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Abstract: In this paper, a technique is proposed for synthesizing robust sampled-
data feedback systems for plants described by polynomial NARMAX models. The
technique is based on the concept of generalized frequency response functions, and

exploits recent results that enable derivation of these directly from the NARX

description of the plant. A nonlinear chemical reactor example is solved using the

procedure and found to yield satisfactory results.
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1. INTRODUCTION

Sampling of real finitely realizable continuous-time
nonlinear systems naturally produces NARMAX
(Nonlinear AutoRegressive Moving Average with
eXogenous inputs) models, as demonstrated by
Chen and Billings (1989). The NARMAX model
provides a unified representation for a wide class of
discrete-time nonlinear stochastic systems, and in-
cludes several known nonlinear input-output mod-
els, such as Hammerstein, Weiner bilinear, and
state -affine, as special cases. The chief advantages
of the NARMAX model over functional series rep-
resentations such as the Volterra series, are that
for identification the former requires a reduced

number of parameters, smaller data sets, and there
is no need for special input signals. With the
identification results also being easier to analyze
for NARMAX models, these are certainly more
convenient to use than the Volterra series.

Of the various forms of NARMAX models the
polynomial NARMAX model is perhaps the most
suitable in practical applications, because it is
linear in the parameters. Many linear identifica-
tion results have been extended to the polynomial
NARMAX model, and several combined routines
of intelligent structure determination and para-
meter estimation are available, see Korenberg, et
al. (1988). Indeed, practical identification of sev-
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Fig. 1. The nonlinear sampled-data system.

eral industrial systems has established that most
practical systems can be satisfactorily modeled by
polynomial NARMAX models.

Quantitative Feedback Theory (QFT) of Horowitz
(1993) is a well-established body of robust con-
trol synthesis techniques. A QFT technique for
sampled-data systems comprising of a nonlin-
ear continuous time plant modeled by differential
equations has been outlined by Horowitz and Liao
(1986). However there are no QFT techniques to
handle systems described by polynomial NAR-
MAX models. In view of the popularity and wide-
spread use of these models, it is very desirable
to have such a QFT technique. In this work, we
propose a QFT technique for systems described by
polynomial NARMAX models.

Further, in the nonlinear QFT procedures of
Horowitz (1976) and Ioinovici (1987), a major
computational difficulty arises while generating
templates of the so-called ‘LTIE plant’ set. Our
proposed technique is also based on the LTIE
plant approach. However, in our technique a new
method of computing the LTIE plant templates
based on generalized describing functions is in-
troduced. In the new method, the LTIE plant
templates are generated easily and efficiently, di-
rectly from the coefficients of the nonlinear model.
Thereby, the computational difficulties inherent
in the existing methods of LTIE plant template
generation are solved.

To implement the proposed procedure on non-
linear systems, an integrated package has been
developed (cf. sec. 4.3). Initial experience with this
package in the area of chemical process control has
been encouraging (a simulated chemical reactor

examples is given in sec. 5). It is hoped that
the developments and software tools reported here
make it possible to use QFT on-line in nonlinear
robust control, in the not too distant future.

It is assumed in this paper that the reader is
familiar with the ideas and results concerning
nonlinear frequency response functions as given by
Jones and Billings (1991), and with those of QFT
methods as given by Horowitz (1976; 1993) and
Horowitz and Liao (1986).

2. BACKGROUND

Consider a nonlinear SISO plant in a two degree
of freedom structure. Suppose the plant is given
u(t) —
y(t), with unique continuous inverse w=1. Due to

by nonlinear continuous mapping w :

the uncertainty in physical parameters, there is
a denumerable set of nonlinear plants W = {w}.
The given finite set of deterministic inputs I to
the system consists of the set of possible setpoint
signals R = {r} and disturbances I = {d}. For
each i, € I, there is a specified set of acceptable
plant outputs A,. The design problem is to find
strictly proper LTI operators F' (the prefilter) and
G (the controller), such that for each i, € I, the
system output y € A,,Vw € W.

For nonlinear continuous-time plants, a QFT syn-
thesis technique to solve the above problem has
been presented by Horowitz (1976). The tech-
nique, based on Schauder’s fixed point theorem
and valid for zero-initial conditions, is basically a
two-step procedure: The first step is to find a set
P., of what are known as LTI ‘equivalent’ (LTIE)
plants. The second step is to solve the synthesis
problem with P, replacing W. It has been shown
by Horowitz (1976) that for a large nonlinear prob-
lem class, the prefilter F' and controller G which
solve this ‘equivalent’ LTT problem, also solve the
original nonlinear problem (i.e., for the set W).

Next consider a nonlinear sampled-data system
shown in Fig. 1. Assume that a fixed sampling
period T is used, giving sampling frequency w; =

T
T As is customary, let f*(¢) denote the impulse-



sampled signal, F*(s) denote the Laplace trans-
form of f*(t), and F(z) denote [F*(s)],_ o1

A QFT approach similar to the nonlinear continuous-

time case has been suggested by Horowitz and Liao
(1986). In the sampled-data case, the actual plant
input is of a staircase form (as a ZOH is used),
and therefore the acceptable output set must be
carefully formulated so that the w~!(a) indeed
emerges as a staircase signal. Once this has been
done, the designer can proceed by obtaining the
‘equivalent’ LTI set P,
continuous-time case, and apply linear sampled-
data QFT techniques to the set P.,.

exactly as in the nonlinear

An improved algorithm to find the LTTE plant set
has been given by Ioinovici (1987). This method
does not require w—! to exist, which is a con-
straint inherent in Howoritz’s LTIE method. Fur-
ther, Ioinovici demonstrated through several ex-
amples that his algorithm gives superior results
to the earlier LTIE method, in terms of reduced
overdesign. However, certain difficulties are found
in Ioinovici’s LTIE algorithm:

1. Finding analytically the solution of nonlinear
differential equation describing the plant, for each
member of I.

2. Obtaining the expressions for Laplace-transforms
of each of these time-domain solutions.

3. As discussed earlier, it is very desirable in prac-
tice to have polynomial NARMAX representations
for nonlinear plants. However, Ioinovici algorithm
does not address plants represented as NARMAX
models - in polynomial or other forms ( the same
is true for Horowitz’s algorithm.)

A method to directly find (i.e. without solving dif-
ferential equations or Laplace- transforming ) the
LTIE plant templates from the given Polynomial
NARMAX model and the set I is described in the
following section.

3. THE NARMAX MODEL AND ITS LTIE

PLANT

Suppose that the nonlinear plant is represented by
the model

y(k)=Fly(k—1),...,y(k — ny),
ulk —1), ..., u(k —ny),

((k=1),. C(k =)+ C(R) (1)

where F' is some nonlinear function of lagged input
signals u(k — n,,), outputs y(k — n,), and noise
¢(k — n¢), with k denoting the sampling inter-
vals and 7 the lags. The model in (1) is referred
to as the NARMAX model. Chen and Billings
(1989) rigorously proved that a nonlinear discrete-
time-invariant system can always be represented
by the NARMAX model in a region around an
equilibrium point, subject to two sufficient condi-
tions: (1) The response function of the system is
finitely realizable (which means that distributed-
parameter systems are excluded) (2) A linearized
model exists if the system is operated close to the
chosen equilibrium point. Further, the model can
also be shown to be valid for the non-zero initial
state response case.

If the nonlinear function F(-) is continuous, it
can always be arbitrarily closely approximated
by a polynomial function. For practical purposes,
therefore, we may choose F(-) as a finite polyno-
mial function, giving us a polynomial NARMAX
model.

Once a polynomial NARMAX model of the plant
has been estimated, we can discard the moving
average noise terms in (1) to get a polynomial
NARX (Nonlinear AutoRegressive with exogenous
inputs) model. This is justified, as the moving
average noise terms were originally included to
ensure unbiased estimation, and therefore can be
dispensed with once estimation is over.

The output y(¢) of NARX model is expressed as
M
y() = yml(t) (2)
m=1

where y,,,(t) is m—th order output of system, given
by

m K
Ym(t) = Z Z cpa(kty s kpig)
p=0k1,kn=1
p p+q

xHy(t—k:i) II »t-%) (3

=1 1=p+1



with p+ ¢ = m, k = 1,...,K and Y5, =
25;1 o Zlf(:l :

>From a polynomial NARX model description
of the plant, the n-th order GFRFs (Generalized
Frequency Response Functions) can be computed
using the recursive probing algorithm of Jones
and Billings (1989). The algorithm yields the n-
th order frequency responses to be found, without
restriction on the order n. Further, this method
also exposes the structure of H,(-), and enables
the GFRFs to be related to the structure and
coefficients of the nonlinear difference equation
model of the plant. These GFRFs can be subse-
quently used to evaluate the GDFs (Generalized
Describing Function), giving us a unidimensional
frequency domain representation of the nonlinear
plant.

Using the recursive probing input method, the n-
th order GFRFs for the NARX model (2), (3) are
computed as follows:

(1 - Z c1,0(k1) exp(—j(wi + - + wn)kl))

k1=1
an(jwl, e
K

= Z cO,n(kh' ,kn)

k1,kn=1

x exp(—j(wiki + - + wnkn))
n—1n—q K

+Z Z Z Cp,q(kly s >kp+q)

q=1 p=1 ky,kn=1
* exp(—j(wn_q+1kn_q+1 toot u)p+qkp-4-q))

XHp_qp(jwi,. .., jwn)
n K

+Z Z Cp,()(kl, -
p=2k1,kp=1
ajwn) (4)

Hmp(jwl, P
where H,, ,(-) is generated by the recursion

)jwn)

yEp) %

n—p+1
an() = Z Hi(j&)l, e ,jwl) X
=1

Hn—i.p—i(jwi—i-l) s )jwn) X
exp(—j(w1+ - +wi)kp) (5)

The recursion finishes at p = 1 and

Hl(jwh s )jwn) = Hn(jW1, to ’jw”)
x exp(—j(w1 +wn)k1) (6)

Next, the n-th order multidimensional output
spectrum is found:

Y(jwlw" )jwn)

X H U(jw;) (7)

)jwn) = Hn(jwla cee

where U(jw) represents the normalized input spec-
trum. Then, the unidimensional output spectrum
is obtained:

oo oo

Yn(jw):(%)%_zo _Zo

Yn(jwlyj(WQ - W1), s 7j(wn - wn—l))
del ce dwn_l (8)

The total unidimensional output spectrum is given
by summation of all the n-th order unidimensional
output spectrums:

Finally, this output response is used to evaluate
the GDF:
Y (jw)

where A denotes the input amplitude or waveform
scaling factor. Note that N(A,jw) is considered
undefined whenever U(jw) = 0.

It is easily seen that the GDF characterizes pre-
cisely Ioinovici’s LTIE plant that corresponds to
the given polynomial NARMAX model and the
input signal considered in (7).

Thus, the GDF provides a new and powerful fre-
quency domain representation of a wide class of
nonlinear systems. This characterization is sub-
sequently used in the proposed procedure as a
basis for controller synthesis using the principles
of sampled-data QFT.



4. A QFT PROCEDURE FOR POLYNOMIAL
NARMAX MODELS

4.1 The Basic Idea

Suppose that a polynomial NARMAX model de-
scription of the nonlinear plant is available. From
this model, a NARX model is extracted, and the
n—th order GFRFs generated using (4)-(6). For
any particular input signal ¢, € I, the correspond-
ing GDF is obtained by finding the total output
frequency response and then diving it by the input
signal spectrum, as given in (7)-(10). Now, the
GDF is unidimensional in frequency, so a single
magnitude and phase (Bode) response is got at
each frequency. By repeating the procedure over
I, a band of (instead of a single) magnitude and
phase plots is obtained at each frequency. This
response band forms the template of the LTIE
plant at each frequency.

These LTIE plant templates are next used for
feedback synthesis using linear sampled-data QFT
methods. The resulting controller and prefilter
when used on the original nonlinear plant, are
guaranteed to achieve the given specs. This has
been shown in general for a large class of nonlinear
systems using fixed-point theorems of nonlinear
function analysis by Horowitz (1993).

4.2 The Proposed Procedure

We now give the complete synthesis procedure.

(1) For the considered plant, formulate the set
I of signals for which the design is to be
performed, and the set A of acceptable output
responses.

(2) Generate appropriate input-output data set
for experimental (or simulated ) identification
of the non-linear plant. Using an integrated
structure determination and parameter esti-
mation algorithm of Korenberg, et al. (1988),
identify a parsimonious model in the polyno-
mial NARMAX form from these data sets.
Validate the model using model validation
methods for nonlinear systems.

(3) From the identified NARMAX model, obtain
the NARX model (2)-(3) by discarding the
moving average noise terms.

(4) From the obtained NARX model, find GFRFs
H1 (jwl), HQ (jwl,ng), ceey Hn (jwl, ces ,jwn)
using (4)-(6) where the highest order n is con-
summate with the nonlinearity of the model.
Evaluate these functions in the output fre-
quency domain, and use the same domain for
all further work.

(5) Pick any input signal i, € I, and find its
input spectrum U (jw).

(6) Find the n-th order output frequency re-

s J(Wn — wn_1)

using (7), the unidimensional output fre-

sponse Y, (jwy,j(we — wy),. ..

quency response Yy (jw) using (8), the total
unidimensional frequency response Y (jw) us-
ing (9), and the GDF N (A4, jw) using (10).

(7) Repeat steps (5)-(6) over the set I ( and/or
over set W), to get magnitude and phase re-
sponse bands at each frequency. These bands
form the template of the LTIE plants at each
frequency.

(8) Using the LTIE plant templates generated
at the design frequencies, synthesize a con-
troller G(z) and a prefilter F(z) using lin-
ear sampled-data QFT methods. The steps
in sampled-data controller design using QFT
are detailed by Horowitz (1993).

(9) Design verification: The performance of the
closed loop system with the synthesized pre-
filter F(z) and controller G(z), and the origi-
nal nonlinear plant model needs to be checked
in the time domain. This can be accom-
plished using simulation packages such as
SIMULINK (2001).

4.3 Software Aspects

To implement the proposed procedure, a suite of
MATLAB-based program has been developed at
IIT, Bombay. This suite can be categorized in
terms of the following sets of programs:

1. NLID: Performs automatic structure detection,
parameter estimation and model validation of mul-
tivariable nonlinear systems, see Makwana (1995).



The underlying algorithms are based on the works
of Billings and co-workers (see the references).

2. NLMIMO: Finds GFRFs and GDFs for mul-
tivariable NARX models identified using NLID,
with at most second order terms, see Date (1995).
Program handles step command inputs for a range
of amplitudes, and up to three uncertain model
coefficients. The LTIE templates generated are
readily usable by QFT IIT.

3. QFT _IIT: Performs robust feedback synthesis
using QFT principles, see Nataraj (1994). A recent
version incorporates a fully automated controller
synthesis routine based on the numerous sugges-
tions given by Horowitz (1993) .

Using the integrated software package, the overall
design cycle for the problem example given in
sec. 5 took about 3 min. on a PC/Pentium-I 133
MHz.. A major portion of this time was taken
up by the MATLAB-based numerical integration
routine QUADS called upon by NLMIMO. A more
efficient numerical integration routine should con-
siderably reduce the computation time, enabling
the procedure to be executed fast enough for on-
line QF T-based control of nonlinear processes.

5. SIMULATION EXAMPLE
5.1 Problem Description

We test our design algorithm on a nonlinear dif-
ferential equation model of an isothermal CSTR
described by Eaton and Rawlings (1990). The
reaction occurring in CSTR is 24 * B with
(reaction rate) oc (concentration of A)2. Assuming

that volume of liquid is constant, the mass balance
equation is

dC
Vd=tA = an [CAm (t) - CA(t)]

—~KVC2%(t) (11)

where K is related to the reactor temperature by
K = Koe #/BsT Here, Cy is the concentration
of reactant A, mol/lit., Cy,, is inlet concentration
of A, mol/lit., F;), is the inlet flow, in mols/ hr., T
is reactor temperature, Kelvin, V is the volume of

vessel, liters, and F and R, are physical constants.
The input and output variables of CSTR are
F;,, and Cy, respectively. The reactor parameter
values are K = 0.972 mol lit/hr,, and V =
10.0 liters. The initial steady-state concentration
of reactant A is 0.5 mol/ lit., with the inlet
concentration C4, = 3.6, and Fj, = 0.784.

in

(11) is rewritten in terms of deviation variables
with respect to the initial steady state values:

@ _ CAin - CA,su - Fin,s + 2KVCA,S
dt % i y
1
—Ky* — Fuy (12)

where y(t) and u(t) are the deviations in C'4 and

F,,, from their respective steady states C4 ; and
Fin,s. The reactor model (12) is used to generate
input-output data set for identification purposes.
The sampling time is taken as 0.01 hours. From
this data set, a NARMAX model is first identified
using program NLID described in sec. 4.3 and then
a NARX model is extracted as

y(k)=ay(k — 1) + Bu(k — 1)
—0.0031u(k — y(k — 1) (13)

where oo = 0.8858,3 = 0.0156.

Next, uncertainty is introduced into the reac-
tor parameter values, which leads to the follow-
ing bounds on the estimated NARX parameter
values:a € [0.7,0.9], 3 € [0.012,0.018].

Based on the open loop responses, for a unit step
in setpoint of C'4 the closed loop specs are set
as follows. Steady state offset at most 2%; Maxi-
mum overshoot: 10%; Minimum and maximum 2%
settling times: 0.53 and 0.65 hours, respectively.
These figures of merit are translated into the fre-
quency domain via transfer function models. The
translated frequency domain specs and the orig-
inal time domain ones are shown as dotted lines
in Figs. 2 and 3. Moreover, a gain margin of 5 dB
and a phase margin of 45° are sought.

5.2 Design Ezxecution

The design is executed as follows.
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Fig. 3. The closed loop time responses obtained
for the original reactor system.

1. For generating the LTIE templates correspond-
ing to the obtained NARX model, first and second
order GFRFs are used. Following step 4 of our
procedure, the first two GFRFs are derived from
(12) as

g

i (exp (50) = T o )

Hj (exp (jw1), exp j(wz —w1))
~ 0.0031exp (—jwe) Hy (exp (jws))
- 1— aexp(—jws)

(14)

Continuing the procedure until step 6 and using
the equation
1
N(jw) = —— [V1(jw) + Y, (jw
(jw) U(jw)[ (jw) + Y5 (jw)]

the GDF is evaluated over the design frequency
range. At each frequency, N(jw) is a function of
uncertain parameters a and 3. Thus, by evaluating

N(jw) at different value sets of the reactor para-
meters, the LTIE plant template at each frequency

Magnitude of Generalized DF

Frequency, Rad/s
Phase of Generalized DF

0.05 01 015 0.2
Frequency, Radis

Fig. 4. Frequency responses of some LTIE plants.
Dotted lines is for the linear transfer function
Hi.

is got (cf. step 7). Program NLMIMO describe in
sec. 4.3 is used to automate these computations.
The frequency responses of the LTIE plants are
plotted in Fig. 4.

An important condition to be satisfied by the
plant family is that the plant templates must
be topologically path connected, see Nwokah and
Thompson (1989).

This condition is checked for our example as
follows: From the expressions for Hy, Hz in (14),
and from (7), (8), it is seen that the domains
of Y1(jw) and Ys(jw) are path connected sets,
and that Y7 (jw), Ya(jw) are continuous functions.
Since a continuous image of a path connected set
is path connected, it follows that the templates
generated from (10) are indeed path connected.

For further work, the nominal plant is arbitrarily
taken as the linear transfer function Hy(-) with
a = 0.8858, 5 = 0.0156.

2. The robust margin bounds and the discrete-time
tracking bounds on a nominal loop transmission
L (s) are derived from the specs stated in sec. 5.1.

3. The synthesis of a G(z) that satisfies these
bounds and of an appropriate prefilter F(z) is
carried out using the QFT _IIT toolbox. Using the
QFT _IIT tool box, a controller is obtained as

Grum (2) = 1.522° + 3.292° — 0.722* — 5.502°
~1.982% +2.292 +1.26



Gen (2) = 285 —-1.492° — 0.202% + 1.212°
—0.82% + 0.282 — 0.00015
G (2) = Gnum (2) /Gaen (2) (15)

and a prefilter as

Frm(2) = 0.004722% + 0.00942 + 0.0047
Fien (2) =2 — 1712+ 7.25
F(2) = Foum (2) [ Faen (2) (16)

5.3 Design Verification

Since our proposed method is based on GDFs an
error analysis for the validity of the describing
function approximation is necessary, see Bergen,
et al. (1982) and Mees and Bergen (1975). The
analysis is carried out as given by Nataraj, et al.
(1997), and verifies closed loop stability.

Before proceeding to time domain design verifica-
tions with the G(z) and F(z) obtained above, the
closed loop frequency responses are first checked.
Fig. 2 (dotted lines are the specs) shows that, over
the entire range of NARX model parameters «, 3,
these specs are satisfactorily met in the frequency
domain.

Closed loop time domain simulation studies on
the nonlinear reactor model are performed using
the simulation package SIMULINK. The setpoint
on C4 is changed by a step of unit magnitude,
and the closed loop time responses for different
reactor parameter values are obtained (see Fig. 3).
Over the entire range of parameter uncertainty,
the reactor concentration responses ( solid line
figure, nearly single) are seen to be well within
the time domain specs.

6. CONCLUSIONS

A new synthesis procedure for robust control of
nonlinear sampled-data systems has been pro-
posed. This procedure uses generalized describing
function to characterize a given NARX model
Robust controller design is carried out using prin-
ciples of nonlinear QFT. The proposed procedure
enables one to apply QFT methods to the widely

used polynomial NARMAX models. A simulation
example of a nonlinear reactor model has been
solved using the proposed procedure. The results
have been found to be quite satisfactory.
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