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ABSTRACT. We present an algorithm for extracting the boundary rectangles from interval templates. We test
and compare the performance of the proposed algorithm versus those of three boundary extraction algorithms
available in the QFT literature. We perform the testing on a benchmark suite of eleven transfer function examples.
In terms of computational time and effort (flops), the test results show the proposed algorithm to be the most
efficient in every example. On an average, the improvement in terms of these measures is by 2 — 3 orders of
magnitude.

1. INTRODUCTION

Over the last few decades, Horowitz’s quantitative feedback theory (QFT) approach [5] to robust control
system design has been gaining popularity among control researchers. The QFT approach comprises of a collec-
tion of techniques for dealing with several classes of uncertain plants: linear and nonlinear, time-invariant and
time-varying, lumped and distributed, single input-output and multi input-output, single-loop and multiple-loop,
etc.

The first step in the QFT procedure is to generate the template of the given plant at each design fre-
quency. A template is a set of points in the angle-magnitude plane (i.e., in the Nichols chart) representing
the response of the system at the given frequency. More precisely, consider a system represented by the trans-
fer function g(s,\), where A = {\,.... A\, } is a real vector of the system parameters and s is the Laplace
variable. Suppose the parameters )\; vary independently over given real intervals AY, so that we have a
box A® = {AY,....A%} of system parameters. Denote the phase angle and magnitude functions of g(s,\) as
fang(w, A) = argg (jw,A); fmag(w,N) = |8 (jw, A)| ,where w is a given frequency. Define the angle-magnitude
function f as f(w,A) = (fang(w,A), frmag(w, A)). Then, the set G (w) := {f(w,\), A € A’} defines a region in the
angle-magnitude plane, called the template of g (s, A) at the given w. We assume in this work that the template
is closed and simply connected. Several methods are available for generating the templates, see, for example, [4],
[9] and the references cited therein.

In this work we consider the so-called interval templates. An interval template is generated with interval
analysis tools [8], using what are called as interval extensions of the magnitude and phase functions. A simple
to use interval extension is the natural interval extension. A natural interval extension is obtained for each of
these functions by replacing real variables with interval variables and replacing real arithmetic with interval
arithmetic. We denote the natural interval extension of f(w,A) to A as F(w,A).

One can compute F(w,A) and obtain with a single evaluation of F, an interval template comprising of a
single angle-magnitude rectangle. By inclusion property of natural interval extensions [8, Theorem 3.1], the
interval template encloses the actual template G (w). However, this interval template with just one angle-
magnitude rectangle usually has a width that considerably exceeds the prescribed accuracy (in the form of
the specified rectangle width ¢). Therefore, we may repeatedly subdivide (or partition) the parameter box,
find the evaluations of F' over the subboxes using interval arithmetic, and take the union of the results to get
interval templates comprising of smaller and smaller angle-magnitude rectangles which give increasingly accurate
information about the actual phase-magnitude values. It is a fundamental result in interval analysis that as the
partition of the parameter box is refined, these interval templates will converge to the actual template. The
partition or subdivision process can be stopped when the widths of all the angle-magnitude rectangles in the
interval template is less than the prescribed accuracy e.

There are several interval template generation algorithms based on these ideas, see [10] for a survey. The
interval template generation algorithms provides several guarantees: the generated interval template is (a) guar-
anteed to be of prescribed accuracy, (b) guaranteed to be reliable - that is, an assurance of correctness of the
computed numerical results is provided, in face of all kinds of computational errors, such as round-off, truncation,
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and approximation, (c¢) guaranteed to enclose all actual template points, thereby avoiding any loss of robustness
due to template approximation errors.

The number of points in the plant template dictates the computation burden of the QFT design technique.
In QFT designs, only the boundary of a simply connected template is necessary (see [1], [2], [7]), to which only
the boundary rectangles of an interval template contribute. The aim of this note is to present an algorithm that
can efficiently extract all the boundary rectangles from a given interval template, without introducing any kind
of boundary approximations.

2. A BOUNDARY EXTRACTION ALGORITHM

We can obtain the set of boundary rectangles of a given interval template as the union of upper, lower, left
and the right boundary rectangles in the Nichols chart. By upper boundary rectangles, we mean the template
rectangles with the maximum magnitude at each phase, and likewise for the lower, left and the right boundary
rectangles. We describe the method for extracting the upper boundary rectangles.

Algorithm for extraction of upper boundary rectangles

o Inputs : The interval template whose boundary rectangles are to be extracted.
o Qutput: The set of all upper boundary rectangles of the given interval template.

BEGIN Algorithm

1. Mark the rectangle forming the left end of the template as a boundary rectangle. Set it as current rectangle.
2. Journey along the top edge of the current rectangle towards its right end. Does an upward jump to a

higher magnitude occur on this journey 7

(a) IF yes, mark the rectangle associated with the jump as a boundary rectangle. Set it as current
rectangle. Take the jump along the left side of the current rectangle to reach its top edge. Then, go
back to Step 2.

(b) IF no, complete the journey to reach the right end of the top edge. If the right end of the entire
template itself is thereby reached, go to step 3, else journey downward along the right side of current
rectangle to the next lower magnitude rectangle, mark the latter rectangle as a boundary rectangle,
and set it as current rectangle. Go back to Step 2.

3. Output all the boundary rectangles obtained. Exit algorithm.

END Algorithm.

The algorithm for extraction of lower boundary rectangles is identical to that for upper boundary rectangles,
except that while journeying from left to right of the current rectangle, a check for any downward jump to a lower
magnitude is made. Similarly, we can extract the left and right boundary rectangles, simply by interchanging
the roles of magnitude and phase in an obvious way in the above procedures. Finally, we can obtain the set
of all boundary rectangles of the interval template by taking the union of all these upper, lower, left and right
boundary rectangles.

3. TEST RESULTS

First, to check the capability of the proposed algorithm, we consider the two arbitrary interval template shapes
in Figure 3.1a. The boundary results obtained with the proposed algorithm are also plotted in the same figure.
The extracted lower and upper boundaries are shown as starred lines in Figures 3.1b and 3.1c, respectively. For
both template shapes, we see that the exact template boundaries are indeed extracted by the proposed algorithm.

Next, we conduct a more elaborate test of the proposed algorithm. For this purpose, we construct a benchmark
suite of eleven examples taken from the QFT literature. This suite of examples is described in the Appendix.
We carry out all computations on a PC/Pentium-IIT 550 MHz machine with 256 MB RAM using INTLAB [11].
We generate the interval template for each transfer function example to an accuracy of 1deg and 1 dB, using the
template generation algorithm in [13]. We then compare the performance of the proposed algorithm versus those
of three boundary extraction algorithms available in the QFT literature: the algorithms of Lasky and Ravani
[7], Boje [2], and Agamennoni et al. [1].

We proceed to apply the various boundary extraction algorithms to extract the boundary in each example.
Table 3.1 presents the obtained performance of the various algorithms. For each example, the Table lists the
number of uncertain parameters n in the transfer function, the execution time (in seconds), and the number of
floating point operations (flops) required for the extraction. The numbers given in parenthesis are the ratios

w.r.t. the proposed algorithm. A entry with star indicates that the respective algorithm failed to generate the
boundary for that example, due to excessive memory or time requirements.
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F1GURE 3.1. Application of the proposed algorithm to two arbitrary shaped interval templates.
(a) original templates (b) extracted lower boundary shown in starred lines (c) extracted upper
boundary shown in starred lines.

TABLE 3.1. Performances of various boundary extraction algorithms on a suite of eleven transfer
function examples.

Boundary Extraction using Algorithm of
Proposed | Lasky - Ravani | Boje Agamennoni et al.

| Example | n | Solution [7] 2] 1]
1. Under-damped | 2 | time(s) | 16 96.67 (6) 4890 (306) 1030 (64)

flops | 1607 474,960 (265) | 199,722 (124) | 73,515,618 (45,747
2. DC Motor 2 | time(s) | 0.4 417 (10) 21.14 (53) 90.96 (227)

Fops | 408 117,612 (283) | 10,801 (49) | 7,114,338 (I7,437)
3. Simple Poles | 3 | time(s) | 0.08 0.38 (4) 0.38 (4) 16.92 (212)

flops | 214 9340 (44) 3780 (19) 1,322,658 (6181)
1. NMP 3 | time(s) | 0.08 033 4 049 (6) 1862 (233)

fops | 227 14,873 (66) | 4161 (18) 1,452,258 (6,308)
5. Nonrational 3 | time(s) | 2.9 7.63 (3) 285.83  (99) 252.88 (87)

flops | 809 51,860 (58) | 54,041 (60) | 19,466,658 (21,654)
6. Electro- 3 | time(s) | 84 1360 (16) * 4928 (59)
mechanical flops 2886 8320 (3) * 243,262,818 (84,291)
7. Vehicle 3 | time(s) | 0.6 104 () 9482 (41) |97.38 (162)
clutch fops | 405 6013 (12) 91,260 (43) | 7,615,458 (15,385)
8. Multiple 4 | time(s) | 70 1940 (28) * *
lags flops 2665 12,773 (5) * *
9. Mechanical 5 | time(s) | 0.8 0.82 (1) 7.08 (9) 64.42 (81)
system fops | 939 91,233 (23) | 14,122 (15) | 5,043,618 (5371)
10. Aircraft 5 | time(s) | 0.1 138.96 (1,389) | 6240 (62,400) | 2450 (24, 500)

flops | 237 112,570 (475) | 225,830 (953) | 81,245,538 (342, 808)
11. Inverted 7 | time(s) | 0.04 1.37 (34) 0.05 (1) 2.36 (59)
pendulum flops 170 128,469 (756) | 672 (4) 179,298 (1055)
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TABLE 3.2. Average ratios of time taken and computational effort (flops) of the three existing
algorithms w.r.t. the proposed algorithm. The average is taken over all the eleven examples
considered.

Average | Boundary Extraction Algorithm of

ratio Lasky - Ravani [7] | Boje [2] | Agamennoni et al. [1]
[Time | 136 [127 | 2563 |
[ Flops | 184 | 142 | 54,633 |

Table 3.1 shows the proposed algorithm to be clearly the fastest in every example. From Table 3.2, on an
average, the proposed algorithm is 2—3 orders of magnitude faster than existing boundary extraction algorithms.
Moreover, Table 3.1 shows the proposed algorithm as needing the least computational effort (in terms of flops) in
every example. From Table 3.2, on an average the computational effort with the proposed algorithm is 2—4 orders
of magnitude less than with the existing boundary extraction algorithms. Lastly, we see from the plots that the
proposed algorithm extracts all the boundary rectangles without any approximations (due to space limitations,
we regret that we are unable to provide here any plots of the templates and their boundaries; however, these are
given in [12] which can be requested from the first author).
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APPENDIX A. BENCHMARK SUITE OF EXAMPLES

The following is a benchmark suite of transfer function examples referred to in section 3. The test problems
are taken from the QFT literature. The problem names reflect the general type of the system.

Example 1 Underdamped second order system: The transfer function for a system occurring in active noise
and vibration control with highly underdamped resonances is

2

g 2&)23 o € 0.75,1.25], ¢ € [0.02,0.06], w = 1.

g(s) =

Example 2 DC Motor: The DC Motor drives a viscously damped inertial load. The transfer function
between the torque and armature voltage is
K (Jis+ By)
= K €10.2,06], Ji€[le—5,3¢ —5|, Jn =2¢—3
g(e) Lo+ B (st Jist Bt By 1 K20 [ €102,08) Ji€le—5,3e 5], ¢
2¢ —5, L=1e—2H, R=19Q, B; = B,,, w = 20.

B,
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Example 3 Simple poles: The transfer function for a stable second order system with real poles is
k
§) = —————
9= Gra G+
Example 4 Non-minimum phase: The transfer function for a non-minimum phase system with real poles
and zeros is

a€[1,5], be[20,30], k€[1,10], w=1.

_ 7 (1= Ds) _
g(s)_Ks(l—f—Bs)’ B €[0.3,1], D €0.050.1], K €[1,3], w=1.

Example 5 Non-rational: The transfer function for a non-rational system is

—sT

9(s,T,a,b) = a€[1,2], be[0.4,0.6], T € [0.01,0.02], w = 2.

1+ be—as’
Example 6 FElectro-mechanical: The transfer function between control torque to motor speed of an electro-
mechanical system is

Ji2+ds+k
= m = 0.4, .6,8], d , , k , ,
g(s) TIm T (i + Jo) A2 + (T T T s J, 0.4, J, € [5.6,8] € [30,300] € 5880, 5900]

w = 10m.

Example 7 Vehicle clutch system: The transfer function between the input clutch position to the output
transmission speed is

g(s)

Jos (32 + (J= + g,?;jc) s+ (f= + %))
k. € [100,800], J.=0.09, j. =3.07, ¢, =377, c. = 18.5, g, = 27.0, w = 10.

Example 8 Multiple transport lags: The transfer function for a system with multiple transport lags is

(T + 7,)esh 1— e 9Tr

e—sT + T 2
10%10 - 14-cos(r, )s sT, (1 + (84_7:) )
7. € [049,05], w = 0.5.

Example 9 Mechanical system: The transfer function for a mechanical system is

, J, € [1400,11000], k, € [5800,115000] ,

9(s) , Ty € [3,5], T, €[0.5,0.7), T € [9.25,9.35],

km
$2fm? +bms + ¢)
Example 10 Aircraft, longitudinal Motion: The transfer function for the longitudinal motion of an aircraft
is (from aerodynamic data, the ranges for the uncertain parameters are identified)

, f€,2], m*€[1,10], b€ [0.5,1], c€ [2,3], k€[0.5,2], w=38.

g(s) = S(

g(s) = ]
s(L+2)(1+ 25+ 25
Example 11 Inverted pendulum: The transfer function between pendulum angle to the cart’s motor current
is

2€1[0.5,0.75], p € [1,10], £ €[0.8,0.9], wn € [5,6],k € [02,2], w =0.1.

Kaw?(1/L)s%e™*"
g(s) = 50t a) — K, Ka) (s 1 26ons T 2) (52 = g/L)’L €10.3,045], K € [1.5,1.7] ,& € [15,17],

wn, € [50,70],¢ € [0.001,0.02] , 7 € [0.014,0.015] , K, € [0.005,0.15], g = 9.81,w = 1.




