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Abstract

This thesis reports two contributions that have been prompted by a quest to better

understand self-assembly.

Motivated by theoretical investigations of self-assembly, Adleman, Huang, Moisset,

Reishus and I have investigated the mathematics of the “law of mass action.” We believe

that the law of mass action is of intrinsic mathematical interest, and may have deep

connections to research in non-linear differential equations as well as algebraic geometry.

One of our goals is to make the law of mass action available beyond chemistry. This

has led us to a dynamical theory of sets of binomials over the complex numbers. A

second goal is to present a mathematical consolidation of mass action chemistry. We have

provided precise definitions, elucidated what can now be proved, and indicated what is

only conjectured. This aspect of our work addresses the mathematical foundations of

mass action chemistry.

My second contribution is to the emerging field of DNA self-assembly. It has been

suggested that DNA self-assembly may lead to the manufacture of novel materials and

computational devices. Chelyapov, Brun, Reishus, Shaw, Adleman and I have reported

DNA complexes in the shape of triangles and in the pattern of hexagonal, planar tilings.

Nikhil Gopalkrishnan, Adleman and I have reported DNA complexes in the shape of
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cylinders and Möbius strips. The prevalent practice in the DNA self-assembly community

appears to be to model DNA double helices as rigid cylinders and DNA lattices as rigid

sheets. In contrast, our nanostructures were designed to avail of residual flexibilities in

DNA double helices and DNA lattices.
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Chapter 1

Introduction

Push one [a sea-sponge] through a fine-mesh sieve and its cells will separate
from one another, turning clear aquarium water into a thick, cloudy liquid,
like pea soup. Wait a few hours, however, and the cells will gradually find
one another, stick together, and reassemble themselves into a whole sponge. . .
In fact, the disaggregated cells of two different sponge species can be mixed,
and the cells will sort themselves out and reassemble only with their own kind,
re-creating sponges of the original two species.
—Boyce Rensberger, in the book Life Itself.

According to Adleman [2], “Self-assembly is the ubiquitous process by which objects au-

tonomously assemble into complexes. Nature provides many examples: Atoms react to

form molecules. Molecules react to form crystals and supramolecules. Cells sometimes co-

alesce to form organisms. Even heavenly bodies self-assemble into astronomical systems.

It has been suggested that self-assembly will ultimately become an important technology,

enabling the fabrication of great quantities of small objects such as computer circuits. . . .

Despite its importance, self-assembly is poorly understood.” I have attempted to better

understand self-assembly, by both theoretical and experimental investigations.

Our theoretical study of self-assembly is a continuation of the rich intellectual tradition

of statistical mechanics, whose foundations were laid by Maxwell, Boltzmann and Gibbs
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in the late 19th century. In more recent times, it has become apparent, thanks to the

work of several researchers — von Neumann [33], Wang [34], Bennett [5], Wolfram [37],

Adleman [1], Winfree [36], etc. — that self-assembly has connections with computer

science and computational complexity theory. Hopefully, a study of self-assembly will

reveal connections between statistical mechanics and computer science.

Historically, many phenomena in chemistry that we now recognize as self-assembly

have been investigated with the aid of systems of chemical reactions. This suggests

one approach to a theory of self-assembly lies through the study of systems of chemical

reactions. Chapter 2 contains a manuscript prepared in collaboration with Adleman,

Huang, Moisset and Reishus that makes a beginning along this direction. Our central

assumption is the “law of mass action.” Given a system of chemical reactions, this law

describes how concentrations of chemical species evolve through time. We have extended

this law beyond chemical reactions, so that it can apply to arbitrary sets of binomials.

This allows us to ask the question, “When does a set of binomials represent a system of

chemical reactions?” We propose mathematical abstractions of the law of conservation

of energy, and of the atomic hypothesis. When we restrict our sets of binomials to

“chemistry-like” systems — those that satisfy our version of the law of conservation of

energy and the atomic hypothesis — the theory yields analogues to concepts like energy,

entropy, and convergence to equilibrium. This work is discussed in greater detail in

Section 2.1.

My experimental investigations of self-assembly have been carried out using molecules

of deoxyribonucleic acid (DNA). Since DNA self-assembly is a relatively young discipline,

I will outline the main ideas for readers unfamiliar with the area.
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Seeman [29] appears to have been the first to investigate the self-assembly of DNA

molecules. He availed of two properties of DNA that make it well-suited for self-assembly.

The first property is that DNA molecules can encode information. Each molecule of

DNA is a polymer, i.e., a chain of similar units. Four different types of units are allowed

in a DNA molecule. These are derived from the four “bases”: adenine (denoted by the

letter A), thymine (T), guanine (G), and cytosine (C). Thus, abstractly, each molecule

of DNA can be thought of as a string over the alphabet {A,T,G,C}. Just as strings of

0’s and 1’s encode information in computers, strings over this alphabet of four characters

can be made to encode information. A nuance is that because DNA molecules have a

directionality, distinct strings encode distinct DNA molecules. Thus, GAAT and TAAG

represent two different DNA molecules.

Remarkably, given a string over the alphabet {A,T,G,C}, it is possible to synthesize,

with high purity and without much cost, billions of DNA molecules whose sequence of

bases is that string. Of course, this is only true within certain technological constraints

— the sequence can not be too long, some sequences are very hard to synthesize, etc. —

but it is still very useful. The work of many researchers, notably Khurana, Letzinger,

Caruthers and Mullis, has made this tour de force possible, and given us an opportunity

to synthesize DNA molecules “programmed” with the information we wish.

The second property that makes DNA well-suited for self-assembly is that, under

appropriate conditions, certain pairs of DNA molecules can wrap around each other via

hydrogen-bond interactions to form a bimolecular complex in the shape of a double-helix.

Importantly, DNA molecules are very selective about what other DNA molecules they

will bind with. As a rule of thumb, the base A prefers to pair up with the base T, and
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the base G prefers to pair up with the base C. (Beware that this rule of thumb is not

always accurate. For example, the stacking energies between adjacent base pairs play a

crucial role. It is not a trivial computational problem, when given sequences for two DNA

molecules, to determine the resulting tertiary, or even secondary, structures. Much of the

art of experimental DNA self-assembly lies in avoiding exceptional conditions where such

rules of thumb fail.)

So, you might think that the DNA molecule ATTC would bind with the DNA molecule

TAAG. However, this is not quite right. The sequence needs to be reversed. So ATTC

actually binds to GAAT. This comes about because DNA molecules prefer to bind in

such a manner that the two binding molecules are aligned with opposing directionality.

Sequences that are related in this manner are called “complementary” sequences.

Adleman [1] exploited these two properties of DNA, as well as the “polymerase chain

reaction” — a technique to exponentially amplify small quantities of DNA — to show

that interactions between DNA molecules could be used to solve computational problems.

Winfree [36] clarified the relationship between DNA self-assembly and computation, and

showed how computational ideas could be brought to the service of DNA self-assembly.

Since then, researchers in DNA self-assembly have formed Sierpinski fractals [27], DNA

octahedra [31], etc., and investigated self-replication [28], copying and counting [4], etc.

Especially remarkable is Rothemund’s invention of DNA origami [26], a method to create

arbitrary shapes and patterns in two dimensions.

Chapter 3 contains my experimental contributions to DNA self-assembly. The first

result concerns a hexagonal tiling. The repeating individual units of this tiling are triangu-

lar complexes of DNA molecules. This work is in collaboration with Nickolas Chelyapov,
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Yuriy Brun, Dustin Reishus, Bilal Shaw and Leonard Adleman. In Section 3.1, I present

a jointly-authored article [8] describing this work. The second result concerns the self-

assembly of cylinders and Möbius strips, by a method that extends Rothemund’s method

of DNA origami. This is joint work with Nikhil Gopalkrishnan and Leonard Adleman,

and is presented in Section 3.2
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Chapter 2

On the Mathematics of the Law of Mass Action

Good mathematicians see analogies between theorems or theories, the very best
ones see analogies between analogies.
—Stefan Banach, as quoted by S. Ulam.

I have been working with Len Adleman, Ming-Deh Huang, Pablo Moisset and Dustin

Reishus on a theory of self-assembly related to the law of mass action in chemistry. The

rest of this chapter contains a manuscript that we have jointly prepared.

Abstract

In 1864, Waage and Guldberg formulated the “law of mass action.” Since that time,

chemists, chemical engineers, physicists and mathematicians have amassed a great deal

of knowledge on the topic. In our view, sufficient understanding has been acquired to

warrant a formal mathematical consolidation. A major goal of this consolidation is to

solidify the mathematical foundations of mass action chemistry — to provide precise

definitions, elucidate what can now be proved, and indicate what is only conjectured.

In addition, we believe that the law of mass action is of intrinsic mathematical interest
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and should be made available in a form that might transcend its application to chemistry

alone. We are led to a dynamical theory of sets of binomials over the complex numbers.

2.1 Introduction

The study of mass action kinetics dates back at least to 1864, when Waage and Guld-

berg [15] formulated the “law of mass action.” Since that time, a great deal of knowledge

on the topic has been amassed in the form of empirical facts, physical theories and math-

ematical theorems by chemists, chemical engineers, physicists and mathematicians. In

recent years, Horn and Jackson [17], and Feinberg [12] have made significant mathematical

contributions, and these have guided our work.

It is our view that a critical mass of knowledge has been obtained, sufficient to warrant

a formal mathematical consolidation. A major goal of this consolidation is to solidify the

mathematical foundations of this aspect of chemistry — to provide precise definitions,

elucidate what can now be proved, and indicate what is only conjectured. In addition,

we believe that the law of mass action is of intrinsic mathematical interest and should be

made available in a form that might transcend their application to chemistry alone.

To make the law of mass action available for consideration by researchers in areas

other than chemistry, we present mass action kinetics in a new form, which we call event-

systems. Our formulation begins with the observation that systems of chemical reactions

can be represented by sets of binomials. This gives us an opportunity to extend the law

of mass action to arbitrary sets of binomials. Once this extension is made, there is no

reason to restrict ourselves to binomials with real coefficients. Hence, we are led to a
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dynamical theory of sets of binomials over the complex numbers. Possible mathematical

applications of this theory include:

1. Binomials are objects of intrinsic mathematical interest [11]. For example, they

occur in the study of toric varieties, and hence in string theory. With each set

of binomials over the complex numbers, we associate a corresponding system of

differential equations. Ideally, this dynamical viewpoint will help advance the theory

of binomials, and enhance our understanding of their associated algebraic sets.

2. When we extend the study of the law of mass action to sets of binomials over the

complex numbers, we can consider reactions that involve complex rates, complex

concentrations, and move through complex time. Extending to the complex num-

bers gives us direct access to the powerful theorems of complex analysis. Though

this clearly transcends conventional chemistry, it may have applications in pure

mathematics.

For example, in ongoing work, we seek to exploit an analogy between number theory

and chemistry, where atoms are to molecules as primes are to numbers. We associate

a distinct species with each natural number. Then each multiplication rule m×n =

mn is encoded by a reaction where the species corresponding to the number m reacts

with the species corresponding to the number n to form the species corresponding

to the number mn. With an appropriate choice of specific rates of reactions the

resulting event-system has the property that the sum of equilibrium concentrations

of all species at complex temperature s is the value of the Riemann zeta function at
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s. We hope to pursue this approach to study questions related to the distribution

of the primes.

3. Systems of linear differential equations are well understood. In contrast, systems

of ordinary non-linear differential equations can be notoriously intractable. Differ-

ential equations that arise from event-systems lie somewhere in between — more

structured than arbitrary non-linear differential equations, but more challenging

than linear differential equations. As such, they appear to be an important new

class for consideration in the theory of ordinary differential equations.

In addition to their use in mathematics, event-systems provide a vehicle by which

ideas in algebraic geometry may be made readily available to the study of mass action

kinetics. As such, they may help solidify the foundations of this aspect of chemistry. We

expand on this in Section 2.7.

Part of our motivation for this research comes from the emerging field of nanotech-

nology. To quote from [2], “Self-assembly is the ubiquitous process by which objects

autonomously assemble into complexes. Nature provides many examples: Atoms react

to form molecules. Molecules react to form crystals and supramolecules. Cells some-

times coalesce to form organisms. Even heavenly bodies self-assemble into astronomical

systems. It has been suggested that self-assembly will ultimately become an important

technology, enabling the fabrication of great quantities of small objects such as computer

circuits. . . Despite its importance, self-assembly is poorly understood.” Hopefully, the

theory of event-systems is a step towards understanding this important process.

The paper is organized as follows:
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In Section 2.2, we present the basic mathematical notations and definitions for the

study of event-systems.

In Section 2.3, and all of the sections that follow, we restrict to finite event-systems.

Theorem 2.3.3 demonstrates that the stoichiometric coefficients give rise to flow-invariant

affine subspaces — “conservation classes.”

In Section 2.4, and all of the sections that follow, we restrict to “physical event-

systems.” Though we have defined event-systems over the complex numbers, in this pa-

per we focus on consolidating results from the mass action kinetics of reversible chemical

reactions. Physical event-systems capture the idea that the specific rates of chemical reac-

tions are always positive real numbers. The main result of this section is Theorem 2.4.5,

which demonstrates that for physical event-systems, if initially all concentrations are

non-negative, then they stay non-negative for all future real times so long as the solution

exists. Further, the concentration of every species whose initial concentration is positive,

stays positive.

In Section 2.5, and all the sections that follow, we restrict to “natural event-systems.”

Natural event-systems capture the concept of detailed balance from chemistry. In Theo-

rem 2.5.1, we give four equivalent characterizations of natural event-systems; in particular,

we show that natural event-systems are precisely those physical event-systems that have

no “energy cycles.” In Theorem 2.5.6, following Horn and Jackson [17], we show that

natural event-systems have associated Lyapunov functions. This theorem is reminiscent

of the second law of thermodynamics. The main result of this section is Theorem 2.5.15,

which establishes that for natural event-systems, given non-negative initial conditions:

1. Solutions exist for all forward real times.
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2. Solutions are uniformly bounded in forward real time.

3. All positive equilibria satisfy detailed balance.

4. Every conservation class containing a positive point also contains exactly one posi-

tive equilibrium point.

5. Every positive equilibrium point is asymptotically stable relative to its conservation

class.

For systems of reversible reactions that satisfy detailed balance, must concentrations

approach equilibrium? We believe this to be the case, but are unable to prove it. In 1972,

an incorrect proof was offered [17, Lemma 4C]. This proof was retracted in 1974 [16]. To

the best of our knowledge, this question in mass action kinetics remains unresolved [32,

p. 10]. We pose it formally in Open Problem 1, and consider it the fundamental open

question in the field.

In Section 2.6, we introduce the notion of “atomic event-systems.” As the name sug-

gests, this is an attempt to capture mathematically the atomic hypothesis that all species

are composed of atoms. The main theorem of this section is Theorem 2.6.1, which es-

tablishes that for natural, atomic event-systems, solutions with positive initial conditions

asymptotically approach positive equilibria. Hence, Open Problem 1 is resolved in the

affirmative for this restricted class of event-systems.
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2.2 Basic Definitions and Notation

Before formally defining event-systems, we give a very brief, informal introduction to

chemical reactions. All reactions are assumed to take place at constant temperature in a

well-stirred vessel of constant volume.

Consider

A+ 2B
σ

GGGGGBFGGGGG

τ
C.

This chemical equation concerns the reacting species A,B and C. In the forward direction,

one mole of A combines with two moles of B to form one mole of C. The symbol “σ”

represents a real number greater than zero. It denotes, in appropriate units, the rate

of the forward reaction when the reaction vessel contains one mole of A and one mole

of B. It is called the specific rate of the forward reaction. In the reverse direction, one

mole of C decomposes to form one mole of A and two moles of B. The symbol “τ”

represents the specific rate of the reverse reaction. Chemists typically determine specific

rates empirically. Though irreversible reactions (those with σ = 0 or τ = 0) have been

studied, they will not be considered in this paper.

Inspired by the law of mass action, we introduce a multiplicative notation for chemical

reactions, as an alternative to the chemical equation notation. In our notation, each
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chemical reaction is represented by a binomial. Consider the following examples. On the

left are chemical equations. On the right are the corresponding binomials.

X2

1/3
GGGGGGGBFGGGGGGG

1/2
X1 → 1

3
X2 −

1
2
X1

X3

1/3
GGGGGGGBFGGGGGGG

1/2
X1 +X2 → 1

3
X3 −

1
2
X1X2

2X1 + 3X6

σ
GGGGGBFGGGGG

τ
3X1 + 2X2 → σX2

1X
3
6 − τX3

1X
2
2

Our notation leads us to view every set of binomials over an arbitrary field F as

a formal system of reversible reactions with specific rates in F \ {0}. For our present

purposes, we will restrict our attention to binomials over the complex numbers. With

this in mind, we now define our notion of event-system.

Notation 1. Let C∞ =
⋃∞
n=1 C[X1, X2, · · · , Xn]. A monic monomial of C∞ is a product

of the form
∏∞
i=1X

ei
i where the ei are non-negative integers all but finitely many of

which are zero. We will write M∞ to denote the set of all monic monomials of C∞. More

generally, if S ⊂ {X1, X2, · · · }, we let C[S] be the ring of polynomials with indeterminants

in S and we let MS = M∞ ∩ C[S] (i.e. the monic monomials in C[S]).

If n ∈ Z>0, p ∈ C[X1, X2, · · · , Xn], and a = 〈a1, a2, · · · , an〉 ∈ Cn then, as is usual,

we will let p(a) denote the value of p on argument a.

Given two monic monomials M =
∏∞
i=1X

ei
i and N =

∏∞
i=1X

fi
i from M∞, we will

say M precedes N (and we will write M ≺ N) iff M 6= N and for the least i such that

ei 6= fi, ei < fi.
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It follows that 1 is a monic monomial of C∞ and that each element of C∞ is a C-

linear combination of finitely many monic monomials. We will be particularly concerned

with the set of binomials B∞ = {σM + τN | σ, τ ∈ C \ {0} and M,N are distinct monic

monomials of C∞}.

Definition 2.2.1 (Event-system). An event-system E is a nonempty subset of B∞.

If E is an event-system, its elements will be called “E-events” or just “events.” Note

that if σM + τN is an event then M 6= N .

Our map from chemical equations to events is as follows. A chemical equation

∑
i

aiXi

σ
GGGGGBFGGGGG

τ

∑
j

bjXj goes to:

1. σ
∏
i

Xai
i − τ

∏
j

X
bj
j if

∏
i

Xai
i ≺

∏
j

X
bj
j

or 2. τ
∏
j

X
bj
j − σ

∏
i

Xai
i if

∏
j

X
bj
j ≺

∏
i

Xai
i

14



For example:

X1

1/2
GGGGGGGBFGGGGGGG

1/3
X2 → 1

3
X2 −

1
2
X1 (because X2 ≺ X1)

X2

1/3
GGGGGGGBFGGGGGGG

1/2
X1 → 1

3
X2 −

1
2
X1

X1

-1/2
GGGGGGGGBFGGGGGGGG

-1/3
X2 → −1

3
X2 +

1
2
X1

X1

-1/2
GGGGGGGGBFGGGGGGGG

1/3
X2 → 1

3
X2 +

1
2
X1

X1 +X2

1/2
GGGGGGGBFGGGGGGG

1/3
X3 → 1

3
X3 −

1
2
X1X2

3X1 + 2X2

σ
GGGGGBFGGGGG

τ
2X1 + 3X6 → τX2

1X
3
6 − σX3

1X
2
2

Note that our order of monomials is arbitrary. Any linear order would do. The order

is necessary to achieve a one-to-one map from chemical reactions to events.

Our definition of event-systems allows for an infinite number of reactions, and an

infinite number of reacting species. Indeed, polymerization reactions are commonplace

in nature and, in principle, they are capable of creating arbitrarily long polymers (for

example, DNA molecules).

The next definition introduces the notion of systems of reactions for which the number

of reacting species is finite.

Definition 2.2.2 (Finite-dimensional event-system). An event-system E is

finite-dimensional iff there exists an n ∈ Z>0 such that E ⊂ C[X1, X2, · · · , Xn].

Definition 2.2.3 (Dimension of event-systems). Let E be a finite-dimensional event-

system. Then the least n such that E ⊂ C[X1, X2, · · · , Xn] is the dimension of E .

15



Definition 2.2.4 (Physical event, Physical event-system). A binomial e ∈ B∞ is a physi-

cal event iff there exist σ, τ ∈ R>0 and M , N ∈M∞ such that M ≺ N and e = σM−τN .

An event-system E is physical iff each e ∈ E is physical.

Chemical reaction systems typically have positive real forward and backward rates.

Physical event-systems generalize this notion.

Definition 2.2.5. Let n ∈ Z>0. Let α = 〈α1, α2, . . . , αn〉 ∈ Cn.

1. α is a non-negative point iff for i = 1, 2, . . . , n, αi ∈ R≥0.

2. α is a positive point iff for i = 1, 2, . . . , n, αi ∈ R>0.

3. α is a z-point iff there exists an i such that αi = 0.

In chemistry, a system is said to have achieved detailed balance when it is at a point

where the net flux of each reaction is zero. Given the corresponding event-system, points

of detailed balance corresponds to points where each event evaluates to zero, and vice

versa. We call such points “strong equilibrium points.”

Definition 2.2.6 (Strong equilibrium point). Let E be a finite-dimensional event-system

of dimension n. α ∈ Cn is a strong E-equilibrium point iff for all e ∈ E , e(α) = 0.

In the language of algebraic geometry, when E is a finite-dimensional event-system,

its corresponding algebraic set is precisely the set of its strong E-equilibrium points.

It is widely believed that all “real” chemical reactions achieve detailed balance. We

now introduce natural event-systems, a restriction of finite-dimensional, physical event-

systems to those that can achieve detailed balance.
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Definition 2.2.7 (Natural event-system). A finite-dimensional event-system E is natural

iff it is physical and there exists a positive strong E-equilibrium point.

Our next goal is to introduce atomic event-systems: finite-dimensional event-systems

obeying the atomic hypothesis that all species are composed of atoms. Towards this

goal, we will define a graph for each finite-dimensional event-system. The vertices of this

graph are the monomials from M∞ and the edges are determined by the events. If a

weight r is assigned to an edge, then r represents the energy released when a reaction

corresponding to that edge takes place. For the purpose of defining atomic event-systems,

the reader may ignore the weights; they are included here for use elsewhere in the paper

(Definition 2.5.1).

Though graphs corresponding to systems of chemical reactions have been defined

elsewhere (e.g. [12], [32, p. 10]), it is important to note that these definitions do not

coincide with ours.

Definition 2.2.8 (Event-graph). Let E be a finite-dimensional event-system. The event-

graph GE = 〈V,E,w〉 is a weighted, directed multigraph such that:

1. V = M∞

2. For all M1, M2 ∈M∞, for all r ∈ C,

〈M1,M2〉 ∈ E and r ∈ w (〈M1,M2〉) iff

there exist e ∈ E and σ, τ ∈ C and M,N, T ∈ M∞ such that e = σM + τN and

M ≺ N and either

(a) M1 = TM and M2 = TN and r = ln
(
−σ
τ

)
or

(b) M1 = TN and M2 = TM and r = − ln
(
−σ
τ

)
17



Notice that two distinct weights r1 and r2 could be assigned to a single edge. For

example, let E = {X1X2−2X2
1 , X2−5X1}. Consider the edge inGE from the monomialX2

1

to the monomial X1X2. Weight ln 2 is assigned to this edge due to the event X1X2−2X2
1 ,

with T = 1. Weight ln 5 is also assigned to this edge due to the event X2 − 5X1, with

T = X1.

Definition 2.2.9. Let E be a finite-dimensional event-system. For all M ∈ M∞, the

connected component of M , denoted CE(M), is the set of all N ∈M∞ such that there is

a path in GE from M to N .

It follows from the definition of “path” that every monomial belongs to its connected

component.

Definition 2.2.10 (Atomic event-system). Let E be a finite-dimensional event-system

of dimension n. Let S = {X1, X2, · · · , Xn}. Let AE =
{
Xi ∈ S | CE(Xi) = {Xi}

}
. E is

atomic iff for all M ∈MS , C(M) contains a unique monomial in MAE .

If E is atomic then the members of AE will be called the atoms of E . It follows from

the definition that in atomic event-systems, atoms are not decomposable, non-atoms are

uniquely decomposable into atoms and events preserve atoms.

Since the set M{X1,X2...,Xn} is infinite, it is not possible to decide whether E is atomic

by exhaustively checking the connected component of every monomial in M{X1,X2...,Xn}.

The following is sometimes helpful in deciding whether a finite-dimensional event-system

is atomic (proof not provided).

Let E be an event-system of dimension n with no event of the form σ + τN . Let

BE = {Xi | For all σ, τ ∈ C \ {0} and N ∈ M∞ : σXi + τN /∈ E}. Then E is atomic
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iff there exist M1 ∈ CE(X1) ∩MBE ,M2 ∈ CE(X2) ∩MBE , . . . ,Mn ∈ CE(Xn) ∩MBE such

that:

For all σ
n∏
i=1

Xai
i − τ

n∏
i=1

Xbi
i ∈ E ,

n∏
i=1

Mai
i =

n∏
i=1

M bi
i . (2.1)

We have shown (proof not provided) that if E and BE are as above, and there exist

M1 ∈ CE(X1) ∩ MBE ,M2 ∈ CE(X2) ∩ MBE , . . . ,Mn ∈ CE(Xn) ∩ MBE and there ex-

ists σ
∏n
i=1X

ai
i − τ

∏n
i=1X

bi
i ∈ E such that

∏n
i=1M

ai
i 6=

∏n
i=1M

bi
i , then E is not atomic.

Hence, to check whether an event-system with no event of the form σ+τN is atomic, it suf-

fices to examine an arbitrary choice ofM1 ∈ CE(X1)∩MBE ,M2 ∈ CE(X2)∩MBE , . . . ,Mn ∈

CE(Xn) ∩MBE , if one exists, and check whether (2.1) above holds.

Example 1. Let E = {X2
2 −X2

1}. Then BE = {X1, X2}. Let M1 = X1 and M2 = X2.

Trivially, M1,M2 ∈MBE , M1 ∈ CE(X1) and M2 ∈ CE(X2). Consider the event X2
2 −X2

1 .

Since M2
2 = X2

2 6= X2
1 = M2

1 , E is not atomic. Note that the event X2
2 − X2

1 does not

preserve atoms.

Example 2. Let E = {X2
4 − X2, X

2
5 − X3, X2X3 − X1}. Then BE = {X4, X5}. Let

M1 = X2
4X

2
5 ,M2 = X2

4 ,M3 = X2
5 ,M4 = X4,M5 = X5. Clearly these are all in MBE .

X2
5 − X3 ∈ E implies M3 ∈ CE(X3). X2

4 − X2 ∈ E implies M2 ∈ CE(X2). Since

(X1, X2X3, X2X
2
5 , X

2
4X

2
5 ) is a path in GE , we have M1 ∈ CE(X1). For the event X2

4 −X2,

we have M2
4 = X2

4 = M2. For the event X2
5 − X3, we have M2

5 = X2
5 = M3. For the

event X2X3 −X1, we have M2M3 = X2
4X

2
5 = M1. Therefore, E is atomic.

Note that it is possible to have an atomic event-system where AE is the empty set.

For example:
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Example 3. Let E = {1−X1}. In this case, S = {X1} and MS is the set

{1, X1, X
2
1 , X

3
1 , . . . }. It is clear that MS forms a single connected component C in GE .

Hence, X1 is not in AE , and AE = ∅. 1 is the only monomial in MAE . Since 1 is in C, E

is atomic.

2.3 Finite Event-systems

The study of infinite event-systems is embryonic and appears to be quite challenging.

In the rest of this paper only finite event-systems (i.e., where the set E is finite) will be

considered. It is clear that all finite event-systems are finite-dimensional.

Definition 2.3.1 (Stoichiometric matrix). Let E = {e1, e2, · · · , em} be an event-system

of dimension n. Let i ≤ n and j ≤ m be positive integers. Let ej = σM + τN ,

where M ≺ N . Then γj,i is the number of times Xi divides N minus the number of

times Xi divides M . The stoichiometric matrix ΓE of E is the m × n matrix of integers

ΓE = (γj,i)m×n.

Example 4. Let e1 = 0.5X5
2 − 500X1X

3
2X7. Let E = {e1}. Then γ1,1 = 1, γ1,2 = −2,

γ1,7 = 1 and for all other i, γ1,i = 0, hence ΓE =
(

1 −2 0 0 0 0 1

)
.

Definition 2.3.2. Let E = {e1, · · · , em} be a finite event-system of dimension n. Then:

1. P E is the column vector 〈P1, P2, . . . , Pn〉T = ΓTE 〈e1, e2, . . . , em〉T .

2. Let α ∈ Cn. Then α is an E-equilibrium point iff for i = 1, 2, . . . , n : Pi(α) = 0.

The Pi’s arise from the Law of Mass Action in chemistry. For a system of chemical

reactions, the Pi’s are the right-hand sides of the differential equations that describe the
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concentration kinetics. Definition 2.3.2 extends the Law of Mass Action to arbitrary

event-systems, and hence, arbitrary sets of binomials.

It follows from the definition that for finite event-systems, all strong equilibrium points

are equilibrium points, but the converse need not be true.

Example 5. Let e1 = X2 − X1 and e2 = X2 − 2X1. Let E = {e1, e2}. Then ΓE = 1 −1

1 −1

 and P E =

 P1

P2

 =

 2X2 − 3X1

3X1 − 2X2

. Therefore (2, 3) is an E-equilibrium

point. Since e1(2, 3) = 1, (2, 3) is not a strong E-equilibrium point.

Example 6. Let e1 = 6 − X1X2 and e2 = 2X2
2 − 9X1. Let E = {e1, e2}. Then ΓE = 1 1

1 −2

 and P E =

 P1

P2

 =

 6−X1X2 + 2X2
2 − 9X1

6−X1X2 − 4X2
2 + 18X1

. The point (2, 3)

is a strong equilibrium point because e1(2, 3) = 0 and e2(2, 3) = 0. Since P1(2, 3) =

e1(2, 3) + e2(2, 3) = 0 and P2(2, 3) = e1(2, 3) − 2e2(2, 3) = 0, the point (2, 3) is also an

equilibrium point.

The event-system in Example 5 is not natural, whereas the one in Example 6 is. In

Theorem 2.5.7, it is shown that if E is a finite, natural event-system then all positive

E-equilibrium points are strong E-equilibrium points.

Definition 2.3.3 (Event-process). Let E be a finite event-system of dimension n. Let

〈P1, P2, . . . , Pn〉T = P E . Let Ω ⊆ C be a non-empty simply-connected open set. Let

f = 〈f1, f2, · · · , fn〉 where for i = 1, 2, . . . , n, fi : C → C is defined on Ω. Then f is an

E-process on Ω iff for i = 1, 2, . . . , n:

1. f ′i exists on Ω.

2. f ′i = Pi ◦ f on Ω.
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Note that E-processes evolve through complex time, and hence generalize the idea of

the time-evolution of concentrations in a system of chemical reactions.

Definition 2.3.3 immediately implies that if f = 〈f1, f2, . . . , fn〉 is an E-process on Ω,

then for i = 1, 2, . . . , n, fi is holomorphic on Ω. In particular, for each i and all α ∈ Ω,

there is a power series around α that agrees with fi on a disk of non-zero radius.

Systems of chemical reactions sometimes obey certain conservation laws. For example,

they may conserve mass, or the total number of each kind of atom. Event-systems also

sometimes obey conservation laws.

Definition 2.3.4 (Conservation law, Linear conservation law). Let E be a finite event-

system of dimension n. A function g : Cn → C is a conservation law of E iff g is

holomorphic on Cn, g(〈0, 0, · · · , 0〉) = 0 and ∇g · P E is identically zero on Cn. If g is a

conservation law of E and g is linear (i.e. ∀c ∈ C, ∀α,β ∈ Cn, g(cα+β) = cg(α) + g(β)),

then g is a linear conservation law of E .

The event-system described in Example 5 has a linear conservation law g(X1, X2) =

X1 +X2. The next theorem shows that conservation laws of E are dynamical invariants

of E-processes.

Theorem 2.3.1. For all finite event-systems E, for all conservation laws g of E, for all

simply-connected open sets Ω ⊆ C, for all E-processes f on Ω, there exists k ∈ C such

that g ◦ f − k is identically zero on Ω.

Proof. Let n be the dimension of E . Let 〈P1, P2, . . . , Pn〉T = P E . For all t ∈ Ω, by

Definition 2.3.3, for i = 1, 2, . . . , n, fi(t) and f ′i(t) are defined. Further, by Definition 2.3.4,

g is holomorphic on Cn. Hence, g ◦ f is holomorphic on Ω. Therefore, by the chain
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rule, (g ◦ f)′(t) = (∇g|f(t)) · 〈f ′1(t), f ′2(t), . . . , f ′n(t)〉. By Definition 2.3.3, for all t ∈ Ω,

〈f ′1(t), f ′2(t), . . . , f ′n(t)〉 = 〈P1(f(t)), P2(f(t)), . . . , Pn(f(t))〉. From these, it follows that

(g ◦ f)′(t) = (∇g ·P E)(f(t)). But by Definition 2.3.4, ∇g ·P E is identically zero. Hence,

for all t ∈ Ω, (g ◦ f)′(t) = 0. In addition, Ω is a simply-connected open set. Therefore,

by [3, Theorem 11], there exists k ∈ C such that g ◦ f − k is identically zero on Ω.

The next theorem shows a way to derive linear conservation laws of an event-system

from its stoichiometric matrix.

Theorem 2.3.2. Let E be a finite event-system of dimension n. For all v ∈ ker ΓE ,

v · 〈X1, · · · , Xn〉 is a linear conservation law of E.

Proof. Let Γ = ΓE , then ker Γ is orthogonal to the image of ΓT . By the definition of

P = P E , for all w ∈ Cn, P (w) lies in the image of ΓT . Hence, for all v ∈ ker Γ, for all

w ∈ Cn, v · P (w) = 0. But v is the gradient of v · 〈X1, · · · , Xn〉. It now follows from

Definition 2.3.4 that v · 〈X1, · · · , Xn〉 is a linear conservation law of E .

Definition 2.3.5 (Primitive conservation law). Let E be a finite event-system of dimen-

sion n. For all v ∈ ker ΓE , the linear conservation law v · 〈X1, X2, · · · , Xn〉 is a primitive

conservation law.

We can show (manuscript under preparation) that in physical event-systems all linear

conservation laws are primitive and, in natural event-systems, all conservation laws arise

from the primitive ones.

Definition 2.3.6 (Conservation class, Positive conservation class). Let E be a finite

event-system of dimension n. A coset of (ker ΓE)⊥ is a conservation class of E . If a
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conservation class of E contains a positive point, then the class is a positive conservation

class of E .

Equivalently, α,β ∈ Cn are in the same conservation class if and only if they agree on

all primitive conservation laws. Note that if H is a conservation class of E then it is closed

in Cn. The following theorem shows that the name “conservation class” is appropriate.

Theorem 2.3.3. Let E be a finite event-system. Let Ω ⊂ C be a simply-connected open set

containing 0. Let f be an E-process on Ω. Let H be a conservation class of E containing

f(0). Then for all t ∈ Ω, f(t) ∈ H.

Proof. Let E , Ω, f , H and t be as in the statement of this theorem. For all v ∈ ker ΓE ,

the primitive conservation law v · 〈X1, X2, · · · , Xn〉 is a dynamical invariant of f , from

Theorem 2.3.2 and Theorem 2.3.1. Hence,

v · 〈f1(0), f2(0), · · · , fn(0)〉 = v · 〈f1(t), f2(t), · · · , fn(t)〉

That is,

v · 〈f1(0)− f1(t), f2(0)− f2(t), · · · , fn(0)− fn(t)〉 = 0

Hence, f(t)− f(0) is in (ker ΓE)⊥. By Definition 2.3.6, f(t) ∈ H.

2.4 Finite Physical Event-systems

In this section, we investigate finite, physical event-systems — a generalization of systems

of chemical reactions.
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It is widely believed that systems of chemical reactions that begin with positive (re-

spectively, non-negative) concentrations will have positive (respectively, non-negative)

concentrations at all future times. This property has been addressed mathematically in

numerous papers [14, p. 6],[12, Remark 3.4], [6, Theorem 3.2], [32, Lemma 2.1]. The

notion of “system of chemical reactions” varies between papers. Several papers have pro-

vided no proof, incomplete proofs or inadequate proofs that this property holds for their

systems. Sontag [32, Lemma 2.1] provides a lovely proof of this property for the systems

he considers — zero deficiency reaction networks with one linkage class. We shall prove in

Theorem 2.4.5 that the property holds for finite, physical event-systems. Finite, physical

event-systems have a large intersection with the systems considered by Sontag, but each

includes a large class of systems that the other does not. We remark that our methods

of proof differ from Sontag’s, but it is possible that Sontag’s proof might be adaptable to

our setting.

Lemma 2.4.4 and Lemma 2.4.11 are proved here because they apply to finite, physical

event-systems. However, they are only invoked in subsequent sections. Lemma 2.4.4 re-

lates E-processes to solutions of ordinary differential equations over the reals. Lemma 2.4.11

establishes that if an E-process defined on the positive reals starts at a real, non-negative

point, then its ω-limit set is invariant and contains only real, non-negative points.

The next lemma shows that if two E-processes evaluate to the same real point on a

real argument then they must agree and be real-valued on an open interval containing

that argument. The proof exploits the fact that E-processes are analytic, by considering

their power series expansions.
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Lemma 2.4.1. Let E be a finite, physical event-system of dimension n, let Ω,Ω′ ⊆ C

be open and simply-connected, let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω and let g =

〈g1, g2, . . . , gn〉 be an E-process on Ω′. If t0 ∈ Ω∩Ω′∩R and f(t0) ∈ Rn and f(t0) = g(t0),

then there exists an open interval I ⊆ R such that t0 ∈ I and for all t ∈ I:

1. f(t) = g(t).

2. For i = 1, 2, . . . , n : if
∑∞

j=0 cj(z − t0)j is the Taylor series expansion of fi at t0

then for all j ∈ Z≥0, cj ∈ R.

3. f(t) ∈ Rn.

Proof. Let k ∈ Z≥0. By Definition 2.3.3, f and g are vectors of functions analytic at t0.

For i = 1, 2, . . . , n, let f (k)
i be the kth derivative of fi and let f (k) = 〈f (k)

1 , f
(k)
2 , . . . , f

(k)
n 〉.

Define g(k)
i and g(k) similarly. To prove 1, it is enough to show that for i = 1, 2, . . . , n,

fi and gi have the same Taylor series around t0. Let V 0 = 〈X1, X2, . . . , Xn〉. Let

V k = Jac(V k−1)P E (recall that if H = 〈h1(X1, X2, . . . , Xm), h2(X1, X2, . . . , Xm), . . .,

hn(X1, X2, . . . , Xm)〉 is a vector of functions in m variables then Jac(H) is the n × m

matrix ( ∂hi∂xj
), where i = 1, 2, . . . , n and j = 1, 2, . . . ,m). Let 〈Vk,1, Vk,2, . . . , Vk,n〉 = V k.

We claim that f (k) = V k ◦ f on Ω and g(k) = V k ◦ g on Ω′ and for i = 1, 2, . . . , n,

Vk,i ∈ R[X1, X2, . . . , Xn]. We prove the claim by induction on k. If k = 0, the proof is

immediate. If k ≥ 1, on Ω:
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f (k) = (f (k−1))′

= (V k−1 ◦ f)′ (Inductive hypothesis)

= (Jac(V k−1) ◦ f)f ′ (Chain-rule of derivation)

= (Jac(V k−1) ◦ f)(P E ◦ f) (f is an E-process)

= (Jac(V k−1)P E) ◦ f

= V k ◦ f

By a similar argument, we conclude that g(k) = V k ◦ g on Ω′. By the inductive hy-

pothesis, V k−1 is a vector of polynomials in R[X1, X2, . . . , Xn]. It follows that Jac(V k−1)

is an n× n matrix of polynomials in R[X1, X2, . . . , Xn]. Since E is physical, P E is a vec-

tor of polynomials in R[X1, X2, . . . , Xn]. Therefore, V k = Jac(V k−1)P E is a vector of

polynomials in R[X1, X2, . . . , Xn]. This establishes the claim.

We have proved that f (k) = V k◦f on Ω and g(k) = V k◦g on Ω′. Since, by assumption,

t0 ∈ Ω ∩ Ω′ and f(t0) = g(t0), it follows that f (k)(t0) = g(k)(t0). Therefore, for i =

1, 2, . . . , n, fi and gi have the same Taylor series around t0. For i = 1, 2, . . . , n, let ai be

the radius of convergence of the Taylor series of fi around t0. Let rf = mini∈{1,2,...,n} ai.

Define rg similarly. Let D ⊆ Ω ∩ Ω′ be some non-empty open disk centered at t0 with

radius r ≤ min(rf , rg). Since Ω and Ω′ are open sets and t0 ∈ Ω ∩ Ω′, such a disk must

exist. Letting I = (t0 − r, t0 + r) completes the proof of 1.

By assumption, f(t0) ∈ Rn, and we have proved that f (k) = V k ◦ f and V k is a

vector of polynomials in R[X1, X2, . . . , Xn]. It follows that f (k)(t0) ∈ Rn. Therefore, for
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i = 1, 2, . . . , n, all coefficients in the Taylor series of fi around t0 are real. It follows that

fi is real valued on I, completing the proof of 3.

The next lemma is a kind of uniqueness result. It shows that if two E-processes

evaluate to the same real point at 0 then they must agree and be real-valued on every

open interval containing 0 where both are defined. The proof uses continuity to extend

the result of Lemma 2.4.1.

Lemma 2.4.2. Let E be a finite, physical event-system of dimension n, let Ω,Ω′ ⊆ C

be open and simply-connected, let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω and let g =

〈g1, g2, . . . , gn〉 be an E-process on Ω′. If 0 ∈ Ω ∩ Ω′ and f(0) ∈ Rn and f(0) = g(0),

then for all open intervals I ⊆ Ω ∩ Ω′ ∩ R such that 0 ∈ I, for all t ∈ I, f(t) = g(t) and

f(t) ∈ Rn.

Proof. Assume there exists an open interval I ⊆ Ω ∩ Ω′ ∩ R such that 0 ∈ I and B =

{t ∈ I | f(t) 6= g(t) or f(t) 6∈ Rn} 6= ∅. Let BP = B ∩R≥0 and let BN = B ∩R<0. Note

that B = BP ∪BN , hence, BP 6= ∅ or BN 6= ∅. Suppose BP 6= ∅ and let tP = inf(BP ).

By Lemma 2.4.1, there exists an ε ∈ R>0 such that (−ε, ε) ∩B = ∅. Hence, tP ≥ ε > 0.

By definition of tP , for all t ∈ [0, tP ), f(t) = g(t) and f(t) ∈ Rn. Since f and g are

analytic at tP , they are continuous at tP . Therefore, f(tP ) = g(tP ) and f(tP ) ∈ Rn. By

Lemma 2.4.1, there exists an ε′ ∈ R>0 such that for all t ∈ (tP − ε′, tP + ε′), f(t) = g(t)

and f(t) ∈ Rn, contradicting tP being the infimum of BP . Therefore, BP = ∅. Using

a similar agument, we can prove that BN = ∅. Therefore, B = ∅, and for all t ∈ I,

f(tP ) = g(tP ) and f(tP ) ∈ Rn.
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The next lemma is a convenient technical result that lets us ignore the choice of origin

for the time variable.

Lemma 2.4.3. Let E be a finite, physical event-system of dimension n, let Ω, Ω̃ ⊆ C

be open and simply connected, let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω and let

f̃ = 〈f̃1, f̃2, . . . , f̃n〉 be an E-process on Ω̃. Let u ∈ Ω and ũ ∈ Ω̃ and α ∈ Rn. Let I ⊆ R

be an open interval. If

1. f(u) = f̃(ũ) = α and

2. 0 ∈ I and

3. for all s ∈ I, u+ s ∈ Ω and ũ+ s ∈ Ω̃

then for all t ∈ I, f(u+ t) = f̃(ũ+ t).

Proof. Suppose f(u) = f̃(ũ) = α ∈ Rn. Let Ωu = {z ∈ C | u + z ∈ Ω} and Ω̃ũ =

{z ∈ C | ũ + z ∈ Ω̃}. Let h = 〈h1, h2, . . . , hn〉 where for i = 1, 2, . . . , n, hi : Ωu → C

is such that for all z ∈ Ωu, hi(z) = fi(u + z) and let h̃ = 〈h̃1, h̃2, . . . , h̃n〉 where for

i = 1, 2, . . . , n, h̃i : Ω̃ũ → C is such that for all z ∈ Ω̃ũ, h̃i(z) = f̃i(ũ + z). Since u + z

is differentiable on Ωu and for i = 1, 2, . . . , n, fi is differentiable on Ω, it follows that

for i = 1, 2, . . . , n, hi is differentiable on Ωu. Further, for i = 1, 2, . . . , n, for all z ∈ Ωu,

h′i(z) = f ′i(u + z) = P E(fi(u + z)) = P E(hi(z)), so h is an E-process on Ωu. Similarly,

h̃ is an E-process on Ω̃ũ. Note that 0 ∈ Ωu ∩ Ω̃ũ because u ∈ Ω and ũ ∈ Ω̃ and that

h(0) = h̃(0) = α because f(u) = f̃(ũ) = α. By Lemma 2.4.2, for all open intervals

I ⊆ Ωu ∩ Ω̃ũ ∩ R such that 0 ∈ I, for all t ∈ I, h(t) = h̃(t), so f(u+ t) = f̃(ũ+ t).
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Because event-systems are defined over the complex numbers, we have access to re-

sults from complex analysis. However, there is a considerable body of results regarding

ordinary differential equations over the reals. Definition 2.4.1 and Lemma 2.4.4 estab-

lish a relationship between E-processes and solutions to systems of ordinary differential

equations over the reals.

Definition 2.4.1 (Real event-process). Let E be a finite, physical event-system of dimen-

sion n. Let 〈P1, P2, . . . , Pn〉T = P E . Let I ⊆ R be an interval. Let h = 〈h1, h2, . . . , hn〉

where for i = 1, 2, . . . , n, hi : R → R is defined on I. Then h is a real-E-process on I iff

for i = 1, 2, . . . , n:

1. h′i exists on I.

2. h′i = Pi ◦ h on I.

Lemma 2.4.4 (All real-E-processes are restrictions of E-processes). Let E be a finite,

physical event-system of dimension n. Let I ⊆ R be an interval. Let h = 〈h1, h2, . . . , hn〉

be a real-E-process on I. Then there exist an open, simply-connected Ω ⊆ C and an

E-process f on Ω such that:

1. I ⊂ Ω

2. For all t ∈ I : f(t) = h(t).

Proof. Let P = 〈P1, P2, . . . , Pn〉 = P E . For i = 1, 2, . . . , n, Pi is a polynomial and there-

fore analytic on Cn. By Cauchy’s existence theorem for ordinary differential equations

with analytic right-hand sides [19], for all a ∈ I, there exist a non-empty open disk Da ⊆ C

centered at a and functions fa,1, fa,2, . . . , fa,n analytic on Da such that for i = 1, 2, . . . , n :
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1. fa,i(a) = hi(a)

2. f ′a,i exists on Da and for all t ∈ Da : f ′a,i(t) = Pi(fa,1(t), fa,2(t), . . . , fa,n(t)). That

is, fa = 〈fa,1, fa,2, . . . , fa,n〉 is an E-process on Da.

Claim: For all a ∈ I, there exists δa ∈ R>0 such that for all t ∈ I ∩ (a − δa, a + δa) :

fa(t) = h(t). To see this, by Lemma 2.4.1, for all a ∈ I there exists βa ∈ R>0 such

that for all t ∈ (a − βa, a + βa) ∩ Da, fa(t) ∈ Rn. Let Ia = (a − βa, a + βa) ∩ Da.

Note that fa|Ia is a real-E-process on Ia . By the theorem of uniqueness of solutions to

differential equations with C1 right-hand sides [24], there exists γa ∈ R>0 such that for

all t ∈ (a− γa, a+ γa) ∩ Ia ∩ I, fa(t) = h(t). Clearly, we can choose δa ∈ R>0 such that

(a− δa, a+ δa) ⊆ (a− γa, a+ γa) ∩ Ia. This establishes the claim.

For all a ∈ I, let δa ∈ R>0 be such that for all t ∈ I ∩ (a− δa, a+ δa) : fa(t) = h(t).

Let D̂a be an open disk centered at a of radius δa.

Claim: For all a1, a2 ∈ I, for all t ∈ D̂a1 ∩ D̂a2 : fa1
(t) = fa2

(t). To see this,

suppose D̂a1 ∩ D̂a2 6= ∅. Let J = D̂a1 ∩ D̂a2 ∩ R. Since D̂a1 and D̂a2 are open disks

centered on the real line, J is a non-empty open real interval. For all t ∈ J , by the claim

above, fa1
(t) = h(t) and fa2

(t) = h(t). Hence, fa1
(t) = fa2

(t). Since J is a non-empty

interval, J contains an accumulation point. Since fa1
and fa2

are analytic on D̂a1 ∩ D̂a2

and D̂a1∩D̂a2 is simply connected, for all t ∈ D̂a1∩D̂a2 : fa1
(t) = fa2

(t). This establishes

the claim.

Let Ω =
⋃
a∈I D̂a. Clearly, I ⊂ Ω. Ω is a union of open discs, and is therefore open.
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For all t ∈ Ω, there exists a ∈ I such that t ∈ D̂a. Since D̂a is a disk, t and a

are path-connected in Ω. Since I is path-connected, and I ⊆ Ω, it follows that Ω is

path-connected.

To see that Ω is simply-connected, consider the function R : [0, 1]× Ω→ Ω given by

(u, z) 7→ Re(z) + i Im(z)(1 − u). Observe that R is continuous on [0, 1] × Ω, and for all

z ∈ Ω: R(0, z) = z, R(1,Ω) ⊂ Ω, and for all u ∈ [0, 1], for all z ∈ Ω ∩ R : R(u, z) ∈ Ω.

Therefore, R is a deformation retraction. Note that R(0,Ω) = Ω and R(1,Ω) ⊆ R, and

Ω is path-connected together imply that R(1,Ω) is a real interval. Hence, R(1,Ω) is

simply-connected. Since R was a deformation retraction, Ω is simply-connected.

Let f : Ω→ Cn be the unique function such that for all a ∈ I, for all t ∈ D̂a : f(t) =

fa(t). By the claim above and from the definition of Ω, f is well-defined.

Observe that for all t ∈ I,

h(t) = f t(t) (Definition of f t)

= f(t) (I ⊂ Ω and definition of f).

Claim: f is an E-process on Ω. From the definitions of Ω and f , for all t ∈ Ω, there

exists a ∈ I such that t ∈ D̂a and for all s ∈ D̂a, f(s) = fa(s). Since fa is an E-process

on D̂a, the claim follows.

In Theorem 2.4.5, we prove that if E is a finite, physical event-system, then E-processes

that begin at positive (respectively non-negative) points remain positive (respectively

non-negative) through all forward real time where they are defined. In fact, Theorem 2.4.5
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establishes more detail about E-processes. In particular, if at some time a species’ con-

centration is positive, then it will be positive at subsequent times.

Theorem 2.4.5. Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be

open and simply-connected, and let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω. If I ⊆

Ω ∩ R≥0 is connected and 0 ∈ I and f(0) is a non-negative point then for k = 1, 2, . . . , n

either:

1. For all t ∈ I, fk(t) = 0, or

2. For all t ∈ I ∩ R>0, fk(t) ∈ R>0.

The proof of Theorem 2.4.5 is highly technical, and relies on a detailed examination

of the vector of polynomials P E . This allows us to show (Lemma 2.4.8) that if f =

〈f1, f2, . . . , fn〉 is an E-process that at real time t0 is non-negative, then each fi is “right

non-negative.” That is, the Taylor series expansion of fi around t0 has real coefficients

and the first non-zero coefficient, if any, is positive. Further, (Lemma 2.4.10) if fi(t0) = 0

and its Taylor series expansion has a non-zero coefficient, then there exists k such that

fk(t0) = 0 and the first derivative of fk with respect to time is positive at t0.

Definition 2.4.2. Let n ∈ Z>0 and let k ∈ {1, 2, . . . , n}. A polynomial

f ∈ R[X1, X2, . . . , Xn] is non-nullifying with respect to k iff there exist m ∈ N,

c1, c2, · · · , cm ∈ R>0, M1,M2, . . . ,Mm ∈ M{X1,X2,...,Xn} and h ∈ R[X1, X2, . . . , Xn] such

that f =
∑m

i=1 ciMi +Xkh.

Observe that for all k, the polynomial 0 is non-nullifying with respect to k.

Lemma 2.4.6. Let E be a finite, physical event-system of dimension n. Let 〈P1, P2, . . . , Pn〉

= P E . Then, for all i ∈ {1, 2, . . . , n}, Pi is non-nullifying with respect to i.
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Proof. Let m = |E|. Let (γj,i)m×n = ΓE . Since E is physical, there exist σ1, σ2, . . . , σm,

τ1, τ2, . . . , τm ∈ R>0 and M1,M2, . . . ,Mm, N1, N2, . . . , Nm ∈ M∞ such that for j =

1, 2, . . . ,m : Mj ≺ Nj and {σ1M1 − τ1N1, σ2M2, τ2N2, . . . , σmMm − τmNm} = E . Let

i ∈ {1, 2, . . . , n}.

From the definition of P E , Pi =
∑m

j=1 γj,i(σjMj − τjNj). It is sufficient to prove

that for j = 1, 2, . . . ,m : γj,i(σjMj − τjNj) is non-nullifying with respect to i. Let

j ∈ {1, 2, . . . ,m}. If γj,i = 0 then γj,i(σjMj − τjNj) = 0 which is non-nullifying with

respect to i. If γj,i > 0 then, from the definition of ΓE , Xi | Nj and

γj,i(σjMj − τjNj) = γj,iσjMj +Xi

(
−γj,iτj

Nj

Xi

)

which is non-nullifying with respect to i since γj,iσj > 0. Similarly, if γj,i < 0 then

Xi |Mj and

γj,i(σjMj − τjNj) = −γj,iτjNj +Xiγj,iσj
Mj

Xi

which is non-nullifying with respect to i since −γj,iτj > 0. Hence, Pi is non-nullifying

with respect to i.

Definition 2.4.3. Let t0 ∈ C, let f : C→ C be analytic at t0 and let f(t) =
∑∞

k=0 ck(t−

t0)k be the Taylor series expansion of f around t0. Then O(f, t0) is the least k such that

ck 6= 0. If for all k, ck = 0, then O(f, t0) =∞.

Definition 2.4.4 (Right non-negative). Let t0 ∈ R, let f : C→ C be analytic at t0 and

let f(t) =
∑∞

k=0 ck(t− t0)k be the Taylor series expansion of f around t0. Then f is RNN

at t0 iff both:

34



1. For all k ∈ N, ck ∈ R and

2. Either O(f, t0) =∞ or cO(f,t0) ∈ R>0.

Lemma 2.4.7. Let t0 ∈ C. Let f, g : C→ C be functions analytic at t0. Then:

1. O(f · g, t0) = O(f, t0) +O(g, t0).

2. If t0 ∈ R and f, g are RNN at t0 then f · g is RNN at t0.

The proof is obvious.

Lemma 2.4.8. Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be

open and simply-connected and let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω. For all

t0 ∈ Ω ∩ R, if f(t0) ∈ Rn
≥0 then for i = 1, 2, . . . , n : fi is RNN at t0.

Proof. Suppose t0 ∈ Ω ∩ R and f(t0) ∈ Rn
≥0. Let P = 〈P1, P2, . . . , Pn〉 = P E . Let

C = {i | fi is not RNN at t0}.

For the sake of contradiction, suppose C 6= ∅. Let m = mini∈C O(fi, t0). Let k ∈ C be

such that O(fk, t0) = m. Let fk(t) =
∑∞

i=0 ai(t− t0)i be the Taylor series expansion of fk

around t0. Since E is physical and t0 ∈ R and f(t0) ∈ Rn
≥0, it follows from Lemma 2.4.1.2

that for all i ∈ N, ai ∈ R. Further:

a0 = a1 = . . . = am−1 = 0 (O(fk, t0) = m.) (2.2)

am ∈ R<0 (fk is not RNN at t0.) (2.3)

Since f(t0) ∈ Rn
≥0 and am ∈ R<0 and a0 = fk(t0), it follows that m > 0.
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Consider f ′k = Pk ◦ f . By differentiation, the Taylor series expansion of f ′k at t0 is:

f ′k(t) =
∞∑
i=0

(i+ 1)ai+1(t− t0)i. (2.4)

From Lemma 2.4.6, Pk is non-nullifying. Hence, there exist l ∈ N, b1, b2, . . . , bl ∈ R>0,

M1,M2, . . . ,Ml ∈M{X1,X2,...,Xn} and h ∈ R[X1, X2, . . . , Xn] such that Pk =
∑l

j=1 bjMj+

Xk · h. Then for all t ∈ Ω:

f ′k(t) = Pk ◦ f(t) =
l∑

j=1

bjMj ◦ f(t) + fk(t) · (h ◦ f(t)) (2.5)

Since h is a polynomial, h ◦ f is analytic at t0. Therefore, fk · (h ◦ f) is analytic at

t0. Let
∑∞

i=0 ci(t − t0)i be the Taylor series expansion of fk · (h ◦ f) at t0. Similarly,

for j = 1, 2, . . . , l, bjMj ◦ f is analytic at t0. Let
∑∞

i=0 dj,i(t − t0)i be the Taylor series

expansion of bjMj ◦ f at t0. From (2.4),(2.5), equating Taylor series coefficients, for

i = 0, 1, . . . ,m− 1:

(i+ 1)ai+1 = ci +
l∑

j=1

dj,i (2.6)

From Lemma 2.4.7.1,

O(fk · (h ◦ f), t0) = O(fk, t0) +O(h ◦ f , t0) ≥ O(fk, t0) = m
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Hence,

c0 = c1 = . . . = cm−1 = 0. (2.7)

From (2.2), (2.6), (2.7), for i = 0, 1, . . . ,m− 2:

l∑
j=1

dj,i = 0 (2.8)

Since m > 0, from (2.3), (2.6), (2.7):

l∑
j=1

dj,m−1 = mam ∈ R<0 (2.9)

Let i0 = minj=1,2,...,l{O(bjMj ◦ f , t0)}. From (2.9), it follows that i0 ≤ m− 1.

Case 1: For j = 1, 2, . . . , l : dj,i0 ∈ R≥0. From the definition of i0 it follows that∑l
j=1 dj,i0 ∈ R>0. If i0 < m − 1, this contradicts (2.8). If i0 = m − 1, this contradicts

(2.9).

Case 2: There exists j0 ∈ {1, 2, . . . , l} such that dj0,i0 ∈ R<0. From the definition of i0,

O(bj0Mj0 , t0) = i0 ≤ m− 1. Therefore, for each i such that Xi | Mj0 , O(fi, t0) ≤ m− 1.

From the definitions of C and m, this implies that for each i such that Xi | Mj0 , fi is

RNN at t0. Since bj0 ∈ R>0, it follows that bj0Mj0 ◦ f is a product of RNN functions.

Hence, by Lemma 2.4.7.2, bj0Mj0 ◦ f is RNN at t0 and dj0,i0 ∈ R>0, a contradiction.

Hence, for i = 1, 2, . . . , n, fi is RNN at t0.
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Lemma 2.4.9. Let t0 ∈ R and let f be a function RNN at t0. There exists an ε ∈ R>0

such that either for all t ∈ (t0, t0 + ε), f(t) ∈ R>0 or for all t ∈ (t0, t0 + ε), f(t) = 0.

Proof. Let m = O(f, t0). If m = ∞, f is identically zero and the lemma follows im-

mediately. Otherwise, let f (m) denote the mth derivative of f . Since f is RNN at

t0 and has order m, f (m)(t0) ∈ R>0. Since f is analytic at t0, f (m) is analytic at

t0, and hence continuous at t0. By continuity, there exists ε ∈ R>0 such that for all

τ ∈ [t0, t0 + ε] : f (m)(τ) ∈ R>0. From Taylor’s theorem, for all t ∈ (t0, t0 + ε), there exists

τ ∈ [t0, t0 + ε] such that:

f(t) =
(t− t0)m

m!
f (m)(τ)

Therefore, f(t) ∈ R>0.

Note that Lemma 2.4.8 and Lemma 2.4.9 together already imply that if E is a finite,

physical event-system, then E-processes that begin at non-negative points remain non-

negative through all forward real time where they are defined. This result is weaker than

Theorem 2.4.5.

Lemma 2.4.10. Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be

open and simply-connected, let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω. Let t0 ∈ Ω. If

f(t0) is non-negative and there exists j ∈ {1, 2, . . . , n} such that 0 < O(fj , t0) <∞ then

there exists k ∈ {1, 2, . . . , n} such that O(fk, t0) = 1.

Proof. Suppose f(t0) ∈ Rn
≥0. Let C = {i | 0 < O(fi, t0) < ∞}. Suppose C 6= ∅. Let

m = mini∈C O(fi, t0). There exists k ∈ C such that O(fk, t0) = m.
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Let P = 〈P1, P2, . . . , Pn〉 = P E . From Lemma 2.4.6, Pk is non-nullifying with respect

to k. Hence, there exist l ∈ N, b1, b2, . . . , bl ∈ R>0, M1,M2, . . . ,Ml ∈ M{X1,X2,...,Xn} and

h ∈ R[X1, X2, . . . , Xn] such that Pk =
∑l

j=1 bjMj +Xk · h.

For all t ∈ Ω: f ′k(t) = Pk ◦ f(t) =
∑l

j=1 bjMj ◦ f(t) + fk(t) · (h ◦ f(t)). From

Lemma 2.4.7.1, O(fk · (h ◦ f), t0) = O(fk, t0) + O(h ◦ f , t0) ≥ O(fk, t0) = m. It follows

that:

m− 1 = O(f ′k, t0) = O(
l∑

j=1

bjMj ◦ f , t0) (2.10)

From Lemma (2.4.7.2) and Lemma (2.4.8), for j = 1, 2, . . . , l : bjMj ◦ f is RNN at t0.

It follows that O(
∑l

j=1 bjMj ◦f , t0) = minj=1,2,...,lO(bjMj ◦f , t0). From Equation (2.10),

m− 1 = minj=1,2,...,lO(bjMj ◦ f , t0). Hence, there exists j0 such that O(bj0Mj0 ◦ f , t0) =

m − 1. From Lemma (2.4.7.1), for all i such that Xi | Mj0 , O(fi, t0) ≤ m − 1. From

the definition of m, for all i such that Xi | Mj0 , O(fi, t0) = 0. It follows that m − 1 =

O(bj0Mj0 ◦ f , t0) = 0. Hence, m = 1.

We are now ready to prove Theorem 2.4.5.

Proof of Theorem 2.4.5. Suppose I ⊆ Ω ∩ R≥0 is connected and 0 ∈ I and f(0) is a

non-negative point. If I ∩ R>0 = ∅, the theorem is immediate. Suppose I ∩ R>0 6= ∅.

It is clear that for all k, O(fk, 0) = ∞ iff for all t ∈ I, fk(t) = 0. Let C = {i |

O(fi, 0) 6= ∞}. From Lemma (2.4.8) and Lemma (2.4.9), for all k ∈ C, there exists

εk ∈ I ∩ R>0 such that for all t ∈ (0, εk) : fk(t) ∈ R>0.
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Suppose for the sake of contradiction that there exist i ∈ C and t ∈ I ∩R>0 such that

fi(t) /∈ R>0. From Lemma (2.4.2), fi(t) ∈ R. Since fi(εi/2) ∈ R>0 and fi(t) ∈ R≤0, by

continuity there exists t′ ∈ I ∩ R>0 such that fi(t′) = 0.

Let t0 = inf{t ∈ I ∩ R>0 | There exists i ∈ C with fi(t) = 0}. It follows that:

1. t0 ∈ R>0 because t0 ≥ mini∈C{εi}.

2. f(t0) ∈ Rn
≥0, from the definition of t0.

3. There exists i1 ∈ C such that O(fi1 , t0) = 1. This follows because there exist i0 ∈ C

and T ⊆ I ∩R>0 such that t0 = inf(T ) and for all t ∈ T : fi0(t) = 0. By continuity,

fi0(t0) = 0. Hence, O(fi0 , t0) > 0. Since i0 ∈ C, O(fi0 , 0) 6= ∞. By connectedness

of I, O(fi0 , t0) 6= ∞. Therefore, 0 < O(fi0 , t0) < ∞. Since f(t0) ∈ Rn
≥0, by

Lemma (2.4.10), there exists i1 ∈ {1, 2, . . . , n} such that O(fi1 , t0) = 1. Assume

i1 /∈ C. Then O(fi1 , 0) =∞. By connectedness of I, O(fi1 , t0) =∞, contradicting

that O(fi1 , t0) = 1. Hence, i1 ∈ C.

Hence, fi1(t0) = 0. Since f(t0) ∈ Rn
≥0, by Lemma (2.4.8) f ′i1(t0) ∈ R>0.

From the definition of t0, for all t ∈ (0, t0), fi1(t) ∈ R>0. Since t0 ∈ R>0,

f ′i1(t0) = lim
h→0+

fi1(t0)− fi1(t0 − h)
h

= lim
h→0+

−fi1(t0 − h)
h

∈ R≤0,

a contradiction. The theorem follows.
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There is a notion in chemistry that, for systems of chemical reactions, concentrations

evolve through time to reach equilibrium. In later sections of this paper, we will investi-

gate this notion. In the remainder of this section of the paper, we will prepare for that

investigation.

Definition 2.4.5. Let E be a finite event-system of dimension n, let Ω ⊆ C be open,

simply connected and such that R≥0 ⊆ Ω, let f be an E-process on Ω, and let q ∈ Cn.

Then q is an ω-limit point of f iff for all ε ∈ R>0 there exists a sequence of non-negative

reals {ti}i∈Z>0 such that ti →∞ as i→∞ and for all i ∈ Z>0, ‖f(ti)− q‖2 < ε.

Sometimes, an ω-limit is defined by the existence of a single sequence of times such

that the value approaches the limit. The above definition is easily seen to be equivalent.

Definition 2.4.6. Let E be a finite event-system of dimension n and let S ⊆ Cn. S

is an invariant set of E iff for all q ∈ S, for all open, simply-connected Ω ⊆ C, for all

E-processes f on Ω, if 0 ∈ Ω and f(0) = q then for all t ∈ R≥0 such that [0, t] ⊆ Ω,

f(t) ∈ S.

Lemma 2.4.11. Let E be a finite, physical event-system of dimension n, let Ω ⊆ C be

open and simply connected, and let f be an E-process on Ω. If R≥0 ⊆ Ω and f(0) is a

non-negative point, then the set of all ω-limit points of f is an invariant set of E and is

contained in Rn
≥0.

Proof. Let S be the set of all ω-limit points of f . By Lemma 2.4.5, for all t ∈ R≥0,

f(t) ∈ Rn
≥0, hence S ⊆ Rn

≥0.

Let q ∈ S, let Ω̃ ⊆ C be open, simply-connected, and such that 0 ∈ Ω̃, and let h be

an E-process on Ω̃ such that h(0) = q. Suppose u ∈ R≥0 and [0, u] ⊆ Ω̃. Since E is finite
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and physical, P E |Rn can be viewed as a map F : Rn → Rn of class C1. By Lemma 2.4.2,

for all t ∈ [0, u], h(t) ∈ Rn, so h|[0,u] can be viewed as a map X : [0, u] → Rn such that

X ′ = F (X). By [24, p. 147], there exists a neighborhood U ⊂ Rn of q and a constant

K such that for all α ∈ U , there exists a unique real-E-process ρα defined on [0, u]

with ρα(0) = α and ‖ρα(u) − h(u)‖2 ≤ K‖α − q‖2 exp(Ku). Observe that necessarily

K ∈ R≥0. By Lemma 2.4.4 for all α ∈ U there exists an open, simply-connected Ωα ⊆ C

and an E-process %α on Ωα such that [0, u] ⊆ Ωα and for all t ∈ [0, u], %α(t) = ρα(t).

Therefore, ‖%α(u)− h(u)‖2 ≤ K‖α− q‖2 exp(Ku).

Let ε ∈ R>0 and let δ1, δ2 ∈ R>0 be such that Kδ1 exp(Ku) ≤ ε and the open ball

centered at q of radius δ2 is contained in U . Let δ = min(δ1, δ2). Since q is an ω-limit

point of f , there exists a sequence of non-negative reals {ti}i∈Z>0 such that ti → ∞ as

i → ∞ and for all i ∈ Z>0, ‖f(ti) − q‖2 < δ. Then for all i ∈ Z>0, f(ti) ∈ U , so by

Lemma 2.4.3 for all t ∈ [0, u], f(ti + t) = %f(ti)(t). Then

‖f(ti + u)− h(u)‖2 = ‖%f(ti)(u)− h(u)‖2

≤ K‖f(ti)− q‖2 exp(Ku)

≤ Kδ exp(Ku)

≤ ε

Thus h(u) is an ω-limit point of f , so S is an invariant set of E .
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2.5 Finite Natural Event-systems

In this section, we focus on finite, natural event-systems — a subclass of finite, physical

event-systems which has much in common with systems of chemical reactions that obey

detailed balance.

In chemical reactions, the total bond energy of the reactants minus the total bond

energy of the products is a measure of the heat released. For example, in the reaction,

σX2 − τX1, ln
(
σ
τ

)
is taken to be the quantity of heat released. If there are multiple

reaction paths that take the same reactants to the same products, then the quantity of

heat released along each path must be the same.

The finite, physical event-system E = {2X2 − X1, X2 − X1} does not behave like a

chemical reaction system since, when X2 is converted to X1 by the first reaction, ln (2)

units of heat are released; however, when X2 is converted to X1 by the second reaction,

ln (1) = 0 units of heat are released. When an event-system admits a pair of paths from

the same reactants to the same products but with different quantities of heat released,

we say that the system has an “energy cycle.”

Definition 2.5.1 (Energy cycle). Let E be a finite, physical event-system. E has an

energy cycle iff GE has a cycle of non-zero weight.

Example 7. For the physical event-system E1 = {2X2−X1, X2−X1}, the event X2−X1

induces an edge 〈X2, X1〉 in the event graph with weight ln
(

1
1

)
= 0. The event 2X2−X1

induces an edge 〈X1, X2〉 with weight − ln
(

2
1

)
= − ln (2). The weight of the cycle from

X2 to X1 and back to X2 using these two edges, is − ln (2) 6= 0. Hence, E1 has an energy

cycle by Definition 2.5.1.
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Example 8. For the physical event-system E2 = {X2 − X1, 2X3X4 − X2X3, X4X5 −

X1X5}, the cycle 〈X3X4X5, X2X3X5, X1X3X5, X3X4X5〉 is induced by the sequence of

events 2X3X4−X2X3, X2−X1, X4X5−X1X5 and has corresponding weight ln 2
1 +ln 1

1 +

ln 1
1 = ln (2) 6= 0. Hence, E2 has an energy cycle.

The following theorem gives multiple characterizations of natural event-systems.

Theorem 2.5.1. Let E be a finite, physical event-system of dimension n. The following

are equivalent:

1. E is natural.

2. E has a strong equilibrium point that is not a z-point. (i.e. there exists α ∈ Cn such

that for all i = 1 to n, αi 6= 0 and for all e ∈ E, e (α) = 0.)

3. E has no energy cycles.

4. If E = {σ1M1−τ1N1, σ2M2−τ2N2, . . . , σmMm−τmNm} and for all j = 1 to m, Mj ≺

Nj and σj , τj > 0 then there exists α ∈ Rn such that ΓEα =
〈

ln
(
σ1
τ1

)
, . . . , ln

(
σm
τm

)〉T
.

To prove Theorem 2.5.1, we will use the following lemma.

Lemma 2.5.2. Let E = {σ1M1 − τ1N1, σ2M2 − τ2N2, . . . , σmMm − τmNm} be a finite,

physical event-system of dimension n such that for all j = 1 to m, σj , τj > 0 and Mj ≺ Nj.

Then for all α = 〈α1, α2, . . . , αn〉T ∈ Rn, ΓE · α =
〈

ln
(
σ1
τ1

)
, ln
(
σ2
τ2

)
, . . . , ln

(
σm
τm

)〉T
iff

〈eα1 , · · · , eαn〉 is a positive strong E-equilibrium point.
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Proof. Let E = {σ1M1− τ1N1, σ2M2− τ2N2, . . . , σmMm− τmNm} and for all j = 1 to m,

Mj ≺ Nj and σj , τj > 0. Let Γ = ΓE . For all α = 〈α1, . . . , αn〉 ∈ Rn,

Γα =
〈

ln
(
σ1

τ1

)
, ln
(
σ2

τ2

)
, . . . , ln

(
σm
τm

)〉T
⇔

n∑
i=1

γj,iαi = ln (σj/τj) , ∀j = 1, 2, . . . ,m

⇔
n∏
i=1

(eαi)γj,i = σj/τj , ∀j = 1, 2, . . . ,m (Exponentiation.)

⇔Nj (〈eα1 , . . . , eαn〉) /Mj (〈eα1 , . . . , eαn〉) = σj/τj , ∀j = 1, 2, . . . ,m (Definition of Γ.)

⇔σjMj (〈eα1 , . . . , eαn〉)− τjNj (〈eα1 , . . . , eαn〉) = 0, ∀j = 1, 2, . . . ,m

⇔〈eα1 , . . . , eαn〉 is a positive strong E-equilibrium point.

Proof of Theorem 2.5.1. (4) ⇒ (1) : Follows from Lemma 2.5.2.

(1) ⇒ (2) : Follows immediately from definitions.

(2) ⇒ (3) :

Consider an arbitrary cycle C in GE given by the sequence of k edges

{〈v0, v1〉, 〈v1, v2〉, . . . , 〈vk−1, vk = v0〉} with corresponding weights r1, r2, . . . , rk. By Defi-

nition 2.2.8, for i = 1, 2, . . . , k, there exist Ti ∈ M∞ and ei ∈ E with ei = σiMi − τiNi

where σi, τi > 0 and Mi, Ni ∈M∞ and Mi ≺ Ni such that either

1) vi−1 = TiMi and vi = TiNi and ri = ln σi
τi
∈ w (〈vi−1, vi〉) or

45



2) vi−1 = TiNi and vi = TiMi and ri = − ln σi
τi
∈ w (〈vi−1, vi〉)

Hence, there exists a vector b = 〈b1, b2, . . . , bk〉 with bi = 0 or 1 such that:

k∏
i=1

M bi
i N

1−bi
i =

k∏
i=1

M1−bi
i N bi

i (2.11)

w (C) =
k∑
i=1

ri =
k∑
i=1

(2bi − 1) ln
(
σi
τi

)
(2.12)

Let α be a strong equilibrium point of E that is not a z-point. Then, by Definition 2.2.6,

for i = 1 to k, σiMi (α)− τiNi (α) = 0

⇒ σiMi (α) = τiNi (α) for i = 1 to k

⇒ (σiMi (α))bi = (τiNi (α))bi and (τiNi (α))1−bi = (σiMi (α))1−bi for i = 1 to k

⇒ (σiMi (α))bi (τiNi (α))1−bi = (σiMi (α))1−bi (τiNi (α))bi for i = 1 to k

⇒
∏k
i=1 (σiMi (α))bi (τiNi (α))1−bi =

∏k
i=1 (σiMi (α))1−bi (τiNi (α))bi

⇒
∏k
i=1 σi

biτi
1−bi =

∏k
i=1 σi

1−biτi
bi [From Equation (1) and since α is not a z-point]

⇒
∏k
i=1

σi
biτi

1−bi

σi1−biτibi
= 1

⇒
∑k

i=1 (2bi − 1) ln
(
σi
τi

)
= 0 [Taking logarithm]

⇒ w (C) = 0 [From Equation (2)]

Hence, E has no energy cycle.

(3) ⇒ (4) :

Let E = {σ1M1 − τ1N1, σ2M2 − τ2N2, . . . , σmMm − τmNm} and for all j = 1 to m,

Mj ≺ Nj and σj , τj > 0. Let Γ = ΓE . We shall prove that if the linear equation

Γα = 〈ln (σ1/τ1) , . . . , ln (σm/τm)〉T has no solution in Rn then E has an energy cy-

cle. For j = 1 to m, let Γj be the jth row of Γ. If the system of linear equations

Γα = 〈ln (σ1/τ1) , . . . , ln (σm/τm)〉T has no solution in Rn then, from linear algebra [25,
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p. 164, Theorem] and the fact that Γ is a matrix of integers, it follows that there exists

l, there exist (not necessarily distinct) integers j1, j2, . . . , jl ∈ {1, 2, . . . ,m}, there exist

a1, a2, . . . , al ∈ {+1,−1} such that:

a1Γj1 + a2Γj2 + · · ·+ alΓjl = 0 (2.13)

a1 ln (σj1/τj1) + a2 ln (σj2/τj2) + · · ·+ al ln (σjl/τjl) 6= 0 (2.14)

Consider the sequence C of l + 1 vertices in the event-graph defined recursively by

v0 =
l∏

i=1,ai=+1

Mji

l∏
i=1,ai=−1

Nji

and for i = 1 to l,

vi =
vi−1N

ai
ji

Mai
ji

Observe that by (3),
l∏

i=1

(
Nji

Mji

)ai
= 1

Hence,

v0 =
l∏

i=1,ai=+1

Mai
ji

l∏
i=1,ai=−1

N−aiji
=

l∏
i=1,ai=+1

Nai
ji

l∏
i=1,ai=−1

M−aiji
= vl
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Hence, C is a cycle. Further, for i = 1 to l,

ai ln σji
τji
∈ w (〈vi−1, vi〉)

From Equation (4),

w (C) = a1 ln (σj1/τj1) + a2 ln (σj2/τj2) + · · ·+ al ln (σjl/τjl) 6= 0

Hence, C is an energy cycle.

Horn and Jackson [17] and Feinberg [12] have proved that chemical reaction networks

with appropriate properties admit Lyapunov functions. While finite, natural event-

systems are closely related to the chemical reaction networks considered by Horn and

Jackson and by Feinberg, they are not identical. Consequently, we will prove the exis-

tence of Lyapunov functions for finite, natural event-systems (Theorem 2.5.6).

The Lyapunov function is analogous in form and properties to “Entropy of the Uni-

verse” in thermodynamics. The Lyapunov function composed with an event-process is

monotonic with respect to time, providing an analogy to the second law of thermody-

namics.

Definition 2.5.2. Let E be a finite, natural event-system of dimension n with positive

strong E-equilibrium point c = 〈c1, c2, . . . , cn〉. Then gE,c : Rn
>0 → R is given by

gE,c (x1, x2, . . . , xn) =
n∑
i=1

(xi (ln (xi)− 1− ln (ci)) + ci)

The function gE,c will turn out to be the desired Lyapunov function.
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Note that if E1 and E2 are two finite natural event-systems of the same dimension and

if c is a positive strong E1-equilibrium point as well as a positive strong E2-equilibrium

point, then the functions gE1,c and gE2,c are identical.

Lemma 2.5.3. Let E = {σ1M1 − τ1N1, σ2M2 − τ2N2, . . . , σmMm − τmNm} be a finite,

natural event-system of dimension n with positive strong E-equilibrium point c, such that

for all j = 1 to m, σj , τj > 0 and Mj ≺ Nj. Then for all x ∈ Rn
>0,

∇gE,c (x) · P E (x) =
m∑
j=1

(σjMj (x)− τjNj (x)) ln
(
τjNj (x)
σjMj (x)

)

Proof. Let g = gE,c. Let x = 〈x1, x2, . . . , xn〉 ∈ Rn
>0. Let P = P E .

∇g (x) · P (x) =
n∑
i=1

(
∂g

∂xi
(x) · Pi (x)

)

=
n∑
i=1

ln
(
xi
ci

) m∑
j=1

γj,i (σjMj (x)− τjNj (x))


=

m∑
j=1

(σjMj (x)− τjNj (x))
n∑
i=1

ln
((

xi
ci

)γj,i)

=
m∑
j=1

(σjMj (x)− τjNj (x)) ln

(
n∏
i=1

(
xi
ci

)γj,i)

=
m∑
j=1

(σjMj (x)− τjNj (x)) ln
(
τjNj (x)
σjMj (x)

)

The last equality follows from the definition of ΓE and the fact that c is a strong-

equilibrium point.

Lemma 2.5.4. For all x ∈ R>0, (1− x) ln (x) ≤ 0 with equality iff x = 1.
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Proof. If 0 < x < 1 then 1− x > 0 and ln(x) < 0. If x > 1 then 1− x < 0 and ln(x) > 0.

In either case, the product is strictly negative. If x = 1 then (1− x) ln (x) = 0

Theorem 2.5.5. Let E be a finite, natural event-system of dimension n with positive

strong E-equilibrium point c. Then for all x ∈ Rn
>0, ∇gE,c (x) · P E (x) ≤ 0 with equality

iff x is a strong E-equilibrium point.

Proof. Let E = {σ1M1 − τ1N1, σ2M2 − τ2N2, . . . , σmMm − τmNm} be a finite, natural

event-system of dimension n with positive strong E-equilibrium point c, such that for all

j = 1 to m, σj , τj > 0 and Mj ≺ Nj . Let P = P E and let g = gE,c. By Lemma 2.5.3, for

all x ∈ Rn
>0,

∇g (x) · P (x) =
m∑
j=1

(σjMj (x)− τjNj (x)) ln
(
τjNj (x)
σjMj (x)

)

From Lemma 2.5.4 and the observation that for j = 1, 2, . . . ,m, Mj (x) , Nj (x) > 0 when

x ∈ Rn
>0 and by assumption σj , τj > 0, we have,

∇g (x) · P (x) ≤ 0

with equality iff for all j = 1, 2, . . . ,m, σjMj (x) = τjNj (x). This occurs iff x is a strong

E-equilibrium point.

Recall that a function g is a Lyapunov function at a point p for a vector field v iff g

is smooth, positive definite at p and Lvg is negative semi-definite at p [18, p. 131]. For

a finite natural event-system E , P E induces a vector field on Rn. We will show that, if
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c is a positive strong E-equilibrium point, then gE,c is a Lyapunov function at c for the

vector field induced by P E .

Theorem 2.5.6 (Existence of Lyapunov Function). Let E be a finite, natural event-

system of dimension n with positive strong E-equilibrium point c. Then gE,c is a Lyapunov

function for the vector field induced by P E at c.

Proof. Let g = gE,c. For i = 1, 2, . . . , n:

∂g

∂xi
= ln

(
xi
ci

)

which are all in C∞ as functions on Rn
>0, hence g is in C∞.

∂g

∂xi
(c) = ln

(
ci
ci

)
= 0

establishes that ∇g (c) = 0. For i = 1, 2, . . . , n, for k = 1, 2, . . . , n:

∂2g

∂xk∂xi
=
δi,k
xi

where δi,k is the Kronecker delta function. Hence, for all x ∈ Rn
>0, the Hessian of g at

x is positive definite. Therefore, g is strictly convex over Rn
>0. Further, g (c) = 0 and

∇g (c) = 0 and g is strictly convex together imply that g is positive definite at c. To

establish g as a Lyapunov function, it remains to show that the directional derivative LP g

of g in the direction of the vector field induced by P = P E is negative semi-definite at c.

This follows from Theorem 2.5.5 since for all x ∈ Rn
>0, LP g (x) = ∇g (x) ·P (x) ≤ 0.
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Henceforth, the function gE,c will be called the Lyapunov function of E at c. The next

theorem shows that finite, natural event-systems satisfy a form of “detailed balance.”

Theorem 2.5.7. If E is a natural, finite event-system of dimension n then all positive

E-equilibrium points are strong E-equilibrium points.

Proof. Let P = P E . Let c ∈ Rn
>0 be a positive strong E-equilibrium point. Let x be

a positive E-equilibrium point. That is, P (x) = 0. Hence, ∇gE,c (x) · P E (x) = 0. By

Theorem 2.5.5, x is a strong E-equilibrium point.

The following lemma was proved by Feinberg [12, Proposition B.1].

Lemma 2.5.8. Let n > 0 be an integer. Let U be a linear subspace of Rn, and let a =

〈a1, a2, . . . , an〉 and b be elements of Rn
>0. There is a unique element µ = 〈µ1, µ2, · · · , µn〉 ∈

U⊥ such that 〈a1eµ1 , a2eµ2 , . . . , aneµn〉 − b is an element of U .

The next theorem follows from one proved by Horn and Jackson [17, Lemma 4B]. Our

proof is derived from Feinberg’s [12, Proposition 5.1].

Theorem 2.5.9. Let E be a finite, natural event-system of dimension n. Let H be a pos-

itive conservation class of E. Then H contains exactly one positive strong E-equilibrium

point.

Proof. Let Γ = ΓE . Let c∗ = 〈c∗1, c∗2, . . . , c∗n〉 be a positive strong E-equilibrium point. Let

p ∈ H ∩ Rn
>0. For all c ∈ Rn

>0,

(1) c is a strong E-equilibrium point

⇔ Γ〈ln(c1), ln(c2), . . . , ln(cn)〉T = Γ〈ln(c∗1), ln(c∗2), · · · , ln(c∗n)〉T . (Lemma 2.5.2)
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⇔ Γ
〈

ln
(
c1
c∗1

)
, ln
(
c2
c∗2

)
, . . . , ln

(
cn
c∗n

)〉T
= 0

⇔ There exists µ = 〈µ1, µ2, . . . , µn〉 ∈ ker Γ ∩ Rn such that〈
ln
(
c1
c∗1

)
, ln
(
c2
c∗2

)
, . . . , ln

(
cn
c∗n

)〉T
= µ.

⇔ There exists µ = 〈µ1, µ2, . . . , µn〉 ∈ ker Γ ∩ Rn such that ci = c∗i e
µi for i = 1, 2, . . . , n.

(2) c ∈ H ∩ Rn ⇔ c− p ∈ (ker Γ)⊥ ∩ Rn. (By Definition 2.3.6)

From (1) and (2), c is a positive strong E-equilibrium point in H iff there exists µ ∈

ker Γ ∩ Rn such that c = 〈c∗1eµ1 , c∗2eµ2 , . . . , c∗neµn〉 and

〈c∗1eµ1 , c∗2eµ2 , . . . , c∗neµn〉 − p ∈ (ker Γ)⊥ ∩ Rn. Applying Lemma 2.5.8 with a = c∗, b = p

and U = (ker Γ)⊥ ∩ Rn, it follows that there exists a unique µ of the desired form.

Hence, there exists a unique positive strong E-equilibrium point in H given by c =

〈c∗1eµ1 , c∗2eµ2 , . . . , c∗neµn〉.

To prove the main theorem of this section (Theorem 2.5.15), we will first establish

several technical lemmas.

Lemma 2.5.10 shows that an event that remains zero at all times along a process can

be ignored.

Lemma 2.5.10. Let E be a finite event-system of dimension n, let Ω ⊆ C be non-empty,

open and simply-connected, and let f = 〈f1, f2, . . . , fn〉 be an E-process on Ω. Then either

for all t ∈ Ω, f(t) is a strong E-equilibrium point or there exist a finite event-system Ê

of dimension n̂ ≤ n, an Ê-process f̂ = 〈f̂1, f̂2, . . . , f̂n̂〉 on Ω, and a permutation π on

{1, 2, . . . , n} such that:
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1. If E is physical then Ê is physical.

2. If E is natural then Ê is natural.

3. If c = 〈c1, c2, . . . , cn〉 is a positive strong E-equilibrium point, then

ĉ = 〈cπ−1(1), cπ−1(2), . . . , cπ−1(n̂)〉 is a positive strong Ê-equilibrium point.

4. For all e ∈ Ê, there exists t ∈ Ω such that e(f̂(t)) 6= 0.

5. If Ê is natural, I ⊆ Ω ∩ R≥0 is connected, 0 ∈ I and f(0) is a non-negative point

then for all t ∈ I ∩ R>0, f̂(t) is a positive point.

6. For i = 1, 2, . . . , n, if π(i) ≤ n̂ then for all t ∈ Ω, fi(t) = f̂π(i)(t).

7. For i = 1, 2, . . . , n, if π(i) > n̂ then for all t1, t2 ∈ Ω, fi(t1) = fi(t2).

Proof. Let m = |E|. Let E1 = {e ∈ E | there exists t ∈ Ω, e(f(t)) 6= 0}. If E1 = ∅

then for all t ∈ Ω, e(f(t)) = 0, so f(t) is a strong E-equilibrium point and the Lemma

holds. Assume E1 6= ∅ and let m̂ = |E1|. For j = 1, 2, . . . ,m, let σj , τj ∈ R>0 and Mj =∏n
i=1X

aj,i
i , Nj =

∏n
i=1X

bj,i
i ∈ M∞ be such that Mj ≺ Nj and {σ1M1 − τ1N1, σ2M2 −

τ2N2, . . . , σm̂Mm̂−τm̂Nm̂} = E1 and {σ1M1−τ1N1, σ2M2−τ2N2, . . . , σmMm−τmNm} =

E .

Let C = {i | there exists j ≤ m̂ such that either aj,i 6= 0 or bj,i 6= 0}. Let n̂ = |C|.

Let π be a permutation on {1, 2, . . . , n} such that π(C) = {1, 2, . . . , n̂}.

For j = 1, 2, . . . , m̂, let eπ,j = σj
∏n̂
i=1X

aj,π−1(i)

i −τj
∏n̂
i=1X

bj,π−1(i)

i . Let Ê = {eπ,1, eπ,2,

. . . , eπ,m̂}.

It follows that Ê is a finite event-system of dimension n̂ ≤ n. For i = 1, 2, . . . , n̂, let

f̂i = fπ−1(i). Let f̂ = 〈f̂1, f̂2, . . . , f̂n̂〉.
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Let (γj,i)m×n = ΓE . Let (γ̂j,i)m̂×n̂ = ΓÊ . It follows that for j = 1, 2, . . . , m̂, for

i = 1, 2, . . . , n̂,

γ̂j,i = bj,π−1(i) − aj,π−1(i) = γj,π−1(i). (2.15)

We claim that f̂ is an Ê-process on Ω. To see this, for k = 1, 2, . . . , n̂, for all t ∈ Ω :

f̂ ′k(t) = f ′π−1(k)(t) [Definition of f̂k.]

=
[(∑m

j=1 γj,π−1(k)

(
σj
∏n
i=1X

aj,i
i − τj

∏n
i=1X

bj,i
i

))
◦ f
]

(t)

[f is an E-process on Ω.]

=
[(∑m̂

j=1 γj,π−1(k)

(
σj
∏n
i=1X

aj,i
i − τj

∏n
i=1X

bj,i
i

))
◦ f
]

(t) [Definition of E1.]

=
[(∑m̂

j=1 γj,π−1(k)

(
σj
∏
i∈C X

aj,i
i − τj

∏
i∈C X

bj,i
i

))
◦ f
]

(t)

[Since j ≤ m̂, i /∈ C ⇒ aj,i = bj,i = 0.]

=
[(∑m̂

j=1 γj,π−1(k)

(
σj
∏n̂
i=1X

aj,π−1(i)

π−1(i)
− τj

∏n̂
i=1X

bj,π−1(i)

π−1(i)

))
◦ f
]

(t)

[π(C) = {1, 2, . . . , n̂}.]

=
∑m̂

j=1 γj,π−1(k)

(
σj
∏n̂
i=1(fπ−1(i)(t))

aj,π−1(i) − τj
∏n̂
i=1(fπ−1(i)(t))

bj,π−1(i)

)
[By composition.]

=
∑m̂

j=1 γ̂j,k

(
σj
∏n̂
i=1(fπ−1(i)(t))

aj,π−1(i) − τj
∏n̂
i=1(fπ−1(i)(t))

bj,π−1(i)

)
[From (2.15).]

=
∑m̂

j=1 γ̂j,k

(
σj
∏n̂
i=1(f̂i(t))

aj,π−1(i) − τj
∏n̂
i=1(f̂i(t))

bj,π−1(i)

)
[Definition of f̂i.]

=
[(∑m̂

j=1 γ̂j,keπ,j

)
◦ f̂
]

(t) [Definition of eπ,j .]

This establishes the claim.
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With Ê , n̂, f̂ and π as described, we will now establish (1) through (6).

(1) Follows from the definition of Ê .

(2) Follows from 3.

(3) Suppose E is natural. Hence, there exists a positive strong E-equilibrium point

〈c1, c2, . . . , cn〉. For j = 1, 2, . . . , m̂ :

eπ,j(cπ−1(1), cπ−1(2), . . . , cπ−1(n̂))

= σj

n̂∏
i=1

c
aj,π−1(i)

π−1(i)
− τj

n̂∏
i=1

c
bj,π−1(i)

π−1(i)

= σj
∏
i∈C

c
aj,i
i − τj

∏
i∈C

c
bj,i
i [j ≤ m̂, i /∈ C ⇒ aj,i = bj,i = 0.]

= ej(c1, c2, . . . , cn)

= 0
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Hence, ĉ is a positive strong Ê-equilibrium point.

(4) Suppose j ≤ m̂. Then for all t ∈ Ω :

eπ,j(f̂(t)) = σj

n̂∏
i=1

(f̂i(t))
aj,π−1(i) − τj

n̂∏
i=1

(f̂i(t))
bj,π−1(i)

= σj

n̂∏
i=1

(fπ−1(i)(t))
aj,π−1(i) − τj

n̂∏
i=1

(fπ−1(i)(t))
bj,π−1(i)

= σj
∏
i∈C

(fi(t))aj,i − τj
∏
i∈C

(fi(t))bj,i

= σj

n∏
i=1

(fi(t))aj,i − τj
n∏
i=1

(fi(t))bj,i [j ≤ m̂, i /∈ C ⇒ aj,i = bj,i = 0.]

=

((
σj

n∏
i=1

X
aj,i
i − τj

n∏
i=1

X
bj,i
i

)
◦ f

)
(t)

= ej(f(t))

Since j ≤ m̂, therefore ej ∈ E1 and there exists t ∈ Ω such that ej(f(t)) 6= 0. Hence, for

all eπ,j ∈ Ê , there exists t ∈ Ω such that eπ,j(f̂(t)) 6= 0.

(5) Suppose Ê is natural, I ⊆ Ω ∩ R≥0 is connected, 0 ∈ I and f(0) is a non-negative

point. It follows that f̂(0) is a non-negative point and, from Theorem 2.4.5, for all t ∈ I,

f̂(t) is a non-negative point. Suppose, for the sake of contradiction, that there exist

i0 ≤ n̂ and t0 ∈ I ∩R>0 such that f̂i0(t0) = 0. From Theorem 2.4.5 again, f̂i0(0) = 0 and
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for all t ∈ I : f̂i0(t) = 0. Since I is an interval and 0, t0 ∈ I, I contains an accumulation

point. Hence, since f̂i0 is analytic on Ω and Ω is connected, for all t ∈ Ω :

f̂i0(t) = 0. (2.16)

It follows that for all t ∈ Ω :

0 = f̂ ′i0(t) =
m̂∑
j=1

γ̂j,i0eπ,j(f̂(t)). (2.17)

We claim that for j = 1, 2, . . . , m̂, for all t ∈ Ω : γ̂j,i0eπ,j(f̂(t)) ≥ 0.

Case 1: Suppose γ̂j,i0 = 0. Then γ̂j,i0eπ,j(f̂(t)) = 0 ≥ 0.

Case 2: Suppose γ̂j,i0 > 0. Then bj,π−1(i0) > 0. Hence,

eπ,j(f̂(t)) = σj

n̂∏
i=1

(f̂i(t))
aj,π−1(i) − τj

n̂∏
i=1

(f̂i(t))
bj,π−1(i)

= σj

n̂∏
i=1

(f̂i(t))
aj,π−1(i) [Since bj,π−1(i0) > 0 and from 2.16, f̂i0(t) = 0.]

≥ 0 [f̂(t) is a non-negative point, by Theorem 2.4.5]
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Hence, γ̂j,i0eπ,j(f̂(t)) ≥ 0.

Case 3: Suppose γ̂j,i0 < 0. Then aj,π−1(i0) > 0. Hence,

eπ,j(f̂(t)) = σj

n̂∏
i=1

(f̂i(t))
aj,π−1(i) − τj

n̂∏
i=1

(f̂i(t))
bj,π−1(i)

= −τj
n̂∏
i=1

(f̂i(t))
bj,π−1(i) [Since aj,π−1(i0) > 0 and from 2.16, f̂i0(t) = 0.]

≤ 0 [f̂(t) is a non-negative point, by Theorem 2.4.5]

Hence, γ̂j,i0eπ,j(f̂(t)) ≥ 0. This completes the proof of the claim.

From 2.17 and the claim, it now follows that for j = 1, 2, . . . , m̂, for all t ∈ Ω :

γ̂j,i0eπ,j(f̂(t)) = 0 (2.18)

Since i0 ≤ n̂, there exists j0 ≤ m̂ such that either aj0,i0 6= 0 or bj0,i0 6= 0. If γ̂j0,i0 6= 0

then, from 2.18, eπ,j0(f̂(t)) = 0. If γ̂j0,i0 = 0 then, since γ̂j0,i0 = bj0,i0 − aj0,i0 , it fol-

lows that aj0,i0 6= 0 and bj0,i0 6= 0. Hence, Xi0 divides eπ,j0 . From 2.16, it follows that

eπ,j0(f̂(t)) = 0. Hence, irrespective of the value of γ̂j0,i0 , for all t ∈ Ω : eπ,j0(f̂(t)) = 0.

Since eπ,j0 is an element of Ê , this leads to a contradiction with Lemma 2.5.10.4. Hence,

for all i ≤ n̂, for all t ∈ I ∩ R>0 : f̂i(t) > 0.

(6) Follows from the definition of f̂ .

(7) For i = 1, 2, . . . , n, if π(i) > n̂ then i /∈ C. That is, for j = 1, 2, . . . ,m : γj,i =
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bj,i − aj,i = 0 − 0 = 0. Hence, for all t ∈ Ω : f ′i(t) =
∑m

j=1 γj,iej(f(t)) = 0. Hence, since

fi is analytic on Ω, and Ω is simply-connected, for all t1, t2 ∈ Ω : fi(t1) = fi(t2).

We have described, for finite, natural event-systems, Lyapunov functions on the posi-

tive orthant. We next extend the definition of these Lyapunov functions to admit values

at non-negative points.

Definition 2.5.3. Let E be a finite, natural event-system of dimension n with positive

strong E-equilibrium point c = 〈c1, c2, . . . , cn〉. For all v ∈ R>0, let gv : R≥0 → R be such

that for all x ∈ R≥0

gv(x) =


x(ln(x)− 1− ln(v)) + v, if x > 0;

v, otherwise.

(2.19)

Then the extended lyapunov function gE,c : Rn
≥0 → R is

gE,c(x1, x2, . . . , xn) =
n∑
i=1

gci(xi) (2.20)

The next lemma lists some properties of extended Lyapunov functions.

Lemma 2.5.11. Let E be a finite, natural event-system of dimension n with positive

strong E-equilibrium point c = 〈c1, c2, . . . , cn〉. Then:

1. gE,c is continuous on Rn
≥0.

2. For all x1, x2, . . . , xn ∈ R≥0, gE,c(x1, x2, . . . , xn) ≥ 0 with equality iff 〈x1, x2, . . . , xn〉 =

c.
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3. For all r ∈ R≥0, the set {x ∈ Rn
≥0 | gE,c(x) ≤ r} is bounded.

4. If Ω ⊆ C is open, simply connected and such that 0 ∈ Ω, f = 〈f1, f2, . . . , fn〉 is

an E-process on Ω such that f(0) is a non-negative point, and I ⊆ R≥0 ∩ Ω is an

interval such that 0 ∈ I then (gE,c ◦ f) is monotonically non-increasing on I.

Proof. For i = 1, 2, . . . , n, let gci(x) be as defined in Equation 2.19.

1. For i = 1, 2, . . . , n, gci is continuous on R>0 and limx→0+ gci(x) = ci = gci(0), so

gci is continuous on R≥0. Since gE,c is the finite sum of continuous functions on R≥0, gE,c

is continuous on Rn
≥0.

2. Let j ∈ {1, 2, . . . , n}. Let g = gcj . For all x ∈ R>0, g ′(x) = ln
(
x

cj

)
. If 0 < x < cj

then, by substitution, g ′(x) < 0. Similarly, if x > cj then g ′(x) > 0. Hence, g is mono-

tonically decreasing in (0, cj) and monotonically increasing in (cj ,∞). From continuity

of g in R≥0, it follows that

For all x ∈ R≥0, g(x) ≥ g(cj) = 0 with equality iff x = cj . (2.21)

From Equations (2.20) and (2.21), the claim follows.

3. Observe that limx→+∞ g(x) = +∞. It follows that:

For all r ∈ R≥0, the set {x ∈ R≥0 | g(x) ≤ r} is bounded. (2.22)
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If x1, x2, . . . , xn ∈ R≥0 are such that gE,c(x1, x2, . . . , xn) ≤ r, it follows from Equa-

tions (2.20) and (2.21) that for i = 1, 2, . . . , n : gci(xi) ≤ r. The claim now follows from

Equation (2.22).

4. Let Ω ⊆ C be open, simply connected, and such that 0 ∈ Ω; let f = 〈f1, f2, . . . , fn〉

be an E-process on Ω such that f(0) is a non-negative point; and let I ⊆ R≥0 ∩ Ω

be an interval such that 0 ∈ I. By Lemma 2.5.10 there exists n̂, Ê , f̂ , and π sat-

isfying 2.5.10.1–2.5.10.7. Let ĉ = 〈ĉ1, ĉ2, . . . , ĉn̂〉 = 〈cπ−1(1), cπ−1(2), . . . , cπ−1(n̂)〉. By

Lemma 2.5.10.2, ĉ is a positive strong equilibrium point of Ê . Then for all t ∈ I,

(gE,c ◦ f) (t) =
n∑
i=1

gci (fi(t)) [Equation (2.20).]

=
∑

i:π(i)≤n̂

gci (fi(t)) +
∑

i:π(i)>n̂

gci (fi(t))

=
n̂∑
i=1

gcπ−1(i)

(
fπ−1(i)(t)

)
+

∑
i:π(i)>n̂

gci (fi(t))

=
n̂∑
i=1

gĉi

(
f̂i(t)

)
+

∑
i:π(i)>n̂

gci (fi(t))

[Definition of ĉ and Lemma 2.5.10.6.]

=
(
gÊ,ĉ ◦ f̂

)
(t) +

∑
i:π(i)>n̂

gci (fi(t)) [Equation (2.20).]

=
(
gÊ,ĉ ◦ f̂

)
(t) + constant [Lemma 2.5.10.7.]
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By Definition 2.5.3, for all x ∈ Rn̂
>0, gÊ,ĉ(x) = gÊ,ĉ(x). By Lemma 2.5.10.5, for all

t ∈ I ∩ R>0, f̂(t) ∈ Rn̂
>0. So for all t ∈ I ∩ R>0,

(
gÊ,ĉ ◦ f̂

)
(t) =

(
gÊ,ĉ ◦ f̂

)
(t). Then, for

all t ∈ I ∩ R>0,

(
gÊ,ĉ ◦ f̂

)′
(t) =

(
gÊ,ĉ ◦ f̂

)′
(t)

= ∇gÊ,ĉ
(
f̂(t)

)
· f̂ ′(t) [Chain rule.]

= ∇gÊ,ĉ
(
f̂(t)

)
· P Ê

(
f̂(t)

)
[Definition 2.3.3.]

≤ 0 [Theorem 2.5.5.]

Therefore
(
gÊ,ĉ ◦ f̂

)
is non-increasing on I ∩ R>0.

By Definition 2.3.3, f̂ is continuous on I; by Theorem 2.4.5, f̂(I) ⊆ Rn̂
≥0; and by

Lemma 2.5.11.1, gÊ,ĉ is continuous on Rn̂
≥0; so

(
gÊ,ĉ ◦ f̂

)
is continuous on I. Therefore(

gÊ,ĉ ◦ f̂
)

is non-increasing on I. Thus (gE,c ◦ f) is a constant plus a monotonically

non-increasing function on I, so (gE,c ◦ f) is monotonically non-increasing on I.

The next lemma makes use of properties of the extended Lyapunov function to show

that E-processes starting at non-negative points are uniformly bounded in forward real

time.

Lemma 2.5.12. Let E be a finite, natural event-system of dimension n. Let α ∈ Rn
≥0.

There exists k ∈ R≥0 such that for all Ω ⊆ C open and simply connected and such that

0 ∈ Ω, for all E-processes f = 〈f1, f2, . . . , fn〉 on Ω such that f(0) = α, for all intervals

I ⊆ Ω∩R≥0 such that 0 ∈ I, for all t ∈ I, for i = 1, 2, . . . , n: fi(t) ∈ R and 0 ≤ fi(t) < k.
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Proof. Since E is natural, let c ∈ Rn
>0 be a positive strong E-equilibrium point. Let

g = gE,c.

Let ` = g(α). Let S = {x ∈ Rn
≥0 | g(x) ≤ `}. By Lemma 2.5.11.3, S is bounded.

Hence, let k be such that for all x ∈ S : |x|∞ < k.

Let Ω ⊆ C be open, simply connected, and such that 0 ∈ Ω; let f = 〈f1, f2, . . . , fn〉

be an E-process on Ω such that f(0) = α; and let I ⊆ R≥0 ∩ Ω be an interval such that

0 ∈ I.

From Theorem 2.4.5, for all t ∈ I, for i = 1, 2, . . . , n : fi(t) ∈ R and fi(t) ≥ 0.

Consider the function:

g ◦ f |I : I → R

From Lemma 2.5.11.4, for all t ∈ I, g ◦ f |I is monotonically non-increasing on I. That

is, for all t ∈ I,

g(f(t)) ≤ ` (2.23)

It follows from Equation 2.23 and the definition of S that f(I) ⊆ S. By the definition

of k, it follows that for all t ∈ I, for i = 1, 2, . . . , n, fi(t) < k.

The next lemma shows that, because E-processes starting at non-negative points are

uniformly bounded in real time, they can be continued forever along forward real time.

Lemma 2.5.13 (Existence and uniqueness of E-process.). Let E be a finite, natural event-

system of dimension n. Let α ∈ Rn
≥0. There exist a simply-connected open set Ω ⊆ C,

an E-process f = 〈f1, f2, . . . , fn〉 on Ω and k ∈ R≥0 such that:

1. R≥0 ⊆ Ω.
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2. f(0) = α.

3. For all t ∈ R≥0, for i = 1, 2, . . . , n : fi(t) ∈ R and 0 ≤ fi(t) < k.

4. For all simply-connected open sets Ω̃ ⊆ C, for all E-processes f̃ on Ω̃, for all

intervals I ⊆ Ω̃ ∩ R≥0, if 0 ∈ I and f̃(0) = α, then for all t ∈ I, f(t) = f̃(t).

Proof. Claim: There exists k ∈ R≥0 such that for all intervals I ⊆ R≥0 with 0 ∈ I, for all

real-E-processes h̃ = 〈h̃1, h̃2, . . . , h̃n〉 on I with h̃(0) = α, for all t ∈ I, for i = 1, 2, . . . , n:

0 ≤ h̃i(t) ≤ k.

To see this, let I ⊆ R≥0 be an interval such that 0 ∈ I. Let h̃ = 〈h̃1, h̃2, . . . , h̃n〉 be a

real-E-process on I such that h̃(0) = α.

From Lemma 2.4.4, there exist an open, simply-connected Ω̃ ⊆ C and an E-process

f̃ = 〈f̃1, f̃2, . . . , f̃n〉 on Ω̃ such that:

1. I ⊂ Ω̃

2. For all t ∈ I : f̃(t) = h̃(t).

From Lemma 2.5.12, there exists k ∈ R≥0 such that for all t ∈ I, for i = 1, 2, . . . , n:

f̃i(t) ∈ R and 0 ≤ f̃i(t) < k. That is, for all t ∈ I, for i = 1, 2, . . . , n : 0 ≤ h̃i(t) < k. This

proves the claim.

Therefore, by [24, p. 397, Corollary], there exists k ∈ R≥0, there is a real-E-process

h = 〈h1, h2, . . . , hn〉 on R≥0 such that h(0) = α and for all t ∈ R≥0,for i = 1, 2, . . . , n :

0 ≤ hi(t) < k.. By Lemma 2.4.4, there exist an open, simply-connected Ω ⊆ C and an

E-process f on Ω such that R≥0 ⊆ Ω and for all t ∈ R≥0, f(t) = h(t). Therefore, for

all t ∈ R≥0, for i = 1, 2, . . . , n : fi(t) ∈ R and 0 ≤ fi(t) < k. Hence, Parts (1,2,3) are

established. Part(4) follows from Lemma 2.4.2.
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The next lemma shows that the ω-limit points of E-processes that start at non-negative

points satisfy detailed balance.

Lemma 2.5.14. Let E be a finite, natural event-system of dimension n, let Ω ⊆ C be

open and simply-connected, let f be an E-process on Ω, and let q ∈ Cn. If R≥0 ⊆ Ω and

f(0) is a non-negative point and q is an ω-limit point of f , then q ∈ Rn
≥0 and is a strong

E-equilibrium point.

Proof. Suppose R≥0 ⊆ Ω, f(0) is a non-negative point, S is the set of ω-limit points

of f , and q ∈ S. By Lemma 2.4.11 q ∈ Rn
≥0. By Lemma 2.5.13 there exists an open,

simply-connected Ωq ⊆ C such that R≥0 ⊆ Ωq and an E-process h = 〈h1, h2, . . . , hn〉 on

Ωq such that h (0) = q.

Let c be a positive strong E-equilibrium point. By Lemma 2.5.11.2, gE,c (f (t))

is bounded below and, by Lemma 2.5.11.4, is monotonically non-increasing on R≥0.

Therefore limt→∞ gE,c (f (t)) exists. Since gE,c is continuous, for all α ∈ S, gE,c (α) =

limt→∞ gE,c (f (t)). By Lemma 2.4.11, for all t ∈ R≥0, h(t) ∈ S. Hence, gE,c (h (t)) is

constant on R≥0.

By Lemma 2.5.10 either q is a strong E-equilibrium or there exists a finite event-system

Ê of dimension n̂ ≤ n, an Ê-process ĥ = 〈ĥ1, ĥ2, . . . , ĥn̂〉 on Ωq, and a permutation π on

{1, 2, . . . , n} satisfying 1–7 of Lemma 2.5.10.

Assume q is not a strong E-equilibrium point. By Lemma 2.5.10.6, for i = 1, 2, . . . , n̂,

for all t ∈ Ωq, ĥi (t) = hπ−1(i) (t). Let ĉ = 〈ĉ1, ĉ2, . . . , ĉn̂〉 = 〈cπ−1(1), cπ−1(2), . . . , cπ−1(n̂)〉.

By Lemma 2.5.10.3, ĉ is an Ê-strong equilibrium point.
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For all v ∈ R>0, let gv be as defined in Equation 2.19 in Definition 2.5.3. Then for all

t ∈ R≥0,

gE,c (h (t))− gÊ,ĉ
(
ĥ (t)

)
=

n∑
i=1

gci (hi (t))−
n̂∑
j=1

gĉj

(
ĥj (t)

)

=
n∑
i=1

gci (hi (t))−
n̂∑
j=1

gcπ−1(j)

(
hπ−1(j) (t)

)
=

n∑
i=1

gcπ−1(i)

(
hπ−1(i) (t)

)
−

n̂∑
j=1

gcπ−1(j)

(
hπ−1(j) (t)

)
=

n∑
i=n̂+1

gcπ−1(i)

(
hπ−1(i) (t)

)

But, by Lemma 2.5.10.7, if π (i) > n̂ then hi (t) is constant. Hence, gcπ−1(i)

(
hπ−1(i) (t)

)
is constant for i = n̂ + 1, n̂ + 2, . . . , n, so gE,c (h (t)) − gÊ,ĉ

(
ĥ (t)

)
is constant. Since

gE,c (h (t)) and gE,c (h (t))−gÊ,ĉ
(
ĥ (t)

)
are both constant, gÊ,ĉ

(
ĥ (t)

)
must be constant.

By Lemma 2.5.10.5, for all t ∈ R>0, ĥ (t) is a positive point, so by Definitions 2.5.2

and 2.5.3, gÊ,ĉ
(
ĥ (t)

)
= gÊ,ĉ

(
ĥ (t)

)
. Since gÊ,ĉ

(
ĥ (t)

)
is constant, d

dtgÊ,ĉ

(
ĥ (t)

)
=

∇gÊ,ĉ
(
ĥ (t)

)
· P E

(
ĥ (t)

)
= 0. Then by Theorem 2.5.5 and continuity ĥ (0) must be a

strong Ê-equilibrium point, so for all e ∈ Ê , for all t ∈ Ωq, e(ĥ(t)) = 0, which contradicts

Lemma 2.5.10.4. Therefore q is a strong E-equilibrium point.

The next theorem consolidates our results concerning natural event-systems. It also

establishes that positive strong equilibrium points are locally attractive relative to their

conservation classes. Together with the existence of a Lyapunov function, this implies that

positive strong equilibrium points are asymptotically stable relative to their conservation

classes [18, Theorem 5.57].
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Theorem 2.5.15. Let E be a finite, natural event-system of dimension n. Let H be a

positive conservation class of E. Then:

1. For all x ∈ H ∩ Rn
≥0, there exist k ∈ R≥0, an open, simply-connected Ω ⊆ C and

an E-process f = 〈f1, f2, . . . , fn〉 on Ω such that:

(a) R≥0 ⊆ Ω.

(b) f(0) = x.

(c) For all t ∈ R≥0, f(t) ∈ H ∩ Rn
≥0.

(d) For all t ∈ R≥0, for i = 1, 2, . . . , n, 0 ≤ fi(t) ≤ k.

(e) For all open, simply-connected Ω̃ ⊆ C, for all E-processes f̃ on Ω̃, if 0 ∈ Ω̃

and f̃(0) = x then for all intervals I ⊆ Ω̃ ∩ R≥0 such that 0 ∈ I, for all

t ∈ I : f(t) = f̃(t).

2. There exists c ∈ H such that:

(a) c is a positive strong E-equilibrium point.

(b) For all d ∈ H, if d is a positive strong E-equilibrium point, then d = c.

(c) There exists U ⊆ H ∩ Rn
>0 such that

i. U is open in H ∩ Rn
>0.

ii. c ∈ U .

iii. For all x ∈ U , there exist an open, simply-connected Ω ⊆ C and an E-

process f on Ω such that

A. R≥0 ⊆ Ω.

B. f(0) = x.
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C. f(t) → c as t → ∞ along the positive real line. (i.e. for all ε ∈ R>0,

there exists t0 ∈ R>0 such that for all t ∈ R>t0 : ||f(t)− c||2 < ε.)

Proof.

1. Follows from Lemma 2.5.13 and Theorem 2.3.3.

2.(a) and 2.(b) follow from Theorem 2.5.9.

2.(c) Let c ∈ H be a positive strong-E-equilibrium point as in Theorem 2.5.15.2a. Let

g = gE,c. Let T = H ∩ Rn
>0. For all x ∈ H ∩ Rn, for all r ∈ R>0, let

Br(x) =
{
y ∈ H ∩ Rn | ‖x− y‖2 < r

}
Sr(x) =

{
y ∈ H ∩ Rn | ‖x− y‖2 = r

}
Br(x) =

{
y ∈ H ∩ Rn | ‖x− y‖2 ≤ r

}

Since Rn
>0 is open in Rn, it follows that T is open in H ∩ Rn. Therefore, there exists

δ ∈ R>0 such that B2δ(c) ⊆ T . Let δ ∈ R>0 be such that B2δ(c) ⊆ T . It follows that

Bδ(c) ⊆ T .

Since g is continuous and Sδ(c) is compact, let x0 ∈ Sδ(c) be such that g(x0) =

infx∈Sδ(c) g(x). Let U = Bδ(c) ∩ {x ∈ T | g(x) < g(x0)}. It follows that U is open in T .

Since x0 6= c, and by Lemma 2.5.11.2, g(x0) = gE,c(x0) > 0 = g(c). Hence, c ∈ U .

Let x ∈ U . From Lemma 2.5.13, there exist an open, simply-connected Ω ⊂ C and

an E-process f on Ω such that R≥0 ⊆ Ω and f(0) = x.

We claim that for all t ∈ R≥0, f(t) ∈ Bδ(c). Suppose not. Then there exists t0 ∈ R≥0

such that f(t0) ∈ Sδ(c). From the definition of x0, g(x0) ≤ g(f(t0)). Since f(0) = x ∈ U ,

g(f(0)) < g(x0). Hence, g(f(0)) < g(f(t0)), contradicting Lemma 2.5.11.4.
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To see that f(t)→ c as t→∞ along the positive real line, suppose not. Then there

exists ε ∈ R>0 such that ε < δ and there exists an increasing sequence of real numbers

{ti ∈ R>0}i∈Z>0 such that ti → ∞ as i → ∞ and for all i, f(ti) ∈ Bδ(c) \ Bε(c). Since

Bδ(c) \ Bε(c) is compact, there exists a convergent subsequence. By Definition 2.4.5,

the limit of this subsequence is an ω-limit point q of f such that q ∈ Bδ(c) \ Bε(c).

From Lemma 2.5.14, q is a strong-E-equilibrium point. Since q ∈ Bδ(c), q ∈ T . From

Theorem 2.5.9, q = c. Hence, c /∈ Bε(c), a contradiction.

We have established that positive strong equilibrium points are asymptotically stable

relative to their conservation classes. A stronger result would be that if an E-process

starts at a positive point then it asymptotically tends to the positive strong equilibrium

point in its conservation class. Such a result is related to the widely-held notion that,

for systems of chemical reactions, concentrations approach equilibrium. We have been

unable to prove this result. We will now state it as an open problem. This problem has

a long history. It appears to have been first suggested in [17, Lemma 4C], where it was

accompanied by an incorrect proof. The proof was retracted in [16].

Open 1. Let E be a finite, natural event-system of dimension n. Let H be a positive

conservation class of E. Then

1. For all x ∈ H ∩ Rn
≥0, there exist k ∈ R≥0, an open, simply-connected Ω ⊆ C and

an E-process f = 〈f1, f2, . . . , fn〉 on Ω such that:

(a) R≥0 ⊆ Ω.

(b) f(0) = x.

(c) For all t ∈ R≥0, f(t) ∈ H ∩ Rn
≥0.
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(d) For all t ∈ R≥0, for i = 1, 2, . . . , n, 0 ≤ fi(t) < k.

(e) For all open, simply-connected Ω̃ ⊆ C, for all E-processes f̃ on Ω̃, if 0 ∈ Ω̃

and f̃(0) = x then for all intervals I ⊆ Ω̃ ∩ R≥0, if 0 ∈ I then for all t ∈ I :

f(t) = f̃(t).

2. There exists c ∈ H such that:

(a) c is a positive strong E-equilibrium point.

(b) For all d ∈ H, if d is a positive strong E-equilibrium point, then d = c.

(c) For all x ∈ H ∩ Rn
>0, there exist an open, simply-connected Ω ⊆ C and an

E-process f on Ω such that:

i. R≥0 ⊆ Ω.

ii. f(0) = x.

iii. f(t)→ c as t→∞ along the positive real line. (i.e. for all ε ∈ R>0, there

exists t0 ∈ R>0 such that for all t ∈ R>t0 : ||f(t)− c||2 < ε.)

In light of Theorem 2.5.15, Open Problem 1 is equivalent to the following statement.

Open 2. Let E be a finite, natural event-system of dimension n. Let x ∈ Rn
>0. Then

there exists an open, simply-connected Ω ⊆ C, an E-process f on Ω and a positive strong

E-equilibrium point c such that:

1. R≥0 ⊆ Ω.

2. f(0) = x.

3. f(t) → c as t → ∞ along the positive real line. (i.e. for all ε ∈ R>0, there exists

t0 ∈ R>0 such that for all t ∈ R>t0 : ||f(t)− c||2 < ε.)

71



2.6 Finite Natural Atomic Event-systems

In this section, we settle Open 1 in the affirmative for the case of finite, natural, atomic

event-systems. The atomic hypothesis appears to be a natural assumption to make con-

cerning systems of chemical reactions. Therefore, our result may be considered a valida-

tion of the notion in chemistry that concentrations tend to equilibrium. We will prove

the following theorem:

Theorem 2.6.1. Let E be a finite, natural, atomic event-system of dimension n. Let

α ∈ Rn
>0. Then there exists an open, simply-connected Ω ⊆ C, an E-process f on Ω, and

a positive strong E-equilibrium point c such that:

1. R≥0 ⊆ Ω,

2. f(0) = α, and

3. f(t) → c as t → ∞ along the positive real line (i.e. for all ε ∈ R>0, there exists

t0 ∈ R>0 such that for all t ∈ R>t0 : ‖f(t)− c‖2 < ε).

It follows from Theorem 2.5.15 that the point c depends only on the conservation

class of α and not on α itself. That is, two E-processes starting at positive points in the

same conservation class asymptotically converge to the same c.

Implicit in the atomic hypothesis is the idea that atoms are neither created nor de-

stroyed, but rather are conserved by chemical reactions. Our proof uses a formal analog

of this idea. Recall from Definition 2.2.10 that if E is atomic then CE(M) contains a

unique monomial from MAE .
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Definition 2.6.1. Let E be a finite, natural, atomic event-system of dimension n. The

atomic decomposition mapDE : M{X1,X2,...,Xn} → Zn≥0 is the functionM 7→ 〈b1, b2, . . . , bn〉

such that Xb1
1 X

b2
2 · · ·Xbn

n ∈ CE(M) ∩MAE .

The next lemma lists some properties of the atomic decomposition map. Note that

though the event-graph GE is directed, if M and N are monomials and there exists a

path in GE from M to N then there also exists a path in GE from N to M . Informally,

this is because all events are “reversible.”

Lemma 2.6.2. Let E be a finite, natural, atomic event-system of dimension n and let

M,N ∈M{X1,X2,...,Xn}. Then:

1. DE(M) = DE(N) if and only if CE(M) = CE(N).

2. DE(MN) = DE(M) +DE(N).

Proof. Let D = DE .

(1) D(M) = D(N) = 〈b1, b2, . . . , bn〉 if and only if Xb1
1 X

b2
2 · · ·Xbn

n ∈ CE(M) and

Xb1
1 X

b2
2 · · ·Xbn

n ∈ CE(N). Then CE(M) = CE(N).

(2) Let D(M) = 〈b1, b2, . . . , bn〉 and D(N) = 〈c1, c2, . . . , cn〉. Then, in GE there is a

path from M to Xb1
1 X

b2
2 · · ·Xbn

n ∈ MAE and a path from N to Xc1
1 X

c2
2 · · ·Xcn

n ∈ MAE .

It follows that there is a path from MN to Xb1+c1
1 Xb2+c2

2 · · ·Xbn+cn
n ∈ MAE . Hence

D(MN) = 〈b1 + c1, b2 + c2, . . . , bn + cn〉 = D(M) +D(N).

Definition 2.6.2. Let E be a finite, natural, atomic event-system of dimension n. For

all i ∈ {1, 2, . . . , n}, for all M ∈M{X1,X2,...,Xn}, DE,i(M) is the ith component of DE(M).
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Definition 2.6.3. Let E be a finite, natural, atomic event-system of dimension n. For

all i ∈ {1, 2, . . . , n} the function κE,i : Cn → C is given by

〈z1, z2, . . . , zn〉 7−→
n∑
j=1

DE,i(Xj)zj .

Lemma 2.6.3. Let E be a finite, natural, atomic event-system of dimension n. Then for

all i ∈ {1, 2, . . . , n}, the function κE,i is a conservation law of E.

Proof. Let m = |E|, and for j = 1, 2, . . . ,m, let σj , τj ∈ R>0 and Mj , Nj ∈ M∞ with

Mj ≺ Nj be such that E = {σ1M1 − τ1N1, . . . , σmMm − τmNm}. For i = 1, 2, . . . , n, let

aj,i, bj,i ∈ Z>0 be such that Mj = X
aj,1
1 X

aj,2
2 · · ·Xaj,n

n and Nj = X
bj,1
1 X

bj,2
2 · · ·Xbj,n

n . Let

(γj,i)m×n = ΓE .

Then for j = 1, 2, . . . ,m:

σjMj − τjNj ∈ E

⇒ Mj ∈ CE(Nj) [Definition 2.2.8]

⇒ DE(Mj) = DE(Nj) [Lemma 2.6.2]

⇒
n∑
i=1

aj,iDE(Xi) =
n∑
i=1

bj,iDE(Xi) [Lemma 2.6.2]

⇒
n∑
i=1

(bj,i − aj,i)DE(Xi) = 0

⇒
n∑
i=1

γj,iDE(Xi) = 0 [Definition 2.3.1]
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It follows that for all j ∈ {1, 2, . . . ,m}, for all k ∈ {1, 2, . . . , n},

n∑
i=1

γj,iDE,k(Xi) = 0

Therefore, for all k ∈ {1, 2, . . . , n}, ΓE · 〈DE,k(X1), DE,k(X2), . . . , DE,k(Xn)〉T = 0.

Since the vector 〈DE,k(X1), DE,k(X2), . . . , DE,k(Xn)〉T is in the kernel of ΓE , by Theo-

rem 2.3.2, κE,k is a conservation law of E .

Lemma 2.6.4. Let E be a finite, natural event-system of dimension n. Let M,N ∈M∞

and let q ∈ Cn. If M ∈ CE(N) and q is a strong E-equilibrium point and M(q) = 0, then

N(q) = 0.

Proof. Let 〈v0, v1〉 be an edge in GE . Then there exist e ∈ E and σ, τ ∈ R>0 and

T,U, V ∈M∞ such that e = σU − τV and v0 = TU and v1 = TV .

Assume v0(q) = 0. Then either T (q) = 0 or U(q) = 0. If T (q) = 0 then v1(q) = 0.

If U(q) = 0 and q is a strong E-equilibrium point, then e(q) = σU(q) − τV (q) = 0, so

V (q) = 0. Therefore v1(q) = 0. The lemma follows by induction.

We are now ready to prove Theorem 2.6.1.

Proof of Theorem 2.6.1. Since α is a positive point, it is in some positive conservation

class H. By Theorem 2.5.15:

1. There exists exactly one positive strong E-equilibrium point c ∈ H.

2. There exist an open and simply-connected Ω ⊆ C and an E-process f on Ω such

that R≥0 ⊂ Ω and f(0) = α.
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3. For all t ∈ R≥0, f(t) ∈ H ∩ Rn
≥0.

4. There exists k ∈ R≥0 such that for i = 1, 2, . . . , n, for all t ∈ R≥0, fi(t) ∈ R and

0 ≤ fi(t) ≤ k.

Let {tj}j∈Z>0 be an infinite sequence of non-negative reals such that tj → ∞ as

j →∞. Then {f(tj)}j∈Z>0 is an infinite sequence contained in a compact subset of Rn,

so it must have a convergent subsequence. Let q = 〈q1, q2, . . . , qn〉 ∈ Cn be the limit

point of a convergent subsequence of {f(tj)}j∈Z>0 . H and Rn
≥0 are both closed in Cn, so

q ∈ H∩Rn
≥0. Since E is natural and q is an ω-limit of f , q must be a strong E-equilibrium

point by Lemma 2.5.14.

Assume, for the sake of contradiction, that q /∈ Rn
>0. Let i ∈ {1, 2, . . . , n} be such that

qi = 0. Let N ∈ CE(Xi)∩MAE . Since E is atomic, a unique such N exists. It follows from

the definition of event graph that Xi ∈ CE(N). By Lemma 2.6.4, N(q) = Xi(q) = qi = 0.

It follows thatN 6= 1. Hence, there existsXa ∈ AE such thatXa dividesN andXa(q) = 0.

For all j ∈ {1, 2, . . . , n} such that DE,a(Xj) 6= 0, let Mj ∈ CE(Xj) ∩MAE . Then Xa

divides Mj , so Mj(q) = 0. Again by Lemma 2.6.4, Xj(q) = Mj(q) = 0, so qj = 0. It

follows that for all j ∈ {1, 2, . . . , n} either DE,a(Xj) = 0 or qj = 0 so

κE,a(q) =
n∑
j=1

DE,a(Xj)qj = 0.

Since κE,a is a conservation law of E by Lemma 2.6.3 and q is an ω-limit point of f , it

follows that

κE,a(α) = 0. (2.24)
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For all j, DE,a(Xj) is nonnegative, and α is a positive point, so for all j ∈ {1, 2, . . . , n},

DE,a(Xj)αj ≥ 0. But DE,a(Xa) = 1 and αa > 0 so κE,a(α) > 0, contradicting equa-

tion (2.24). Therefore q ∈ Rn
>0. Since c is the unique positive strong E-equilibrium point

in H, c = q.

Let U ⊆ H ∩ Rn
>0 be the open set stated to exist in Theorem 2.5.15.2c. Since c is an

ω-limit point of f , there exists t0 ∈ R>0 such that f(t0) ∈ U . Again by Theorem 2.5.15,

there exist Ω̃ ⊆ C and an E-process f̃ on Ω̃ such that R≥0 ⊆ Ω̃ and f̃(0) = f(t0) and

f̃(t) → c as t → ∞. By Lemma 2.4.3, for all t ∈ R≥0, f(t + t0) = f̃(t). Therefore,

f(t)→ c as t→∞.

2.7 Conclusion

We have endeavored to place the kinetic theory of chemical reactions on a firm mathe-

matical foundation and to make the law of mass action available for purely mathematical

consideration.

With regard to chemistry, we have proven that many of the expectations acquired

through empirical study are warranted. In particular:

1. For finite event-systems, the stoichiometric coefficients determine conservation laws

that processes must obey (Theorem 2.3.3). In fact, we can show (manuscript in

preparation):

(a) For finite, physical event-systems, the stoichiometric coefficients determine all

linear conservation laws;
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(b) For finite, natural event-systems, the stoichiometric coefficients determine all

conservation laws.

2. For finite, physical event-systems, a process begun with positive (non-negative)

concentrations will retain positive (non-negative) concentrations through forward

real time where it is defined (Theorem 2.4.5). For finite, natural event-systems, a

process begun with positive (non-negative) concentrations will retain positive (non-

negative) concentrations through all forward real time (Theorem 2.5.15) — that is,

it will be defined through all forward real time.

3. Finite, natural event-systems must obey the “second law of thermodynamics” (The-

orem 2.5.6). In addition, the flow of energy is very restrictive — finite, natural

event-systems can contain no energy cycles (Theorem 2.5.1).

4. For finite, natural event-systems, every positive conservation class contains exactly

one positive equilibrium point. This point is a strong equilibrium point and is

asymptotically stable relative to its conservation class (Theorem 2.5.15).

Unfortunately, we, like our predecessors, are unable to settle the problem of whether

a process begun with positive concentrations must approach equilibrium. We consider

this the fundamental open problem in the field (Open Problem 1). For finite, natural

event-systems that obey a mathematical analogue of the atomic hypothesis, we settle

Open Problem 1 in the affirmative (Theorem 2.6.1). In particular, we show that for

finite, natural, atomic event-systems, every positive conservation class contains exactly

one non-negative equilibrium point. This point is a positive strong equilibrium point and
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is globally stable relative to the intersection of its conservation class with the positive

orthant.

In terms of expanding the mathematical aspects of our theory, there are several po-

tentially fruitful avenues including:

1. Complex-analytic aspects of event-systems. While we exploit some of the

complex-analytic properties of processes in this paper, we believe that a deeper

investigation along these lines is warranted. For example, if we do not restrict the

domain of a process to be simply-connected, then each component of a process

becomes a complete analytic function in the sense of Weierstrass.

2. Infinite event-systems. Issues of convergence arise when considering infinite

event-systems. To obtain a satisfactory theory, some constraints may be necessary.

For example, a bound on the maximum degree of events may be worth considering.

It may also be possible to generalize the notion of an atomic event-system to the

infinite-dimensional case in such a way that each atom has an associated conser-

vation law. One might then restrict initial concentrations to those for which each

conservation law has a finite value. Additional constraints are likely to be needed

as well.

3. Algebraic-geometric aspects of event-systems. Every finite event-system that

generates a prime ideal has a corresponding affine toric variety (as defined in [11, p.

15]). The closed points of this variety are the strong equilibria of the event-system.

Further, every affine toric variety is isomorphic to an affine toric variety whose ideal

is generated by a finite event system. One could generalize event-systems to allow
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irreversible reactions. In that case, it appears that the prime ideals generated by

such event-systems are exactly the ideals corresponding to affine toric varieties.

We can show (proof not provided) that finite, natural, atomic event-systems gener-

ate prime ideals. We are working towards settling Open Problem 1 in the affirmative

for every finite, natural event-system that generates a prime ideal.
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Chapter 3

Experiments in DNA Self-Assembly

See plastic Nature working to this end,
The single atoms each to other tend,
Attract, attracted to, the next in place
Form’d and impell’d its neighbour to embrace.
—Alexander Pope, An Essay on Man.

Nickolas Chelyapov, Yuriy Brun, Dustin Reishus, Bilal Shaw, Leonard Adleman and I

have used DNA self-assembly to form triangles and hexagonal tilings. In Section 3.1, I

present a jointly-authored article [8] describing this research.

In Section 3.2, I present cylinders and Möbius strips self-assembled from DNA. This

work was done in collaboration with Leonard Adleman and Nikhil Gopalkrishnan.
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3.1 DNA Triangles and Self-Assembled Hexagonal Tilings

3.1.1 Abstract

We have designed and constructed DNA complexes in the form of triangles. We have

created hexagonal planar tilings from these triangles via self-assembly. Unlike previously

reported structures self-assembled from DNA, our structures appear to involve bending

of double helices. Bending helices may be a useful design option in the creation of self-

assembled DNA structures. It has been suggested that DNA self-assembly may lead to

novel materials and efficient computational devices.

3.1.2 Main Paper

There are exactly three regular tilings of the plane: one composed of triangles, one

of squares, and one of hexagons. We have constructed DNA complexes in the form of

triangles that self-assemble into planar structures in the form of regular hexagonal tilings.

To date, only a small number of DNA complexes have been demonstrated to self-

assemble into orderly structures. For example, Seeman et al.[30] created double-crossover

complexes and Winfree et al.[35] showed that they self-assemble into planar structures

in the form of rectangular tilings. LaBean et al.[20] extended the double-crossover mo-

tif to create triple-crossover complexes that also assemble into structures of this form.

Quadruple-crossover complexes that assemble into structures of this form have also been

reported.[7] Yan et al.[38] created 4 by 4 complexes that assemble into planar structures

in the form of square tilings, and Liu et al.[23] created triangular complexes that can

assemble into orderly structures of several different forms. Recently, Ding et al.[9] also
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Figure 3.1: Schematics. (a) Type-a triangular complex. Core strand (black), side strands
(red), horseshoe strands (purple), Watson-Crick pairing (gray). (b) Type-b triangular
complex. Core strand (black), side strands (green), horseshoe strands (orange), Watson-
Crick pairing (gray). (c) Hexagonal structure composed of six triangular complexes. (d)
Hexagonal tiling composed of hexagonal structures. (e) A pair of overlapping hexagonal
tilings. Top layer shown gray; bottom layer shown black. (see also Figure 3.2b).

demonstrated the creation of hexagonal structures from triangular complexes using an

approach different from the one presented here.

We were inspired to explore triangular complexes by Yang et al.[39], who used them as

markers on structures formed from double-crossover complexes. We created free-standing

triangular complexes composed of seven strands of DNA. We designed two such complexes

that stick to one another at their vertices. The type-a complex, Figure 1a, has a 90-mer

core strand (the same length as the core strand used by Yang et al.), three 52-mer

side strands with identical sequences, and three 14-mer horseshoe strands with identical

sequences. The type-b complex, Figure 1b, has a 90-mer core strand with sequence

identical to that used in the type-a complex, three 52-mer side strands with identical

sequences, and three 30-mer horseshoe strands with identical sequences. The unpaired

bases at the ends of the side strands in the type-a complex are complementary to the

unpaired bases at the ends of the horseshoe strands in the type-b complex, allowing
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Figure 3.2: Atomic force micrograph images of self-assembled structures. Height informa-
tion sensed by the AFM is encoded in pixel amplitude. (a) Hexagonal structure composed
of six triangular complexes. (b) A pair of overlapping hexagonal tilings (see also Figure
1e). (c) Structures composed of hexagonal and non-hexagonal rings.

triangles to connect at these sticky ends. In theory, such triangles can form a hexagon,

as shown in Figure 1c, and hexagons can form a tiling, as shown in Figure 1d.

The two types of triangular complexes were assembled in separate tubes by anneal-

ing. The complexes were then combined at room temperature. Atomic force microscope

images of the resulting structures are shown in Figure 2.

Figure 2a shows six triangular complexes assembled into a single hexagonal structure.

The distance between opposing sides is approximately 35 nm, which is in good agreement

with expectations based on number of base pairs in the structure. Figure 2b (see also

Figure 1e) shows two hexagonal tilings, one lying on top of the other. One-half of the

triangles of the top tiling lie in the centers of the hexagons of the bottom tiling. The

remaining triangles of the top tiling lie directly on top of the triangles of the bottom

tiling. Where triangles overlap the structure has greater height, as revealed by bright

spots in Figure 2b. In our experience, tilings layered in this way are common. Layering
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of tilings also occurs in the hexagonal lattices of Ding et al.,[9] where the hexagons on

successive layers appear to have centers that coincide.

We designed our complexes to form equilateral triangles and to stick to each other

but not to themselves. Figure 2a suggests that they do have this form and stick in

this way. However, sticking in this way is also consistent with the formation of ring

structures containing any even number of triangular complexes. Such structures are

perhaps energetically less favorable than a hexagonal structure; nonetheless, they do

form. Figure 2c shows a broad view of structures consisting of hexagons together with

ring structures with more or fewer than six vertices. It seems likely that the number of

such non-hexagonal ring structures could be reduced by using more than two types of

triangular complexes.

Occasionally, rings with an odd number of triangles also form. These may result from

our use of the same core strand in the two types of triangular complexes. A common core

strand allows for the creation of chimeric triangular complexes containing side strands

from complexes of different types. It seems likely that the number of such rings could be

reduced by using distinct strands in triangular complexes of different types.

In many published works on DNA self-assembly, the assembled structures are planar

and composed of double helices running in parallel[30, 35, 20, 22, 21, 13]. While our

structures are planar, they do not have this form. In the case of hexagons as shown in

Figure 1c, helices run parallel where sticky ends come together, but meet at angles of 150

or 60 where no sticky ends are present. It appears that some helices in our structures

are bent. The use of long side strands with a 30-mer complementarity to the core strand

in our triangular complexes may be critical in allowing bending to occur. In fact, when
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triangular complexes employing shorter side strands with only a 21-mer complementarity

to a 63-mer core strand were attempted, AFM imaging revealed no structures (data not

shown). While existing DNA self-assembled structures use helices as linear elements,

bending may allow for the use of helices as curvilinear elements, thus providing greater

freedom in the design of future self-assembled DNA structures.

The 4 by 4 complexes of Yan et al.[38] produce planar structures with helices inter-

secting at 90 angles. The helices in the 4 by 4 complex have unpaired stretches of polyT.

Images show that helices make right-angle turns, presumably at these sites[38]. Thus,

unlike our structures, where helices apparently bend, helices in structures created with

the 4 by 4 complex apparently hinge.

Liu et al.[23] also described structures with nonparallel helices. However, these struc-

tures are not planar, and helices are allowed to cross each other without bending. Like

our structures, these structures are created from triangular complexes designed to stick

to one another at vertices. While the triangular complexes of Liu et al. stick to one

another via one helix, our complexes stick via two. This may provide greater integrity.

In addition, our structures may be useful when planarity is desired.

Ding et al.[9] have recently created pseudohexagonal structures from triangles. They

appear to have avoided the problem of nonhexagonal ring formation by using triangles

with sides composed of double crossovers,1 which may provide greater rigidity than the

single-helical sides used in our triangles.

Using the design concepts described here, it seems possible, in principle, to create

complexes with arbitrary polygonal shapes. Of immediate interest would be the creation

of squares, pentagons, and non-equilateral triangles.
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3.1.4 DNA Sequences

Type-a triangular complex

black: ttcgtccagtgagcatcctgtagttgcggattcgtccagtgagcatcctgtagttgcggattcgtccagt gagcatc-

ctgtagttgcgga

red: ggatagcgccatgctcactggacgaatccgcaactacaggaacgaacactcc

purple: tgttcgttggcgct

Type-b triangular complex black is the same as in type-a triangular complex

green: gactgagcccatgctcactggacgaatccgcaactacaggaactactcatcc

orange: atccggatgagtagttgggctcagtcggag

Purple and orange sequences were derived from those found in [38].

3.1.5 Materials and Methods

DNA strands were synthesized and PAGE purified by Integrated DNA Technologies

(IDT). Type-a triangular complexes were created in a solution consisting of 0.2 M black

strand, 0.6 M red strand, and 0.6 M purple strand in TAE/Mg2+ buffer (40mM Tris-HCl,

pH 8.0; 1 mM EDTA; 12.5 mM MgOAc). The solution was heated to 90 C for 2 minutes,

then cooled to 40 C at 2 C/min, then to 25 C at 1 C/min. Type-b complexes were created

similarly.
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3.1.6 AFM Sample Preparation and Imaging

Equal volumes of solutions containing type-a and type-b triangular complexes were com-

bined and incubated at room temperature for several hours. A 5 l aliquot was spotted

onto freshly cleaved mica (Ted Pella), left for 30 seconds and then topped with 25 l of

TAE/Mg2+ buffer. Imaging was performed on a Multimode Nanoscope IIIa atomic force

microscope (Digital Instruments) in tapping mode, using a fluid cell, J scanner and 200

m cantilevers with Si3N4 tips.

3.2 Cylinders and Möbius strips from DNA origami

We report the self-assembly of two novel DNA complexes. Using the technique of DNA

origami [26], we have assembled DNA complexes in the shape of cylinders (Figures 3.3a,3.3b)

and in the shape of Möbius strips (Figures 3.3c,3.3d). We believe this is the first demon-

stration of Möbius strips at the nanoscale.

Rothemund’s origami square, our cylinder and our Möbius strip employ nearly the

same set of oligonucleotides. If cut open, both the cylinder and the Möbius strip would

form squares of approximately 100 nm a side.

The structures of Rothemund [26] and the origami nanotubes of Douglas et al. [10]

were designed to enforce specific angles between adjacent double helices. We nonetheless

suspected that the Rothemund square would have sufficient residual flexibility to absorb

the stress induced by twisting into a Möbius strip or a cylinder. Our results confirm that

this is the case.
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Möbius strips are known to be chiral in Euclidean 3-space. They may be clockwise

or counterclockwise. Atomic force micrographs suggest that there may be a preference

for our DNA self-assembly to produce counterclockwise Möbius strips. If this is so, then

DNA self-assembled structures might ultimately be useful as a basis for the creation of

asymmetric catalysts for the enantioselective synthesis of chiral compounds.

(a) 1.1 µm× 1.1 µm (b) 175.8 nm× 175.8 nm (c) 1.1 µm× 1.1 µm (d) 134.8 nm× 134.8 nm

Figure 3.3: Atomic force microscope scans of cylinders (a,b) and Möbius strips (c,d).
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