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Abstract—In a multi-access fading channel, dynamic allocation
of bandwidth, transmission power and rates is an important
aspect to counter the detrimental effect of time-varying nature
of the channel. Most of the existing work on dynamic resource
allocation assumescapacity achieving codes for various signaling
schemes like TDMA, FDMA, CDMA and successive decoding.
For the capacity achieving codes, the rate achievable by theuser
is log(1 + SNR), where SNR denotes the signal to noise ratio
of the user at the receiver side. However, codes that are usedin
practice have a finite gap to capacity, i.e., the achievable rate is
log(1 + SNR

Γ
) for Γ > 1. The exact value ofΓ depends on the

coding strategy and the desired bit error rate. Many existing
resource allocation techniques that are optimal for capacity
achieving codes perform sub-optimally in presence of the coding
gap. For example, successive decoding does not always minimize
the sum power required for providing the desired rate to each
of the users for Γ > 1. The problem of minimizing the sum
power while guaranteeing the required rate to each of the users
is important for both real-time and non real-time applicati ons,
and is addressed here. We obtain the resource allocation that is
optimal for the above problem in presence of the coding gap.

I. I NTRODUCTION

We consider a Gaussian multi-access fading channel with
perfect channel side information (CSI) at the transmittersand
the receiver. This models many important practical systems
including the uplink of wireless LANs and the cellular sys-
tems. In a multi-access fading channel, dynamic allocation
of bandwidth, transmission power and rates is an important
aspect to counter the detrimental effect of time-varying nature
of the channel [1], [2], [3]. Most of the existing work on
dynamic resource allocation assumescapacity achieving codes
for various signaling schemes, such as code-division multiple
access (CDMA), time-division multiple access (TDMA) and
frequency-division multiple access (FDMA) [4], [5], [6]. For
capacity achieving codes, the rate achievable by the user is
given by log(1 + SNR), whereSNR denotes the signal to
noise ratio of the user at the receiver side. However, codes
used in practical scenario have a finite gap to capacity. For a
variety of uncoded and coded modulations, this gap to capacity
can be approximated by scalingSNR with a factor (1/Γ)
for Γ > 1 [7], i.e., the achievable rate is approximately
log(1 + SNR

Γ ). Moreover, this gap to capacity is constant
with SNR for a number of coding techniques and depends
only on the probability of error (Pe). For example, in case of
PAM/QAM, Γ = 9.5 dB atPe = 10−7. Strictly speaking, this
coding gap to capacity is a function ofSNR, but it can be
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approximated to be constant over a large range ofSNR. The
modifiedSNR can now be used in any optimization setting in
the same way as that for the capacity achieving codes (Γ = 1).

We consider the system withM users. (We use the terms
“user” and “transmitter” interchangeably.) A userk requires
rate Rk in each slot, where slot duration is equal to the
channel coherence time. Thus, the channel gain is assumed
to be constant in a slot, but it can vary from slot to slot. Let
h(t) = [h1(t) · · ·hM (t)] denote the channel gains in slott,
i.e., if userk transmits at powerP in slot t, then the received
power ishk(t)P . The coding strategy, and hence the coding
gapΓ is specified.Our aim is to determine a signaling strategy
and the resource allocation for the given signaling strategy so
as to minimize the sum transmit power while providing the
desired rate to each of the users for any given h(t). We note
that for any given signaling strategy, the resource allocation
has to be dynamic depending onh(t). Clearly, this problem
is of interest for real time applications as they require strict
delay guarantees. Next, we illustrate why this problem is of
interest even for non-real time applications.

For non-real time applications, let each userk desire a
long term raterk. Note that unlike real-time applications, this
rate need not be provided in every slot. We can view this
system as follows: higher layer of the protocol stack feeds
rk bits to the multiple access control (MAC) layer buffer of
the kth user in every slot. In slott, MAC layer servesRk(t)
bits from the buffer, whereRk(t) ≤ Qk(t). Here, Qk(t) is
the number of back-logged bits in the buffer (queue length)
of user k in slot t. Then, to provide the required rate to
each user, it suffices to ensure that the expected queue length
for each user is bounded (queue is stable), mathematically
supt E[Qk(t)] < ∞ for eachk. Thus, providing the required
long-term rate to each user is equivalent to ensuring the queue
stability for each user. Recently, the problem of minimizing
the average sum power required for ensuring stability of all
the queues has been studied extensively [8]. It has been shown
that, in each slot, transmittingRk bits from each userk such
that a functionV P (R, h(t)) −

∑M
k=1 Qk(t)Rk is minimized

achieves the required goal, whereV is a sufficiently large
constant. Here,P (R, h) is the sum power required to transmit
R = [R1 · · ·RM ] bits in the multi-access channel experienc-
ing channel gainsh(t). Note that the functionP (R, h(t))
depends onR, h(t) and coding and signaling strategy em-
ployed. The previous work assumes that the functionP (·, ·)
is given, i.e., it assumes that the coding and signaling strategy
is specified. The optimality of the above scheme is shown
for any non-negativeP (·, ·). Thus, for truly minimizing the
average sum power while guaranteeing stability for a given
coding scheme, one needs to determine a signaling scheme



that achieves the minimum sum power while guaranteeingR

when channel gains areh. This shows how our problem is of
interest for non-real time applications.

Next we review the related work. In the absence of coding
gap, the rate region of a multi-access fading channel is a
polymatroid structure as derived in [9]. In [10], the problem of
minimizing the sum power of the users under the constraints
of providing them with minimum defined rates is considered.
Non-orthogonal signaling likesuperposition coding along with
successive decoding (SCSD) at the receiver is shown to be the
optimal strategy with appropriate power allocation. However,
the analysis here considers only the capacity achieving codes.
In presence of coding gap, the results in [9], [10] do not hold.
Indeed, [7] shows that the SCSD is not an optimal signaling in
presence of the coding gap. Specifically, [7] considers additive
white Gaussian noise (AWGN) multi-access channel with two
users, and shows the existence of ratesR1, R2 for which
the power optimal signaling is FDMA and not SCSD, i.e.,
the minimum sum power under FDMA is lesser than that
under SCSD. The sum power under a given signaling scheme
is minimized over all possible resource allocations for that
signaling scheme. For FDMA, resources are bandwidth and
power alloted to each user, while for SCSD, resource is only
the power at which each user transmits. Authors in [7] also
show that FDMA is not power optimal signaling for all the
values of the required rates, i.e., there existsR′

1 andR′
2 such

that the power optimal signaling is SCSD. Thus, the choice
of optimal signaling depends on the rate requirements. We
note that [7] does not consider multi-path fading, i.e., the
channel gains were assumed to be time invariant. In fading
channel, the optimal signaling depends not only on the rate
requirements, but also on the fading state which changes in
every slot. Unlike [7], which only provides an existence result,
one of our key contribution is to explicitly compute power
optimal signaling scheme for any given rate requirementsR

and the channel fading stateh. Our contributions are explicitly
mentioned below:

• As discussed above, for any givenR andh either SCSD or
FDMA is power optimal. Thus, our approach is to obtain the
power optimal resource allocation for FDMA and SCSD for
any givenR and h. The optimal signaling is then obtained
as the one that requires the lesser sum power between the
two signaling schemes. As a first step, we obtain the optimal
bandwidth and power allocation for FDMA. We note that the
concept of changing the bandwidth allotted to users depending
on h has not received much attention in the literature. This is
because the rate region achieved by FDMA is a strict subset
of the rate region achieved by SCSD when capacity achieving
codes are used for any given average power constraint. Thus,
primarily, the power optimal resource allocation for SCSD is
widely explored in the literature [9], [10]. But, the optimality
of SCSD is no longer true in the presence of coding gap [7].
Thus, unlike previous work, we need to determine optimal
resource allocation for FDMA signaling.

• Next, we obtain the optimal resource allocation for SCSD
signaling. Even though the optimal resource allocation for
SCSD is well known for the capacity achieving codes, the

case with coding gap does not follow directly from the known
results. This is because the optimal resource allocation for
SCSD is obtained from the key property that the rate region
is a polymatroid structure [9], [10]. This key property does
not hold in the presence of coding gap, and hence the optimal
resource allocation for SCSD has to be obtained afresh.
• After the power optimal resource allocation is obtained for
FDMA and SCSD for the givenR andh, the optimal signaling
is obtained as the one that requires a lower sum transmit power.
Here, this strategy is referred asadaptive strategy. To obtain
insights into when a certain signaling scheme would perform
better than the other, we investigate how the optimal resource
allocation depends onΓ andh.

The paper is organized as follows. In Section II, we present
the system model. In Sections III and IV, we obtain the optimal
resource allocation for FDMA and SCSD, respectively. In
Section V, we quantify the dependence of the optimal resource
allocation onΓ andh. In Section VI, we conclude.

II. SYSTEM MODEL

We consider a multi-access channel fading withM users.
Time is slotted. The channel is time-varying withhk(t) being
the fading state ofkth user in slott. The fading is assumed to
be flat. We assume AWGN with spectral densityσ2. All the
users use the same codes and hence have the same coding gap
Γ to capacity. We consider a discrete time channel

Y (t) =

M
∑

k=1

√

hk(t)Xk(t) + Z(t),

whereY (t) is the received signal intth time slot, Xk(t) is
the transmitted signal ofkth user intth time slot, andZ(t) is
the noise. LetR = [R1 · · ·RM ] denote the rate requirements.

The objective is to minimize the average sum power con-
strained to providing a minimum rateRk to each userk in
every channel state. Next, we obtain the optimal resource
allocation for FDMA and SCSD for any givenh.

III. O PTIMAL RESOURCEALLOCATION FOR FDMA

Here, we determine the optimal bandwidth allocation and
power allocation scheme that minimizes the sum power of
the users constrained to providing the minimum defined rate
to eachk for FDMA signaling. The problem can be math-
ematically formulated as follows. Let the current channel
state be denoted byh. Let a power allocation policy be
P (h) = [P1(h) · · ·PM (h)], and bandwidth allocation policy
α(h) = [α1(h) · · ·αM (h)]. Here,Pk(h) is the power allotted
to kth user in channel stateh, andαk(h) is the fraction of
bandwidth allotted tokth user in channel stateh. Thus, for
everyk we have

Rk ≤ αk(h) log

(

1 +
Pk(h)hk

Γσ2αk(h)

)

. (1)

Without loss of generality, we assume that the total bandwidth
is 1. Clearly, the sum power is minimized when (1) is satisfied
with equality for eachk. Thus, from (1) we have

Pk(h) =
(e

Rk
αk(h) − 1)Γσ2αk(h)

hk
.



Using the above relation, we get the following optimization

min
α

M
∑

k=1

(e
Rk
αk − 1)Γσ2αk

hk

Subjected to:
M
∑

k=1

αk = 1, and α ∈ [0, 1]M . (2)

We first note that the function(e
Rk/αk−1)Γσ2αk

hk
is strictly

convex forαk ∈ [0, 1]. This is because the second derivative of
the function (= Γσ2

hkα3
k
eR/αk) is positive forαk > 0. Thus, the

objective function is the sum of convex functions, and henceit
is also a convex function. Clearly, the set of feasible solutions
is convex. Thus, the above problem is an instance of the
convex optimization problem [11]. For convex optimization,
polynomial complexity algorithms using interior point method
have been proposed [12]. These algorithms can be used to
obtain the optimal resource allocation for FDMA signaling.

IV. OPTIMAL RESOURCEALLOCATION FOR SUCCESSIVE

DECODING

For SCSD, we need to specify the decoding order. Letπ =
[π(1) · · ·π(M)] denote a permutation on the set of users. We
say thatπ is the decoding order ifπ(M) is decoded first, then
π(M − 1) and so on untilπ(1). Thus, for theπ(k)th user,
signals from the usersπ(1) to π(k − 1) act as interference.
Note that for a givenπ, the power allocationP has to satisfy
the following relations so as to provide the desired rates to
each of the users. For everyk,

Rπ(k) ≤ log

(

1 +
hπ(k)Pπ(k)

Γ(
∑k−1

i=1 hπ(i)Pπ(i) + σ2)

)

. (3)

The objective isminP ,π

∑M
i=1 Pi, whereP andπ satisfy (3).

Clearly, for a givenπ, the minimization overP happens when
(3) is satisfied with equality for everyk. Thus, the problem
boils down to finding the optimal decoding order.

A. Optimal Decoding Order and Minimum Sum Power

In the absence of coding gap (Γ = 1), the decoding
order that minimizes the sum power while guaranteeing the
desired rate to each of the users is obtained in [10]. In [10],
the authors have shown that the optimal decoding orderπ

∗

satisfieshπ∗(1) ≤ · · · ≤ hπ∗(M) irrespective of the rate
requirementsR. Thus, the optimal power allocation can be
obtained using a greedy procedure. The key property utilized
to prove the result is that for any givenπ andS ⊆ {1, . . . , M},
∑

k∈S
Rk = log

(

1 +
P

k∈S
Pk(π)hk

σ2

)

, where Pk(π) is the

transmit power for userπ(k) under decoding orderπ. This
property yields polymatroid structure for the rate region under
SCSD (for complete details, see [10]). Now, the polymatroid
structure is used to deriveπ∗. We note that the aforementioned
property does not hold whenΓ > 1, and hence the rate
region for SCSD may not be a polymatroid. Thus, the optimal
decoding orders forΓ = 1 andΓ > 1 need not be the same.
But, as we show in the next result, the optimal decoding order

for Γ > 1 is the same as that forΓ = 1. First, we note that
when (3) is satisfied with equality,

Pk(π) =

(

eRπ(k) − 1
)

Γ
(

σ2 +
∑k−1

i=1 Pi(π)hπ(i)

)

hπ(k)
. (4)

Theorem 1: Let π
∗(Γ) denote the optimal decoding order

for a givenΓ > 1. Then,π∗(Γ) = π
∗ for everyΓ > 1.

Proof: Suppose, for someΓ > 1, π
∗(Γ) 6= π

∗. For
brevity, let π = π

∗(Γ). Then, there existsm < M such
that hπ(m) > hπ(m+1). Let us construct another decoding
order π

′ such thatπ′(k) = π(k) for k 6∈ {m, m + 1}, and
π

′(m) = π(m + 1) andπ
′(m + 1) = π(m). In other words,

we obtainπ
′ by swappingmth and (m + 1)th user in the

decoding order ofπ. Thus, clearly from (4),Pk(π) = Pk(π′)
for everyk < m. Now, let us consider the following:

m+1
∑

k=1

Pk(π)hπ(k) −

m+1
∑

k=1

Pk(π′)hπ′(k)

= Pm(π)hπ(m) + Pm+1(π)hπ(m+1)

−Pm(π′)hπ′(m) − Pm+1(π
′)hπ′(m+1).

Now, we note that

Pm(π)hπ(m) − Pm+1(π
′)hπ′(m+1)

= −Γ
(

eRπ(m) − 1
)

Pm(π′)hπ′(m)

= −Γ2
(

eRπ(m)−1
)(

eRπ(m+1)−1
)

(

σ2+

m−1
∑

i=1

Pi(π)hπ(i)

)

.(5)

Similarly,

Pm+1(π)hπ(m+1) − Pm(π′)hπ′(m)

= Γ
(

eRπ(m+1) − 1
)

Pm(π)hπ(m)

= Γ2
(

eRπ(m)−1
)(

eRπ(m+1)−1
)

(

σ2+
m−1
∑

i=1

Pi(π)hπ(i)

)

. (6)

From (5) and (6), we conclude that
m+1
∑

k=1

Pk(π)hπ(k) =

m+1
∑

k=1

Pk(π′)hπ′(k). (7)

From (4) and (7), it can be seen thatPk(π) = Pk(π′) for
everyk > m+1. Now, sinceπ is the optimal decoding order,
we know that

M
∑

k=1

Pk(π) −

M
∑

k=1

Pk(π′) ≤ 0

⇒ Pm(π) + Pm+1(π) − Pm(π′) − Pm+1(π
′) ≤ 0

⇒ Pm+1(π) − Pm(π′) ≤ Pm+1(π
′) − Pm(π)

⇒
1

hπ(m+1)
≤

1

hπ(m)
. (8)

The relation (8) follows from (5) and (6) ashπ(m) = hπ′(m+1)

and hπ(m+1) = hπ′(m) by the construction ofπ′. But, note
that (8) provides a contradiction as we have chosenm such
that hπ(m) > hπ(m+1). This proves the required.

Next, using examples, we demonstrate that indeed for the
givenR andΓ, there exist channel statesh such that FDMA



Parameters User 1 User 2 User 3 Sum
h 0.7 0.6 0.5 -

α in FDMA 0.2979 0.3579 0.3443 1.0000
P in FDMA 1.6× 10−8 2.1× 10−8 2.1× 10−8 5.8× 10−8

P in SCSD 10−6 7× 10−8 4× 10−8 1.1× 10−6

TABLE I
FDMA ACHIEVES BETTER PERFORMANCE THAN THAT OFSCSD

Parameters User 1 User 2 User 3 Sum
h 0.7679 0.008 1.4386 -

α in FDMA 0.1641 0.6704 0.1655 1.0000
P in FDMA 2.2× 10−7 4.2× 10−6 2.1× 10−7 4.63× 10−6

P in SCSD 4.7× 10−8 2.7× 10−6 5× 10−7 3.25× 10−6

TABLE II
SCSDACHIEVES BETTER PERFORMANCE THAN THAT OFFDMA

gives lesser sum power than that of SCSD and vice versa. The
examples are presented in Tables I and II. Here, we assume
that the system has three users,Γ = 7 andR = [1.2 1.4 1.3].

V. EFFECT OFΓ AND h ON OPTIMAL RESOURCE

ALLOCATION

Here, we investigate how resource allocation varies with
(1) coding gap and (2) channel states.

A. Dependence on Coding Gap Γ

In this section, we analyze how the optimal power allocation
in case of FDMA and SCSD depends onΓ under the condition
that all other system variables remain unchange. We already
know that when there is no coding gap (Γ = 1), the minimum
sum power for allh is achieved by SCSD. But as the coding
gap increases (Γ > 1) this is no longer true, i.e., forΓ > 1
there existsh such that the minimum sum power is achieved
by FDMA. Here, we attempt to find a reason behind this.

1) FDMA: First, we explore the dependence of optimal
power allocation under FDMA on the coding gapΓ. Let
us fix R and h. Now, let the optimal power allocation and
bandwidth allocation for FDMA be given byP FDMA and
α for some coding gapΓ. Now, P

FDMA and α are the
solutions to (2). From (2), it is clear that for the coding
gapγΓ, the optimal power and the bandwidth allocations are
γP

FDMA and α, respectively. Thus, the power requirement
under FDMA increases in proportion to the coding gap. This
can be seen in Figure 1(a).

2) Successive Decoding: Now, we explore the dependence
of optimal power allocation under SCSD on the coding gap
Γ. As before, let us fixR and h. Let the optimal decoding
order and the power allocation beπ andP

SCSD, respectively.
Then,

Pπ(k) =

(

eRπ(k) − 1
)

Γ(σ2 +
∑k−1

i=1 Pπ(i)hπ(i))

hπ(k)
(from (4))

≥

(

eRπ(k) − 1
)

Γ(
∑k−1

i=1 Pπ(i)hπ(i))

hπ(k)

≥

Γk
(

eRπ(k) − 1
)

σ2Πk−1
i=1

(

(

eRπ(i) − 1
)

hπ(i)

)

hπ(k)

Thus, the power of the userπ(k) is lower bounded by a
quantity that is proportional toΓk. This has two implications.
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Fig. 1. Variation of power of users with coding gap when (a) FDMA strategy
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[h1, h2, h3] = [0.4, 0.6, 0.5], σ = 10−5
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(b) Γ = 2.5

Fig. 2. Variation of the minimum average sum power of users for FDMA,
SCSD and Adaptive Strategy in a Rayleigh Fading channel withnumber of
users in the system. HereMR0 = 5, σ = 10−5. In (b), the plots for FDMA
strategy and Adaptive strategy are overlapping.

Firstly, as Γ increases, the transmit power of the users in-
creases exponentially, where the exponent depends onπ. This
can be seen in Figure 1(b). It follows that asΓ increases
the power consumption of a user under SCSD increases at a
much higher rate than that of the respective user under FDMA
strategy (except for the user that is decoded last). This explain
why FDMA can achieve better performance than SCSD for
Γ > 1. Secondly, the power consumption of the user to be
decoded first is lower bounded by a quantity proportional to
ΓM whereM is the number of users in the system. Thus, as the
number of users in the system will increase, FDMA strategy
will start outperforming SCSD and the power consumption
in FDMA strategy will eventually converge to that of the
‘Adaptive Strategy’. This can be seen in Figure 2(a) and
Figure 2(b). These show the variation of minimum average
sum power required by the users in a Rayleigh Fading channel
when FDMA strategy, SCSD strategy and Adaptive strategy
are used with the number of users in the system. Here, for
a given number of users in the system, the minimum rate
required for every user is same i.eR1 = R2.. = RM = R0

whereMR0 = 5.

B. Dependence on the Channel State h

First, we note that changingh to γh is equivalent to
changingΓ to Γ/γ while keeping the same channel state.
Hence, the observations in the previous section apply for scaler
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Fig. 3. HereM = 3, Γ = 7, [R1, R2, R3] = [1.2, 1.2, 1.2], [h1, h2, h3] =
[0.4, 0.6, 0.5], σ = 10−5. We plot various performance measures as channel
for the user 1 degrades, i.e., it changes fromh1 to h1/m.

shift in h. Now, we explore the dependence of the system
performance on the channel state of an individual user.

1) FDMA: Let us consider two channel state vectorsh
1

andh
2 such thath1

k = h2
k for all k 6= m andh1

m > h2
m. Thus,

h
2 corresponds to the channel state vector in which userm

has worse channel gain than that inh
1, while the channel gain

of all the other users remain unchanged. Letα
1 andα

2 denote
the optimal bandwidth allocation forh1 andh

2, respectively.
Then, we show the following.

Lemma 1: The optimal bandwidth allocationα1 and α
2

satisfy thatα1
m < α2

m andα1
k ≥ α2

k for everyk 6= m.
The proof for the lemma is omitted because of space con-
straints. From the above lemma it follows that change in the
channel state of one user results in a change in the power
allocation for all the users. Specifically, it can be shown that
the power for all the users increases when the channel for any
of the users degrades.

2) Successive Decoding: In this case, when the channel
state for a user changes, the optimal decoding order also
changes. Thus, exact impact of the change in the channel
state of a user on the power allocation policy depends on the
placement of the user in the decoding order before and after
the change in the channel state. A special case in which the
channel gain of the worst user, i.e., the user with the smallest
channel gain, becomes smaller, it can be seen from (4) that
the power requirement of the worst user alone increases and
the power requirements of others remain the same. Note that
in this case, the optimal decoding order remains the same.

3) Numerical Evaluation: The results for numerical study
are presented in Fig. 3. Fig. 3(a) verifies Lemma 1. Fig. 3(b)

shows the rate at which power for the user, whose channel
quality worsens, increases under FDMA and SCSD. The rate
is higher under FDMA than that under SCSD. Fig. 3(c)
shows that the power for users whose channel remains same
does not change under SCSD, while under FDMA the power
requirement increases. Finally, Fig. 3(d) shows that the rate of
increase of sum power under FDMA is higher than that under
SCSD. Hence, even when initially FDMA was an optimal
signaling, SCSD becomes the optimal signaling as the channel
quality for userk = 1 becomes worse.

VI. CONCLUSIONS

We addressed the problem of minimizing the sum power
subject to providing the desired rate to each user in multi-
access fading channel in the presence of coding gap. We
showed that in the presence of coding gap, SCSD is no longer
an optimal strategy in all the channel states and also that there
are certain channel states where FDMA outperforms SCSD.
For these channel states, we determined a power optimal
bandwidth allocation policy as a function of the channel state
vector. This shows the benefit of the dynamic bandwidth
allocation in the presence of coding gap (dynamic FDMA).
Further, for the channel states where SCSD is optimal, we
showed that the optimal decoding order is to decode the users
in the decreasing order of their channel gains independent of
their rate requirements. Finally, we developed some insights on
how the minimum sum powers for SCSD and FDMA depend
on the channel state vector and the coding gap.
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