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 CHAPTER 8 

 

 

YAGI-UDA, SPIRAL AND LOG PERIODIC ANTENNAS 

 
 

8.1 YAGI-UDA ANTENNAS 

 

In Chapter 3 it is shown that array antennas can be used to increase directivity. In the 

arrays all elements were active, requiring a direct connection to each element by a feed 

network. Array feed networks are considerably simplified if only a few elements are fed 

directly. Such an array is referred to as a parasitic array. The elements that are not 

directly driven (called parasites) receive their excitation by near-field coupling from the 

driven elements. A parasitic linear array of parallel dipoles is called a Yagi-Uda antenna, 

a Yagi-Uda array, or simply “Yagi.” Yagi-Uda antennas are very popular because of their 

simplicity and relatively medium gain.  

 

 To understand the principles of operation for a three element Yagi, a driven element (or 

“driver”) is considered first and add parasites to the array. A driven element is considered 

that is a resonant half-wave dipole. If a parasitic element is positioned very close to it, it 

is excited by the driven element with roughly equal amplitudes, so the field incident on 

the parasite is 

 

                                        driverincidentE E=                                                                      (8.1) 

 

A current is excited on the parasite and the resulting radiated electric field, also tangent to 

the wire, is equal to in amplitude and opposite in phase to the incident wave. This is 

because the electric field arriving at the parasite from the driver is tangential to it and the 

total electric field tangential to a good conductor is zero. Thus, the field radiated by the 

parasite is such that the total tangential field on the parasite is zero, or 

incident parasite0 E E= + . Combining this fact with (8.1) gives 

 

                                    parasite incident driverE E E= − = −                                                      (8.2) 

 

From array theory, it is known that two closely spaced, equal amplitude, opposite phase 

elements will have an endfire pattern. The pattern of this simple two-element parasitic 

array for 0.04λ spacing is shown in Figure 8.1. 
 

The simplistic beauty of the Yagi is revealed by lengthening the parasite. The dual 

endfire beam is changed to a more desirable single endfire beam. This effect is illustrated 

for the two-element parasite array of Figure 8.2. The driver is a dipole of length 0.4781λ, 
which is a half-wave resonant length when operated in free space. The parasite is a 

straight wire of length 0.49λ and spaced a distance 0.04λ away from the driver. The H-
plane pattern in Figure 8.2b obtained from the numerical methods demonstrates the 
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general trend of a parasite that is longer than the driver: a single main beam occurs in the 

endfire direction from the parasite to the driver along the line of array. Such a parasite is 

called a reflector because it appears to reflect radiation from the driver. 

   
Figure 8.1 A two-element arrays of half-wave resonant dipoles, one a driver and the 

other a parasite. The currents on both are equal in amplitude and opposite in phase. 

 

 
Figure 8.2 Two-element Yagi-Uda antenna consisting of a driver of length 0.4781λ and a 
reflector of length 0.49λ spaced 0.04λ away. The wire radius for both is 0.001λ. 
 

If the parasite is shorter than the driver, but now placed on the other side of the driver, the 

pattern effect is similar to that when using a reflector in the sense that main beam 

enhancement is in the same direction. The parasite is then referred to as a director since it 

appears to direct radiation in the direction from the driver toward the director. The 

parasitic array in Figure 8.3a consisting of a driver and a director has the pattern shown in 

Figure 8.3b. 
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Figure 8.3 Two-element Yagi-Uda antenna consisting of a driver of length 0.4781λ and a 
director of length 0.45λ spaced 0.04λ away. The wire radius for both is 0.001λ. 
 

The single endfire beam created by the use of a reflector or a director alone with a driver 

suggests that even further enhancement could be achieved with a reflector and a director 

on opposite sides of a driver. An example of a three-element Yagi is shown in Figure 

8.4a, which is a combination of the geometries of Figs. 8.2a and 8.3a. The pattern of 

Figure 8.4b is improved over that of either two-element array. The E-plane pattern for the 

three-element Yagi is shown in Figure 8.4c. It is essentially equal to the H-plane pattern 

multiplied by the element factor of the array, which is that of a half-wave dipole. Again, 

these patterns were obtained by numerical solution for exceptionally small element 

spacing (0.04λ). 
 

 
Figure 8.4 Three-element Yagi-Uda antennas consisting of a driver of length 0.4781λ, a 
reflector of 0.49λ, and a director of length 0.45λ, each spaced only 0.04λ apart. The wire 
radius for each is 0.001λ. 
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The general Yagi configuration is shown in Figure 8.5. The maximum directivity 

obtainable from a three-element Yagi is about 9 dBi or 7 dBd. The optimum reflector 

spacing RS (for maximum directivity) is between 0.15 and 0.25λ. 
 

 
 

Figure 8.5 General Yagi-Uda antenna.  

 

Director-to-director spacings are typically 0.2 to 0.35 wavelengths, with the larger 

spacings being more common for long arrays and closer spacings for shorter arrays. 

Typically, the reflector length is 0.5λ and the driver is of resonant length when no 
parasitic elements are present the director lengths are typically 10 to 20% shorter than 

their resonant length, the exact length being rather sensitive to the number of directors 

DN  and the inter-director spacing DS . 

  

The increase in gain of the Yagi is smaller as more directors are added to the array (if we 

assume DS  is fixed) since the Yagi is not uniformly excited. In fact, the addition of the 

directors up to about 5 or 6 provides a significant increase in gain expressed in dB, 

whereas the addition of more directors is beyond the “point of diminishing returns” as 

Figure 8.6 shows. Figure 8.6 plots the gain versus of number of elements N in the array 

(including one reflector and one driver) for an inter-element spacing for all elements 

of 0.15R DS S λ= = . It should be noted that adding one director to increase N from 3 to 4 

gives about a 1-dB gain increase, whereas adding one director to increase N from 9 to 10 

yielded only about an additional 0.2-dB gain. 

 

The addition of more reflector elements results in a fractional dB increase in gain and is 

usually not done. The main effects of the reflector are on the driving points impedance at 

the feed point and on the back lobe of the array. Pattern shape, and therefore gain, are 

mostly controlled by the director elements. The director spacing and director length are 

interrelated, but the more sensitive parameter is the director length, which becomes more 

critical as the boom length increases. 

 

Boom lengths from 0.2 to 4.2λ are used. if a metal boom is used. A metal boom may be 
used because the voltage distribution on the parasitic elements goes through a zero at the 
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element center. Ideally, an infinitely thin metallic boom down the center of the array 

would not change the voltage distribution. However, metallic booms of practical size to 

have an effect that must be compensated for by increasing the parasitic element lengths as 

shown in Figure 8.7. Alternatively, the parasitic elements may be insulated from the 

boom, in which case no compensation is required. 

 

 
Figure 8.6 Gain of a typical Yagi-Uda antenna versus the total number of elements. The 

element spacings 0.15R DS S λ= = . The conductor diameters are 0.0025λ. 
 

 
Figure 8.7 Graph showing effect of supporting metal boom on the length of Yagi 

parasitic elements. 
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The Yagi is one of the more popular antennas used in the HF-VHF-UHF frequency 

range. It provides moderately high gain while offering low weight and low cost. It has a 

relatively narrow bandwidth (e.g., a few percent), which may be improved somewhat by 

using feeds other than a dipole, such as a folded dipole. The folded dipole also provides a 

higher input impedance than a dipole even though the driving point impedance of both 

are usually reduced considerably from their self-impedances by mutual coupling effects. 

Further, increased gain can be obtained by arraying or ‘stacking” Yagi antennas. 

Maximum gain results for a separation of almost one wavelength. Thus, for a given 

application, if a somewhat narrow bandwidth can be tolerated, the Yagi-Uda antenna can 

provide good gain at low cost.  

 

8.2 THE FREQUENCY-INDEPENDENT CONCEPT: RUMSEY’S PRINCIPLE. 
 

Victor H. Rumsey developed and introduced a new way of looking at the antennas and 

their operation as a function of the frequency. Rumsey was intrigued with Mushiake’s 

observation that self-complementary antennas have a constant impedance of 0 / 2Z , or 

half the intrinsic impedance of space, at all frequencies. This is remarkable since there is 

an infinity of self-complementary shapes. A self-complementary planar antenna has a 

metal area congruent to the open area, i.e., the two areas can be brought into coincidence 

by a rigid motion. The metal and open areas are congruent since a rotation of either 

brings both into coincidence. The slot and complementary dipole antennas of Chapter 2 

are similarly related but usually require a translation for coincidence. Mushiake’s 0 / 2Z  

result comes directly from booker’s relation for complementary slots and dipoles. 

 

Rumsey’s principle is that the impedance and pattern properties of an antenna will be 

frequency independent if the antenna shape is specified only in terms of angles. Thus, an 

infinite logarithmic spiral should meet the requirement.The biconical antenna is an 

example of an antenna that can be specified only in terms of the included cone angle, but 

it is frequency independent only if it is infinitely long. When truncated (without a 

matched termination) there is a reflected wave from the ends of the cones which results in 

modified impedance and pattern characteristics. 

 

To meet the frequency-independent requirement in a finite structure requires that the 

current attenuate along the structure and be negligible at the point of truncation. For 

radiation and attenuation to occur charge must be accelerated (or decelerated) and this 

happens when a conductor is curved or bent normally to the direction in which the charge 

is traveling. Thus the curvature of a spiral results in radiation and attenuation so that, 

even when truncated, the spiral provides frequency-independent operation over a wide 

bandwidth. Rumsey’s principle was implemented experimentally by John. D. Dyson at 

the university of Illinois, who constructed the first practical frequency-independent spiral 

antennas in 1958, first the bidirectional planar spiral and then the unidirectional conical 

spiral. These two types are described in the next two sections. 

 

8.2.1 The Frequency-Independent Planar Log-Spiral Antenna 
 

The equation for a logarithmic (or log) spiral is given by 
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                                           r aθ=                                                                                   (8.3) 

 

or                                      In Inr aθ=                                                                          (8.4) 

 

where, referring to Figure 8.8, 

                    r = radial distance to point P on spiral 

                    θ = angle with respect to x axis 
                    a = a constant 

 

 
Figure 8.8 Logarithmic or log spiral. 

 

From (8.3), the rate of change of radius with angle is 

 

                      
dr

In In
d

a a r aθ

θ
= =                                                                                (8.5) 

 

The constant a in (8.5) is related to the angle β between the spiral and a radial line from 
the origin as given by 

 

                      
1

In
tan

dr
a

r dθ β
= =                                                                                 (8.6) 

 

Thus, from (8.6) and (8.4),  

  

                          tan In rθ β=                                                                                        (8.7) 
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The log spiral in Figure 8.9 was constructed so as to make r =1 at θ = 0 and r = 2 at θ = 
π. These conditions determine the value of the constants a and β. Thus, from (8.6) and 
(8.7), 77.6β = o , and a = 1.247. Thus, the shape of the spiral is determined by the anglel 

β which is the same for all points on the spiral.  
 

Let a second log spiral, identical in form to the one in Figure 8.9, be generated by an 

angular rotation δ  so that (8.3) becomes 
 

                                                2r aθ δ−=                                                                          (8.8) 

 

and a third and fourth spiral given by 

 

                                              3r aθ π−=                                                                            (8.9) 

and                                        4r aθ π δ− −=                                                                       (8.10) 

   

Then, for a rotation / 2δ π=  we have 4 spirals at 90o  angles. Metalizing the areas 

between spirals 1 and 4 and 2 and 3, with the other areas open, self-complementary and 

congruence conditions are satisfied. Connecting a generator or receiver across the inner 

terminals, we obtain Dyson’s frequency-independent planar spiral antenna of Figure 8.9.  
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Figure 8.9 Frequency-independent planar spiral antenna.  

 

The arrows indicate the direction of outgoing waves traveling along the conductors 

resulting in right-circularly polarized (RHCP) radiation outward from the page and left-

circularly polarized (LHCP) radiation into the page. The high-frequency limit of 

operation is determined by the spacing d of the input terminal and the low-frequency 

limit by the overall diameter D. The ratio D/d for the antenna of Figure 8.9 is about 25 to 

1. If we take d = λ/10 at the high-frequency limit and D = λ/2 at the low-frequency limit, 
the antenna bandwidth is 5 to 1. The spiral should be continued to a smaller radius but, 

for clarity, the termination separation shown in Figure 8.10 is larger than it should be. 

Halving it doubles the bandwidth.     
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In practice it is more convenient to cut the slots for the antenna from a large ground 

plane, as done by Dyson, and feed the antenna with a coaxial cable bonded to one of the 

spiral arms as in Figure 8.10, the spiral acting as a balun. A dummy cable may be bonded 

to the other arm for symmetry but is not shown. 

 

 

 

Figure 8.10 Frequency-independent planar spiral antenna cut from large ground plane. 

 

Radiation for the antennas of Figs. 8.9 and 8.10 is bidirectional broadside to the plane of 

the spiral. The patterns in both directions have a single broad lobe so that the gain is only 

a few dBi. The input impedance depends on the parameters δ  and a and the terminal 
separation. According to Dyson, typical values are in the range 50 to 100Ω , or 
considerably less than the theoretical 188Ω ( )0 / 2Z= . The smaller measured values are  

due to the finite thickness of spirals. 
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Referring to Figure 8.9, the ratio K of the radii across any arm, such as between spirals 2 

and 3, is given by the ratio of (8.9) to (8.8), or  

 

                                 3

2

r
K a

r

π δ− += =                                                                             (8.11) 

 

For the antenna of Figure 8.10, / 2δ π=  so 

 

                              / 23

2

0.707( 1/ 2)
r

K a
r

π−= = = =                                                    (8.12)    

 

This is seen to be the ratio of the radial distances to the spiral of Figure 8.10 at successive 

90o  intervals.   

 

8.3 LOG PERIODIC ANTENNA 

 

A log-periodic antenna is another form of frequency-independent antenna and has a 

structural geometry such that its impedance and radiation characteristics repeat 

periodically as the logarithm of frequency. In practice, the variations over the frequency 

band of operation are minor. 

 

The final phase in this metamorphosis of log-periodic antennas is the use of only parallel 

wire segments. This is the log-periodic dipole array of Figure 8.11. The log-periodic 

dipole array (LPDA) is a series-fed array of parallel wire dipoles of successively 

increasing lengths outward from the feed point at the apex. Note that the interconnecting 

feed lines cross over between adjacent elements.  

 

A particularly successful method of constructing an LPDA is shown in Figure 8.12. A 

coaxial transmission line is run through the inside of one of the feed conductors. The 

outer conductor of the coax is attached to that conductor and the inner conductor of the 

coax is connected to the other conductor of the LPDA transmission line. 

 

As shown in Figure 8.11, a wedge of enclosed angle α bounds the dipole lengths. The 
scale factor T for the LPDA is  

 

               1 1n

n

R

R
τ += <                                                                                                   (8.13) 
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Figure 8.11 Log-periodic dipole array geometry. 

 

 
Figure 8.12 Construction details of the log-periodic dipole array. 

 

Right triangles of enclosed angle α/2 reveal that 
 

                                  1

1

/ 2 / 2
tan

2

n n

n n

L L

R R

α +

+

= =                                                              (8.14) 

 

Thus, 
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Using this result in (8.13) gives  

 

                                         1 1n n

n n

R L

R L
τ + += =                                                                   (8.16) 

 

The spacing factor for the LPDA is defined as  

 

                                               
2

n

n

d

L
σ =                                                                         (8.17) 

 

Where the element spacings as shown in Figure 8.12 are given by 

 

                                            1n n nd R R += −                                                                   (8.18) 

But 

        1 Tn nR R+ = , so 

 

                                      (1 )T Tn n n nd R R R= − = −                                                       (8.19)    

 

From (8.14), / 2 tan( / 2)n nR L α= . Using this in (8.19) yields 

 

                                       (1 )
2 tan( / 2)

n
Tn

L
d

α
= −                                                        (8.20) 

 

Substituting this in (8.17) gives 

 

                                    
1

2 4 tan( / 2)

Tn

n

d

L
σ

α
−

= =                                                              (8.21) 

or  

                                           

                                    1 12 tan
4

T
α

σ
− − =  
 

                                                                   (8.22)      

 

Combining (8.22) with (8.16), we note that all dimensions are scaled by 

 

                                  1 1 1n n n
T

n n n

R L d

R L d

+ + += = =                                                                (8.23) 

 

There is an active region for the LPDA, where the few dipoles near the one that is a half-

wavelength long support much more current than do the other radiating elements. It is 

convenient to view the LPDA operation as being similar to that of a Yagi-Uda antenna. 

The longer dipole behind the most active dipole (with largest current) behaves as a 
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reflector and the adjacent shorter dipole in front acts as a director. The radiation is then 

off of the apex. The wedge enclosing the antenna forms an arrow pointing in the direction 

of the main beam maximum. 

 

As the operating frequency changes, the active region shifts to a different portion of the 

antenna. The frequency limits of the operational band are roughly determined by the 

frequencies, at which the longest and shortest dipoles are half-wave resonant, that is,  

      

                             1
2

LL
λ

≈            and                
2

U

NL
λ

≈                                           (8.24) 

 

where Lλ and Uλ  are the wavelengths corresponding to the lower and upper frequency 

limits. Since the active region is not confined completely to one dipole, often dipoles are 

added to each end of the array to ensure adequate performance over the band. The 

number of additional dipoles required is a function of T  and σ . But for noncritical 
applications, (8.24) is sufficient.  

 

 The pattern, gain, and impedance of an LPDA depend on the design parameters T  and 

σ . Since the LPDA is a very popular broadband antenna of simple construction, low 
cost, and light weight, we will give the design details and illustrate them by examples. 

Gain contours are plotted in Figure 8.13 as a function of T  and σ . It should be noted that 
high gain requires a large value of T , which means a very slow expansion, that is, a 

LPDA of large overall length. Gain is only slightly affected by the dipole thickness. It 

increases about 0.2 dB for a doubling of the thickness. Gain is also affected by the feeder 

impedance and tends to decrease as the feeder impedance is increased above 100 Ω. 
 

The bottom portion of Figure 8.13 shoes a gain curve that is derived from the data in 

where N the number of dipoles varies from 12 to 47. Notice that the value of  maxG  is 

greater than the value of the gain contour at the optimum σ  line in the top portion of 
Figure 8.13. The maxG vs. T  curve probably represents an upper bound on the LPDA gain 

that can be achieved in practice for feeder impedances of 100 Ω or greater. 
 

Example 8.1: Optimum Design of a 54- to 216-MHz Log-periodic Dipole Antenna    
 

It is desired to have an antenna that operates over the entire VHF-TV and FM broadcast 

bands, which span the 54- to 216-MHz frequency range for a 4:1 bandwidth. Suppose the 

design gain is chosen to be 6.5 dB. The corresponding values of T  and σ  for a optimum 
design from Figure 8.13 are  

 

                               0.822T =            and           0.149σ =                                          (8.25) 
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Figure 8.13 Gain of a log-periodic dipole array. {corresponding (top) adapted from 

Carrel  maximum gain curve (bottom) derived from data in }. 

 

Then from (8.2), we have  

 

                                   
( )

1 01 0.822
2 tan 33.3

4 0.149
α −

 −
= =  

 
                                                (8.26) 

 

The length of the longest dipole is determined first. At the lowest frequency of operation 

(8.54 MHz), the dipole length from (8.24) should be near a half-wavelength, so  

 

                                1 0.5 0.5(5.55) 2.78LL mλ= = =                                                    (8.27) 

 

The shortest dipole length should be on the order of 0.5 0.694U UL mλ= = at 216 MHz. 

the LPDA element lengths are computed until a length on the order of 0.694 m is 

reached. To be specific, element lengths are found from 1L  using 1nL + = T nL . For 

example, 
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                       2 1 (0.822)(2.78) 2.29 mTL L= = =                   

and 

 

                       3 2 (0.822)(2.29) 1.88 mTL L= = =  

 

Completing this process leads to  

 

               1L  = 2.78 m,     2L  = 2.29 m,         3L  = 1.88 m,           4L  = 1.54 m, 

               5L  = 1.27 m,     6L  = 1.04 m,        7L  = 0.858 m,          8L  = 0.705 m        (8.28) 

               9L  = 0.579 m     

 

The array was terminated with nine elements since 9L  = 0.579 m is less than the 0.694 m 

length for the highest operating frequency. Elements could be added to either end to 

improve performance at the band edges. 

 

          The elements spacing for this example are found from (8.6-83) as  

 

                         2 2(0.149) 0.298n n n nd L L Lσ= = =                                                   (8.29) 

 

Using the element lengths of  dn  are obtained as  

 

             1d  = 0.828 m,     2d  = 0.682 m,     3d  = 0.560 m,     4d  = 0.459 m,              

             5d  = 0.378 m,    6d  = 0.310 m,      7d  = 0.256 m,     8d  = 0.210 m              (8.30)  

 

The total length of the array is the sum of the spacings in (8.30), which gives a 3.683 m. 

The outline of the antenna fits into an angular sector of angle 033.3α = . 

                


