MBMS. We define multi-connectivity multicast as a user initiated mechanism. As

discussed in Section 6.1, a UE needs to acquire the MBMS specific SIB, SIB13 and MCCH

from an eNB to begin receiving MBMS session content from it. The procedures for

establishing multi-connectivity for UEs in RRC connected and RRC idle modes vary in

certain signaling aspects. We explain each of these procedures below.

1. RRC Idle mode: A UE in RRC idle mode is informed of the available MBMS

sessions by its primary cell that it is camped on. If the UE is interested in an avail-

able MBMS session and capable of multi-connectivity, it can choose to receive the

content from multiple eNBs in its vicinity. If the UE chooses to receive the session

from multiple eNBs, it starts listening to the broadcast channels of its neighbor-

ing eNBs. It receives the the MasterInformationBlock (MIB), SIB1, SIB13 of the

neighboring cells. The SIB13 obtained from the eNBs contains the MBMS relevant

information of these eNBs. The UE can then receive the content from any number

of these eNBs where the MBMS session of its interest is available.

To start receiving the session content, the UE reads MCCH(s) of these eNBs. MCCH

contains the information needed by the UE to obtain the relevant MTCH(s). This

procedure is illustrated in Figure 6.1. The UE thus receives multiple copies of

the same multicast content over MTCHs of multiple eNBs. Depending on the UE

capabilities, multiple copies of the content can then be combined to obtain better

SNR. It should be noted here that the UE does not need to establish an RRC

connection to any of the eNBs in this procedure.

2. RRC Connected mode: A UE may have established an RRC connection for some

unicast service by the time an MBMS session starts. After a UE establishes an RRC

connection to a cell, it stops listening to the broadcast channels of other cells. When

such a UE is informed of an MBMS session that it is interested in, it can choose to

either receive the content only from the cells that it is connected to or to receive

the content from multiple cells using multi-connectivity multicast. The procedure
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Figure 6.1: Procedure for enabling multi-connectivity multicast for UEs in RRC idle mode

and single connected UEs.
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for establishing multi-connectivity for such a UE will be different depending upon

whether the UE is single connected or dual connected. We propose the procedures

for both these cases as follows.

(a) Single Connected UE: A single connected UE is notified of the available MBMS

sessions by its primary eNB that it is connected to. If the UE is interested

in an MBMS session, it can either choose to receive the content from its pri-

mary cell alone or use multi-connectivity multicast to receive it from multiple

sources. In case the UE decides to receive the MBMS content only from its

primary eNB, it reads the corresponding MCCH and receives the content over

the relevant MTCH from its primary eNB alone. If the UE chooses to use

multi-connectivity multicast instead, it starts listening for broadcast informa-

tion from its neighboring cells. It acquires the MIB, SIB1 and SIB13 of these

cells. It then acquires the MCCH(s) of the additional cells where the session of

its interest is available. MCCH provides the UE with the allocation informa-

tion needed to acquire the MTCH of its interest. This procedure is illustrated

in Figure 6.1. Note that, the UE does not establish an RRC connection to any

of the secondary eNBs.

(b) Dual Connected UE: Consider a UE that is dual connected and receiving some

unicast service from two different cells. This UE can choose to receive MBMS

content in one of the following ways.

i. From the primary eNB alone: In this case, the UE acquires MCCH and

the relevant MTCH from its primary eNB and no additional procedures

are required.

ii. From its primary eNB and some other eNBs in its neighborhood: This is

the same as the case of a single connected UE in 2a above and the same

procedures apply.

iii. From the two eNBs it is dual connected to: If the MBMS session of interest

is available in the secondary cell of the UE, it can choose to receive MBMS

content from the same two eNBs that it is dual connected to. In the

existing 3GPP standards for dual connectivity, the primary eNB acts as

the control plane anchor for the UE [90]. All the control information
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Figure 6.2: Procedure for enabling multi-connectivity multicast for dual connected UEs.
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coming from the secondary eNB is transmitted to the UE via the primary

eNB. Therefore, we propose that, SIB13 from the secondary eNB is also

transmitted over the X2 interface to the primary eNB instead of the UE

having to listen for it separately. It can then acquire the MCCH and

relevant MTCH from both the cells independently.

iv. From the two eNBs it is connected to as well as other eNBs in its neighbor-

hood: This is a combination of ii. and iii. above and the same procedures

are followed. Figure 6.2 illustrates this procedure.

In the next section, we discuss the resource allocation problem in a multi-connectivity

multicast system. We formulate the resource allocation problem with the aim of maxi-

mizing the number of multicast users successfully served in the system.

6.3 Resource Allocation in MC Multicast

6.3.1 System Model

We consider a C cell LTE system. Each cell has an eNB located at the center. There

are M multicast UEs in the system. All UEs are capable of multi-connectivity and can

potentially be served by any number of eNBs. There is a multicast session available for

streaming in all the cells. The multicast stream has a certain required rate R at which

the content needs to be streamed to the subscribed UEs. Multicast content is streamed at

this rate R whenever the multicast session is active. All multicast UEs in the system are

subscribed to the ongoing multicast session. The UEs subscribed to a multicast session

in a cell form a single multicast group and receive the streaming content over the same

PRBs. The UEs can potentially receive the multicast streaming content from any number

of neighboring eNBs in addition to their primary eNB. A multi-connected UE, therefore,

belongs to multiple multicast groups streaming the same content. The multicast stream in

a cell is allocated one PRB each sub-frame t. Resource allocation to the various multicast

streams can either be done by each eNB independently or by a central controller that

manages the eNBs. The multicast data stream in the primary and secondary cells of a

UE may or may not be scheduled on the same PRB.
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The channel states of UEs vary across time and frequency. As a result, a UE experi-

ences different channels in different sub-frames and across different PRBs in a sub-frame.

Depending on the channel state of a UE, there’s a certain maximum rate it can success-

fully decode in a PRB. Since the multicast content is transmitted at rate R, a UE may

or may not be successfully served by an eNB it is connected to. For instance, say cell c is

streaming the multicast content over PRB j in sub-frame t. Let rcjk[t] be the maximum

decodable rate for UE k in PRB j of cell c in sub-frame t. If R > rcjk[t], UE k will not be

able to successfully receive the content from c. On the other hand, if R ≤ rcjk[t], UE k will

be successfully served by c. A multi-connected UE successfully receives data in sub-frame

t if it can decode the content from any of the eNBs it is connected to. On the other hand,

a UE that is not multi-connected would successfully receive data only if it can decode the

content from its primary cell. We now discuss and formally define the resource allocation

problem for MC multicast.

6.3.2 Problem Formulation

The problem of resource allocation in an MC multicast system is aimed at serving as

many UEs successfully in a sub-frame as possible. Since multi-connected UEs can receive

the streaming content from multiple eNBs, the performance of a UE depends on the PRB

allocation in multiple cells. The optimal resource allocation for a region must, therefore,

optimize over all the cells in that region. Optimal allocation of resources in individual

cells is not optimal for a multi-connected system. We now mathematically define the

optimal resource allocation problem.

M multicast users distributed in C cells can potentially receive multicast content

from all the eNBs in their neighborhood. [M ] is the universal set of all users. There

are N PRBs available in each cell. Denote by Ujc ⊆ [M ], the set of users that would

be successfully served if PRB j is allocated to the multicast service in cell c. Set Uc =

{U1c, U2c, . . . , UNc} is the sub-collection of such sets for cell c. Let U = {U1, . . . ,UC}. The

resource allocation problem can then be stated as follows:

K? : Given the universe [M ] and a collection of sets U = {U1, . . . ,UC}, we are

required to determine U ′ ⊆ U such that |
⋃
Ujc∈U ′ Ujc| is maximized subject to |U ′| = C

and |U ′ ∩ Uc| = 1, ∀ c.
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6.4 K? is NP-hard

The optimal resource allocation problem K? is an NP-hard problem. We prove this by

reduction from the Maximum Coverage Problem (MCP) [118]. MCP is a well known

NP-hard problem and is defined as follows:

MCP takes as input a universe S, a number k and a collection of sets T = {T1, T2, . . . , Tm}

where each Tj ⊆ S. The objective of MCP is to determine a sub-collection T ′ ⊆ T such

that T ′ ∈ arg max|T ′|≤k |
⋃
Tj∈T ′ Tj|.

Theorem 9. K? is an NP-hard problem.

Proof. In order to prove that K? is NP-hard, we first reduce an instance of MCP to an

instance of K? in polynomial time. Then, we demonstrate how a solution for K? can be

mapped to a solution for MCP. We begin with the reduction.

Algorithm 6: Pseudo-code for reducing MCP to K?

Input: MCP with collection of sets T = {T1, T2, . . . , Tm} and a number, k ∈ N

Output: An instance of K? with

1 C ← k

2 N ← m

3 Ujc ← Tj ∀ j ∈ {1, 2, . . . ,m}, c ∈ {1, 2, . . . , C}

The pseudo-code for reducing an instance of MCP to an instance of K? is given

in Algorithm 6. We define the total number of cells to be k and the number of PRBs

available as m. The set Ujc is set to be Tj. This reduction can be accomplished in constant

time (O(C)). We now demonstrate how a solution of K? can be mapped to a solution of

MCP.

Algorithm 7: Pseudo-code for mapping a solution of K? to a solution of MCP

Input: Solution of K? U ′ ⊆ U such that |U ′| = C and |U ′ ∩ Uc| = 1, ∀ c

Output: Solution of MCP T ′

1 Tj ∈ T ′ iff Ujc ∈ U ′ for some c

Let us assume that there exists a polynomial time algorithm for solving K?. Say U ′

is the solution of K?. This means that |U ′| = k, |U ′ ∩ Uc| = 1, ∀ c and U ′ maximizes

|
⋃
Ujc∈U ′ Ujc|. This solution can be mapped to a solution of MCP as follows:
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Construct set T ′ such that, Tj ∈ T ′ iff Ujc ∈ U ′. Since |U ′| = k, we have, |T ′| ≤ k.

Therefore, T ′ is a feasible solution of MCP. The pseudo-code for this mapping is given in

Algorithm 7. We now need to prove that this is indeed the optimal solution of MCP. We

prove this by contradiction as follows.

Say that that there exists T ′′ ⊆ T such that |T ′′| ≤ k and |
⋃
Tj∈T ′′ Tj| > |

⋃
Tj∈T ′ Tj|.

We can then construct U ′′ using T ′′ as follows. Say T ′′ = {Tj1 , . . . , Tjl}, l ≤ k and say

j1 < j2 < . . . < jl. Then, we can construct U ′′ = {Uj11, Uj22, . . . , Ujll, U1(l+1), . . . , U1C}.

We have, |U ′′| = C, |U ′′ ∩ Uc| = 1, ∀ c and |
⋃
Ujc∈U ′′ Ujc| > |

⋃
Ujc∈U ′ Ujc| which is a

contradiction to U ′ being the solution of K?. Therefore, T ′ is indeed the optimal solution

of MCP.

Algorithm 7 maps a solution of K? to a solution of MCP in constant time (O(C)

assignments). Thus, a polynomial time solution for K? results in a polynomial time

solution for MCP as well. This is not possible unless P = NP. Therefore, no polynomial

time algorithm exists for solving K? i.e., K? is an NP-hard problem.

Now that we have proved that the multi-connectivity problem is NP-hard, the best we

can do is construct approximation algorithms that provide some performance guarantees.

We propose one such greedy algorithm in the next section and prove that the algorithm

has an approximation factor of
(
1− 1

e

)
.

6.5 Approximation Algorithm for K?

We construct a Centralized Greedy Approximation (CGA) algorithm for solving K?. The

pseudo-code for the algorithm is given in Algorithm 8. The algorithm maximizes the

number of additional users served in each step. In the first iteration, CGA chooses Ujc

from U that serves the maximum number of users. In the subsequent steps, it picks Ujc’s

that serve the maximum number of unserved users. In each step, the set picked is from

a different sub-collection Uc i.e., c in the subscript of the chosen sets is different for each

set picked. The collection of sets chosen after C such iterations UG, is the output of the

algorithm. In the next result, we prove that the resulting solution has an approximation

factor of
(
1− 1

e

)
. This means that the solution provided by this greedy approximation

algorithm serves at least
(
1− 1

e

)
of the number of users that would be served by the
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optimal algorithm.

Theorem 10. The CGA algorithm (Algorithm 8) is a
(
1− 1

e

)
approximation for K?. In

fact, no other algorithm can achieve a better approximation unless P = NP.

Algorithm 8: Greedy Approximation Algorithm for K?

Input: Universe [M ], U = {U1, . . . ,UC}, C

1 Initialize: UG = φ

2 for n = 1 : C do

3 Pick Uj?c? ∈ U that covers the maximum number of elements from

[M ] \
⋃
Ujc∈UG Ujc

4 UG ← U ′
⋃
{Uj?c?}

5 U ← U \ Uc?

6 end

Let OPT denote the number of UEs served by the optimal solution. Let mn be the

total number of UEs served by CGA up to and including the nth iteration. bn = OPT−mn

is the difference between the number of UEs served by the optimal algorithm and the

number of UEs served by CGA up to the nth iteration. Note that m0 = 0, b0 = OPT and

mC is the total number of UEs served by CGA.

In order to determine the approximation ratio of CGA, we first prove the following

two results that will eventually help us determine the approximation ratio in Theorem 10.

Lemma 12. mn+1 −mn ≥ bn
C

.

Proof. Let UOPT = {U?
1 , . . . , U

?
C} be the optimal solution. Denote by Mn, the set of users

served at the end of the nth iteration of CGA and by MC
n the set of users not yet covered

after the end of the nth iteration. We have:
C∑
c=1

|U?
c

⋂
MC

n | ≥ |
C⋃
c=1

(U?
c

⋂
MC

n )| ≥ OPT −mn,

=⇒ max
c
|U?

c

⋂
MC

n | ≥
(OPT −mn)

C
=
bn
C
. (6.1)

Since CGA picks the set that serves the maximum possible number of yet unserved users

in each iteration, we have:

mn+1 −mn ≥ max
c
|U?

c

⋂
MC

n |. (6.2)
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From (6.1) and (6.2),

mn+1 −mn ≥
bn
C
.

Lemma 13. bn+1 ≤
(
1− 1

C

)n+1
OPT .

Proof. We prove this result by induction. For n = 0, the above equation becomes:

b1 ≤
(

1− 1

C

)
OPT,

=⇒ OPT −m1 ≤ OPT − OPT

C
,

=⇒ m1 ≥
OPT

C
=
b0

C
,

which is true (from Lemma 12). Thus, the result holds for n = 0. Let us assume that

bn ≤
(
1− 1

C

)n
OPT and prove that bn+1 ≤

(
1− 1

C

)n+1
OPT . By the definition of bn and

mn, we have:

bn+1 ≤ bn − (mn+1 −mn) , (6.3)

=⇒ bn+1 ≤ bn −
bn
C

= bn

(
1− 1

C

)
, (6.4)

=⇒ bn+1 ≤
(

1− 1

C

)n+1

OPT. (6.5)

(6.4) follows from (6.3) by Lemma 12 and (6.5) follows from (6.4) by our assumption that

bn ≤
(
1− 1

C

)n
OPT . Thus, by induction, the result holds for all n.

We can now prove Theorem 10. We state the theorem again for ease of the reader.

Theorem 10. The CGA algorithm (Algorithm 8) is a
(
1− 1

e

)
approximation for K?. In

fact, no other algorithm can achieve a better approximation unless P = NP.

Proof. From Lemma 13,

bC ≤
(

1− 1

C

)C
OPT,

=⇒ OPT −mC ≤
(

1− 1

C

)C
OPT ≤ OPT

e
,

=⇒ mC ≥
(

1− 1

e

)
OPT.
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Thus, CGA provides a
(
1− 1

e

)
approximation for K?.

This is the best possible approximation for K?. If there was an algorithm that could

provide a better approximation, that algorithm would also provide a better approxima-

tion for MCP because a solution for K? can be mapped to a solution of MCP using

Algorithm 7. This is a contradiction since the greedy algorithm is known to be the best

possible approximation for MCP unless P = NP [119]. Therefore, no other algorithm can

provide a better approximation for K?.

6.6 Distributed versus Centralized Allocation

The CGA algorithm discussed in the previous section is a centralized algorithm. It requires

a central controller that can make allocation decisions based on a global view of the

multicast region. In the absence of such a centralized controller, allocation decisions would

be made by each cell individually based only on the knowledge of the UEs connected to

it. In such a distributed allocation, each cell allocates resources to the multicast stream

independently. In a multi-connected system, this type of allocation does not fully reap the

benefits of MC. We illustrate this with the following example. Consider a 2 cell system

containing cells c1 and c2. There are two PRBs available for allocation in each cell. We

denote these as P1 and P2. c1 contains four users, {u1, u2, u3, u4} and c2 has two users

{u5, u6}. All users are subscribed to the same multicast stream. u1 has a good channel

only in P1 and can successfully receive content only on P1. Users u3, u4, u5 and u6 have a

good channel only in P2 and can, therefore, successfully receive content only on P2. u2 has

a good channel in both the PRBs and would be served on either of them. Users u1, u3, u4

are connected to both the cells and can receive content from either of them.

Let us now look at the allocations that will be done by a distributed policy that

is maximizing the number of users served in each cell independently. c1 considers the

users connected to it and allots P2 to the stream because it serves the maximum number

of users (u2, u3, u4). c2 also optimizes independently and allocates P2 to the stream to

serve (u3, u4, u5, u6). Under this allocation, u1 remains unserved even though it was multi-

connected, since it could only receive the content over P1. On the other hand, u3 and u4

receive content from both the cells. In contrast, a centralized policy would consider users
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of both cells together and allocate P2 to the stream in c2 and P1 in c1 and successfully

serve all users in the system.

Any centralized allocation policy, even if it is sub-optimal, will always do better in

terms of the number of users successfully served than a policy which allocates resources

in a distributed manner. A centralized policy does not necessarily mean that the policy is

optimizing over the entire system. Any form of centralization that looks beyond just the

individual cell will reap a better performance than a completely uncoordinated allocation.

We now define a distributed greedy allocation policy. We use this policy for the purpose

of simulations in Section 6.7.

6.6.1 Distributed Greedy Allocation

In Distributed Greedy (DG) allocation policy, each eNB allocates resources to the multi-

cast streams by optimizing over the users connected to it. This policy solves K? for each

cell individually. In each sub-frame, an eNB allocates PRBs to the multicast streams

such that maximum number of users associated with it are served. When optimizing over

a single cell, the problem can be solved in polynomial time. The pseudo-code for this

algorithm is given in Algorithm 9. Recall that the set Ujc in Algorithm 9 is the set of all

users that would be successfully served if PRB j were allocated to the multicast stream

in c. xjc is the indicator random variable that indicates whether or not PRB j has been

allocated to the multicast stream in cell c.

Algorithm 9: DG Allocation

Input: Sets Uc = {U1c, . . . , UNc} for all c ∈ [C]

1 Initialize: xjc = 0 for every j, c

2 for c = 1 : C do

3 Assign j? = arg maxj |Ujc|

4 xj?c ← 1

5 end
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eNB

UE
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Figure 6.3: A snapshot of the simulation scenario

6.7 Simulations

We simulate a seven cell urban macro scenario [2]. UEs in the system are distributed

uniformly at random throughout the cells as shown in Figure 6.3. A single multicast

streaming service is available in all the cells. Some other relevant simulation parameters

are given in Table 6.1. The cell edge users are multi-connected to all the eNBs in the

system. In all the cells, a PRB is allocated to the multicast stream in each sub-frame.

Content corresponding to a multicast stream is transmitted at rate R in the PRB allocated

to it. The multi-connected users successfully receive a packet in a sub-frame if they can

decode the content from any of the eNBs. Other users should be able to decode the

content from their primary eNBs for being served.

Resource allocation to the multicast streams is done using the CGA algorithm pro-

posed in Section 6.5 and the DG policy proposed in Section 6.6. We use the number of

packets delivered successfully and the number of UEs successfully served in a sub-frame

as the performance metrics in these simulations. We compare the performance of the

centralized (CGA) and distributed (DG) resource allocation algorithms. We also com-
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Table 6.1: System Simulation parameters [1, 2]

Parameters Values

System bandwidth 20 MHz

Cell radius 250 m

Path loss model L = 128.1 + 37.6 log 10(d), d in kilometers

Lognormal shadowing
Log Normal Fading with 10 dB standard de-

viation

White noise power density −174 dBm/Hz

eNB noise figure 5 dB

eNB transmit power 46 dBm

pare the performance of MC with Single Connectivity (SC) and MBSFN to establish the

performance gains resulting from the use of MC in multicast transmissions. For resource

allocation in SC multicast, we use the distributed algorithm from Section 6.6 where each

eNB only considers the UEs in its own cell while making the allocation decisions.

In Figure 6.4, we plot the average number of packets successfully received by UEs

under the CGA and the DG resource allocation algorithms. We transmit one packet

in every sub-frame and plot the average number of packets successfully received by all

the UEs in the system over a period of 10 s (10000 sub-frames). We observe that CGA

performs much better than the DG policy. It succeeds in successfully serving the UEs in

a significantly larger number of sub-frames.

In Figures 6.5 to 6.10, we compare the performance of MC multicast with that of SC

multicast. From here onwards, only the CGA algorithm has been used for allocation in

MC multicast. For the plots in Figure 6.5 to 6.8, data is transmitted at a fixed rate in each

sub-frame. The points in these plots are obtained by averaging over 10000 sub-frames.

Figure 6.5 illustrates the number of packets successfully received under MC and SC

as the number of users per cell increases. We observe a decline in the number of packets

successfully received as the number of UEs increases. However, the number of packets

successfully delivered under MC multicast is much larger than that under SC multicast.

Figure 6.6 plots the same metric as a function of cell radius. We observe a decline in the
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Figure 6.4: Average umber of packets received successfully under MC using centralized

and distributed allocation
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Figure 6.5: Average number of packets received successfully under greedy approximation

algorithm as a function of increasing number of users

number of packets successfully received as the cell sizes increase. This is expected since

the path loss of the cell edge users increases as the cells become larger. The key thing to

note here is that the performance gap between MC and SC follows an increasing trend.

The relative performance of MC and SC is similar to what we observe in Figure 6.5.
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Figure 6.6: Average number of packets received successfully under greedy approximation

algorithm as a function of cell radius

Figures 6.7 and 6.8 plot the average number of users left unserved in a cell per sub-

frame as a function of increasing number of users and cell radius respectively. The number

of unserved users increases as the number of users and cell radius increases. Performance

gap between MC and SC increases as the number of users in each cell increases. MC

multicast succeeds in serving many more users than SC multicast.

In Figures 6.9 and 6.10, we compare the performance of MC and SC while serving

a real-time video stream. To generate realistic video traffic patterns, we use traces of a

video of Tokyo Olympics (obtained from http://trace.eas.asu.edu) [16]. For these

simulations, the rate of transmission varies every sub-frame, according to size of the video

frame being transmitted. We run the simulations for the duration of the video stream

and then average the results over all the sub-frames. In Figure 6.9, we observe that

MC multicast delivers significantly more packets successfully than SC multicast. From

Figure 6.10, we observe that many more UEs are left unserved under SC than under MC.

The performance gap between the two increases as the number of UEs in the system

increases.

In Figures 6.11 and 6.12, we compare the performance of MC multicast with that

of MBSFN transmissions. We consider that all the cells in our system belong to the

http://trace.eas.asu.edu
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Figure 6.7: Average number unserved users under greedy approximation algorithm as a

function of increasing number of users
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Figure 6.8: Average number unserved users under greedy approximation algorithm as a

function of cell radius

same MBSFN. MBSFN requires the multicast content to be transmitted over the same

PRB by all eNBs. For resource allocation in MBSFN, we choose a PRB that serves the

maximum number of UEs in the entire system. Here too, we use traces of the video

of Tokyo Olympics to generate realistic video traffic patterns. We observe that MC
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Figure 6.9: Average number of packets received successfully under MC and SC multicast

for a real-time video stream
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Figure 6.10: Average number of unserved UEs under MC and SC multicast for a real-time

video stream

multicast performs remarkably better than MBSFN. It succeeds in delivering a much

larger number of packets successfully and is able to serve significantly more UEs than

MBSFN. While many UEs remain unserved under MBSFN, nearly all of them are served

under MC multicast. These results confirm our claims that MC multicast can provide the
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Figure 6.11: Average number of packets received successfully under MC multicast and

MBSFN for a real-time video stream
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Figure 6.12: Average number unserved users under MC multicast and MBSFN for a

real-time video stream

benefits of MBSFNs while eliminating the need for synchronization. In fact, as observed

in Figures 6.11 and 6.12, MC multicast outperforms MBSFN by large margins.

These simulation results clearly indicate that using MC with multicast provides a

significant performance enhancement in multicast systems. The flexibility of potentially
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connecting to multiple eNBs results in more users being served each sub-frame. Thus,

MC multicast has great potential for use in video streaming services. It can help alleviate

the burden on network resources while serving the increasing video streaming traffic.

6.8 Conclusions

In this chapter, we have proposed the use of multi-connectivity in multicast transmissions.

We have proposed procedures for enabling the use of multi-connectivity in MBMS. We

have formulated the problem of resource allocation in multi-connected multicast systems

with the aim of maximizing the number of users served. We have proved this to be

an NP-hard problem. We have proposed a centralized greedy approximation algorithm

for resource allocation that provides an approximation ratio of
(
1− 1

e

)
. No polynomial-

time algorithm can provide a better approximation. We have also proposed a distributed

heuristic resource allocation algorithm for multi-connected multicast systems. Through

extensive simulations, we have established that the use of multi-connectivity in multicast

transmissions significantly improves the system performance. Multi-connectivity enables

serving a much larger number of users. We have also studied the performance of multi-

connectivity in serving real-time video streaming applications. To generate video specific

traffic patterns in these simulations, we have used traces from actual videos [16]. We

have also compared the performance of multi-connectivity multicast to that of MBSFNs.

Our simulation results indicate that multi-connectivity outperforms MBSFNs by large

margins, while eliminating the need for strict synchronization and extended cyclic prefixes.



Chapter 7

Summary of Results and Future

Directions

7.1 Summary of Results

Due to unprecedented growth of bandwidth intensive video traffic, there is a pressing need

for resource allocation algorithms and streaming mechanisms that can efficiently utilize

the available bandwidth. A large part of this video traffic comprises content like streaming

of TV shows, live news feeds, live telecast of sports events, movie premieres, live feeds

of major world events. All these applications involve the same content being requested

by a large audience simultaneously. Multicast transmission provides an efficient means of

serving such applications. In this thesis, we have addressed the problems of grouping and

resource allocation for multicast transmissions, primarily for video streaming. We have

discussed most of the problems in this work in the context of an LTE system. However,

all the algorithms proposed are generic and can be easily modified for use in any wireless

mobile communication system.

In services like online premieres, video quality takes precedence over other param-

eters. For such services, we consider a lossless multicast system in Chapter 3 in which

all users need to be served at a specific rate in each sub-frame. The corresponding re-

source allocation problem is a binary integer linear program that minimizes the number

of PRBs used for multicast transmissions while ensuring that the rate requirements of all

multicast users are met. We have proved that this is an NP-hard problem, and hence,

143
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no polynomial-time algorithms exist for determining its optimal solution. As discussed in

Chapter 2, minimizing the resource utilization of multicast services is essential for their

successful co-existence with a plethora of other services in the network. To the best of

our knowledge, this is the first work that addresses this minimization problem.

Since the optimal solution of the resource allocation problem cannot be determined

in polynomial-time, we have designed a randomized scheme that estimates the optimal

solution. This randomized scheme is based on Simulated Annealing, a Markov Chain

Monte Carlo technique. The scheme traverses the solution space of feasible resource allo-

cations and eventually converges to the optimal solution with high probability. However,

due to time considerations, this iterative scheme cannot be used for resource allocation in

practice. So, we have designed two online heuristic resource allocation schemes, a greedy,

and an LP-relaxation based scheme. These schemes run in polynomial-time and provide

solutions close to the optimal. The solution provided by the randomized scheme acts as a

benchmark for evaluating the performance of these heuristic schemes. The LP-relaxation

scheme results in feasible resource allocations that save nearly as many PRBs as that

saved by the randomized scheme in about one-fifth of the time taken by it. Extensive

simulations have been conducted to compare the performance of the proposed policies

with the existing state of the art. We have shown that our policies provide significant

gains over traditional unicast transmissions in terms of conserving PRBs and maximizing

the number of users served. To further establish the practical applicability of our policies,

we have also evaluated their performance using traces from actual video streams. We have

shown that our policies successfully meet the rate requirements of these video streams.

As discussed in Chapter 1, due to varying channel states of users, grouping users

based only on the content required by them may result in the performance of multicast

being worse than that of unicast transmissions. To prevent this, channel states of users

need to be taken into consideration while grouping. In Chapter 3, we have formulated the

grouping problem to minimize the resource usage under any resource allocation policy.

Variation of the channel states of users over time and frequency makes the grouping

problem complex. In fact, we have proved that the optimal grouping problem is also

NP-hard and no polynomial-time algorithms exist for determining its optimal solution.

Therefore, we have designed a heuristic algorithm for grouping, the hybrid grouping policy.
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This policy groups users based on their content requirements and average channel states.

Extensive simulations carried out in an LTE environment establish the effectiveness of

the proposed grouping policy. The grouping and resource allocation schemes proposed in

Chapter 3 can act as an enhancement to MBMS to make its multicast operations more

efficient and versatile.

In lossless multicast transmissions, the system is constrained to serve all users in

each sub-frame. Hence, data for a multicast group can never be transmitted at a rate

higher than what can be successfully decoded by the weakest user in that group. This

makes the system performance dependent on the weakest users in it. It may also result in

dissatisfaction of users with good channel conditions who could receive significantly better

rates using unicast. To address these issues, we propose the use of loss tolerant multicast in

Chapter 4. Video streams can tolerate some amount of packet loss without any significant

degradation in quality. We leverage this property to design resource allocation algorithms

for multicast video streaming that allow for some controlled packet losses. The loss

tolerant multicast system is, therefore, not constrained to serve all users in each sub-

frame. In the loss tolerant model for MBMS in Chapter 4, users have some tolerance for

packet loss. The loss tolerance of a user is dictated by factors like the type of video being

streamed, the subscribed data plan, the type of device being used for streaming.

For this loss tolerant MBMS system, we have proposed two loss optimal online

resource allocation policies that can meet the loss requirements of all users. The proposed

policies are named Loss Optimal Resource Allocation (LORA) and priority LORA (p-

LORA). We have proved the throughput optimality of both these policies, which means

that these policies can meet the loss requirements of the system as long as any online or

offline policy can do so. p-LORA improves upon LORA by introducing a prioritization

mechanism that prevents consecutive packet losses to ensure that no user is left unserved

for long periods at a stretch. We have also generalized the EXP-Q rule [18], a well-known

throughput optimal policy, for use with multiple channels and multicast transmission.

We have used this modified EXP-Q rule as a benchmark for evaluating the performance

of the proposed policies. Simulations have been performed to study and compare the

loss performance of the proposed schemes with that of the modified EXP-Q rule. Since

these policies are specifically designed for video streaming, we have used traces from



146 Chapter 7. Summary of Results and Future Directions

actual videos in these simulations. We have observed that the proposed policies succeed

in meeting the loss requirements of all users, whereas the modified EXP-Q rule fails to

do so. p-LORA results in the least packet loss of the three policies. It also provides the

best performance in terms of the burstiness of the losses encountered. Since PSNR is

considered to be the parameter of choice for defining the quality of videos, we have also

compared the PSNR of the received video streams under the three policies. LORA and

p-LORA result in significantly better PSNR than the modified EXP-Q rule. Using these

policies for resource allocation in multicast video streaming can significantly improve the

network bandwidth utilization.

In Chapter 5, we have addressed the need for a generalized resource allocation al-

gorithm that can adjust to optimize any parameter of the system. Such algorithms are

essential for present day cellular mobile systems that typically cater to a wide variety of

users, services, and devices. Fulfilling the requirements of a diverse set of users and ser-

vices requires optimizing several different parameters. In light of these requirements, we

have designed a generalized resource allocation algorithm based on the Vickrey-Clarke-

Groves (VCG) mechanism. This algorithm is capable of meeting QoS requirements of

a heterogeneous mix of users and services. It provides a unified framework for serving

unicast and multicast users and can be used irrespective of the optimization objective of

resource allocation. It can simultaneously allocate resources to meet the demands of dif-

ferent kinds of traffic that may have different QoS requirements. Each user has a certain

valuation for the system resources. This valuation is a user’s private information, and we

have not assumed any structure on it.

The auction based algorithm takes the bids conveyed by the users as inputs and out-

puts a feasible resource allocation. It also determines the prices to be paid by the users

in accordance with the quality experienced by them. We have proved that the proposed

algorithm is strategy-proof and so, there is no incentive for users to not bid their true

valuations. This ensures that the system resources are efficiently utilized for maximizing

the social welfare. As discussed in Chapter 5, VCG mechanisms, in general, are NP-hard

to implement. However, in this case, the proposed algorithm can be implemented in

polynomial-time. We have proposed an efficient polynomial-time implementation of our

algorithm using maximum weight bipartite matching. We have compared the performance
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of our algorithm with that of a throughput maximizing greedy algorithm. We have shown

that, even though our algorithm makes allocation decisions based only on the valuations

reported by the users, without any prior knowledge of their requirements, it succeeds in

meeting the QoS requirements of all users. Our simulation results establish the effective-

ness of the proposed algorithm for meeting the service requirements of a heterogeneous

mix of users irrespective of the nature of their valuations.

In Chapter 6, we have proposed the use of multi-connectivity in multicast transmis-

sions. Multi-connectivity in multicast enables a user to simultaneously receive the same

multicast content from multiple eNBs. It provides a method for attaining the benefits of

MBSFNs without their need for extended cyclic prefix and strict synchronization between

the eNBs. 3GPP architecture for MBMS defines an additional SYNC protocol layer to

synchronize the MBMS content delivered to the eNBs [117]. As a result, the content

received at the eNBs served by the same MBMS-GW is in sync. Multi-connectivity mul-

ticast takes advantage of this to enable users to independently receive the same multicast

content from multiple eNBs. Without the need for strict synchronization between the

eNBs, each eNB can optimize its resource allocation independently. The users receive

the same content in different PRBs, and the resulting diversity significantly improves the

received SNR of the multicast users. We have also defined detailed procedures required

for establishing multi-connectivity in an MBMS system.

We have formulated the optimal resource allocation problem in a multi connected

multicast system with the objective of maximizing the number of users who successfully

receive MBMS content. We have proved that this is an NP-hard problem. Therefore,

we have proposed a greedy resource allocation algorithm that provides an approximation

factor of (1 − 1
e
). This is, in fact, the best possible approximation ratio for this prob-

lem. We have also proposed an uncoordinated resource allocation algorithm for multi

connected multicast systems. We have shown via simulations that even an uncoordinated

policy yields significant performance gains over a single connected system. Our impact

assessment also reveals that multi-connectivity provides only marginal gains over a dual

connected system. Hence, the proposed schemes can be implemented with dual connectiv-

ity in the existing framework of LTE and 5G while providing performance improvements

close to a multi connected system.



148 Chapter 7. Summary of Results and Future Directions

7.2 Future Research Directions

Resource allocation algorithms proposed in Chapters 4 and 5 assign a single PRB to

each user/multicast group in a sub-frame. As a future direction, we can develop more

flexible algorithms that can allocate any number of PRBs to the users/multicast groups.

The problem of allocating multiple PRBs in these systems is quite complex because of

the variation of channel states of users across PRBs. For the auction based algorithm

in Chapter 5, we can explore the use of repeated auctions for allocating resources in

consecutive sub-frames.

The problems discussed in this thesis consider a homogeneous LTE system. How-

ever, Heterogeneous Networks (HetNets) are rapidly becoming an important part of the

cellular mobile networks. We can, therefore, develop algorithms for implementing effi-

cient multicast transmissions in HetNets as well. Since HetNets also use Wireless Fidelity

(WiFi) access points alongside LTE and 5G base stations, we can also develop procedures

and algorithms for multicasting content via WiFi access points.

The primary aim of this thesis is to develop methods and techniques for using the

spectrum more efficiently so that the increasing demand for bandwidth can be supported.

Having established the effectiveness of multicast in this regard, we can extend this work to

include Device to Device (D2D) multicast. Multicast using underlay D2D communications

can be used for further improving spectral efficiency. Future work in this direction can

address the problems of interference management and power control to ensure that cellular

unicast and multicast operations remain unaffected by D2D multicast. Clustering D2D

users for multicast operations will also have to be addressed.

In the current standards for MBMS, multicast can only be used for transmitting

MBMS sessions available in the network. However, with increasing popularity of on-

line streaming, multicast transmissions can find many diverse use cases. Consider, for

instance, an episode of a popular series available only from a streaming platform in a

particular region. A large number of users would be streaming the episode simultane-

ously. Currently, the service provider has no way of knowing that the same content being

streamed by several users. This information is only known to the content provider. For

such use cases, frameworks can be developed to enable secure cooperation between con-

tent and service providers. This will enable content providers to share the details of the
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content being streamed with service providers. Service providers can then combine these

individual streams and serve them efficiently using multicast transmissions. To enable

such interactions, the associated security and economic issues also need to be addressed.

Policies can be designed to ensure that this is beneficial for both content as well as service

providers.

The algorithms proposed in this work have the potential to improve the performance

of multicast operations significantly. Our extensive simulations demonstrate that imple-

menting these algorithms in cellular mobile networks can prove extremely beneficial for

optimizing video data streaming.
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