AN INTERVAL BRANCH AND BOUND PROCEDURE TO COMPUTE LIMIT CYCLES
IN UNCERTAIN NONLINEAR SYSTEMS

P. S. V. NATARAJ AND J. J. BARVE

Systems and Control Engineering Group
Department of Electrical Engineering
Indian Institute of Technology, Bombay, India 400 076

Email: nataraj@ee.iith.ernet.in

ABSTRACT. An interval analysis based branch and bound procedure is presented for limit cycle analysis of un-
certain nonlinear systems using the describing function approach. The procedure can be applied to a very wide
class of uncertain linear and nonlinear elements having general nonlinear parametric uncertainty structures. The

procedure is demonstrated on some difficult examples.
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Glossary
DF: Describing function
LTT: Linear time invariant

Notation

Boldface: Interval quantities

a : Amplitude of periodic input signal to nonlinear element

Box: An n-dimensional parallelepiped having sides parallel to the coordinate axes.

franee (x) : The range of an arbitrary function f over a box x, i.e., 28 (x) := {f (z) : z € x}
f (x) : A natural interval extension of function f on box x.

f’ (x) : A natural interval extension of Jacobian of function f on box x.

(
(

: Box of (uncertain) parameters of nonlinear system

x) : A natural interval extension of Jacobian of function f w.r.t. z on box x.

X, p) : The generalized Krawczyk operator

: Box of amplitude and frequency ranges (such a box is a trial region for finding limit cycle points)

&*N'U Na”i

: A limit cycle point, i.e., amplitude and frequency of the predicted limit cycle
: Midpoint of box x

: Frequency of periodic input signal to nonlinear element

£ ®

1. INTRODUCTION

The popular describing function (DF) analysis is mainly employed to predict the existence of constant ampli-
tude oscillations in closed loop nonlinear systems, known as limit cycles. If limit cycles are predicted, then it is
also of interest to know the number of limit cycles along with their frequencies, amplitudes and characteristics
such as stability or instability. DF analysis occasionally fails, particularly when the system under consideration
does not satisfy the assumption of the “filtering hypothesis’ [7]. It is also possible for DF analysis to predict no
limit cycles, even when a limit cycle actually exists. Despite these limitations, DF analysis has been successfully
used in many practical applications, for example, see [2], [4], [18]. For a comprehensive treatment of the DF
approach, see [7], [3].

In real life, often there are uncertainties in the parameters of the nonlinear system. The DF approach
to analysis of uncertain nonlinear systems has only recently attracted the attention of researchers. Fadali

and Chachavalvoong [5] overbound the unknown coefficients of the system characteristic equation and use
1
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Kharitonov’s theorem to do the overall stability test, but unless the numerator of the LTI element is constant, the
method gives conservative results. Tierno [21] fits a rational approximation to the DF of the nonlinear element,
and incorporates DF analysis into a generalized structured singular value (p) framework of robustness analysis.
However, his method can be used only when a good rational approximation to the DF is obtainable. Ferreres
and Fromion [6] propose a u based method for limit cycle analysis, but their method is limited to uncertainties
in the LTI element. Impram and Munro [9] pose the DF analysis problem in a generalized interval polynomial
framework, but their method is conservative unless the coefficients of the LTI element have interval or affine
linear uncertainty structure. Moreover, the aforementioned methods are restricted to LTI elements represented
by rational transfer functions.

In this paper, we present a procedure for limit cycle analysis of nonlinear systems with separable nonlinearities,
in the presence of parametric uncertainties in the LTI and nonlinear elements shown in Fig. 2.1. We formulate
the problem of finding the limit cycle points as one of finding zeros of a parameter-dependent system of nonlinear
equations. We then apply tools of interval analysis (IA) [14] in the form of a procedure for solving the zero finding
problem. TA has proven itself useful in many contexts, and has been particularly successful in branch and bound
procedures for finding all zeros of a system of nonlinear equations. Interval branch and bound procedures for
finding all zeros use a combination of a computational existence procedure and a tessellation (i.e., generalized
bisection) process. In our procedure, we use the generalized Krawczyk method to computationally verify the
existence or non-existence of a zero in a given region. The generalized Krawczyk method is powerful as a
computational fixed point theorem, and has a clear relationship to the well-known Brouwer fixed point theorem
[11]. Moreover, the generalized Krawczyk method also possesses a computationally verifiable sufficient condition
for guaranteed convergence to all the zeros in a given region, and further, this convergence can be obtained in a
finite number of steps if we use rounded interval arithmetic on a computing machine.

We list the key features of the proposed interval analysis procedure:

1. The procedure is applicable to closed loop systems whose characteristic function is continuous w.r.t. the
uncertain parameters and is continuously differentiable (cf. also sec. 3.8) w.r.t. the amplitude and frequency
variables of the periodic input signal to the nonlinear element. Subject to this assumption, the transfer
function of the LTT element and the describing function of the nonlinear element can be described by any
sequence of arithmetic expressions involving these variables and parameters, using +, —, *, /, V> €xp,
log, power, trigonometric functions, inverse trigonometric functions, etc. This means that the procedure is
applicable to a very general class of nonrational LTI elements, nonlinear elements (including memoryless,
memory, frequency independent, and frequency dependent types), and parametric uncertainty structures
(including interval, affine, multilinear, and general nonlinear structures).

2. The procedure is guaranteed to find all limit cycle points within a given initial search region of amplitude
and frequency ranges. Within the search region, the procedure computes rigorous guaranteed enclosures
of all the limit cycle points to a prescribed accuracy. If no limit cycle points exist in the search region, the
non-existence of the same is computationally verified.

3. The procedure is guaranteed to find all the limit cycle points in the search region, in a finite number of
iterations. If there are no limit cycle points, the same is computationally rigorously verified in a finite
number of iterations.

4. All limit cycle results generated by an interval arithmetic implementation of the procedure are reliable,

that is, the results are trustworthy despite computational errors, such as round-off and truncation®.

The rest of this paper is organized as follows. In section 2, we formulate the limit cycle computation problem
as one of finding zeros of a parameter-dependent system of nonlinear equations. In section 3, we briefly describe
the various TA tools that make up our procedure. We present the interval branch and bound procedure in section
4. In section 5, we demonstrate the procedure on two difficult examples.

However, any errors in the results of the limit cycle analysis due to the approximate nature of the DF method will remain.



AN INTERVAL BRANCH AND BOUND PROCEDURE TO COMPUTE LIMIT CYCLES IN UNCERTAIN NONLINEAR SYSTEMS3

MCa v ) GUW.pGJ

- Monlinear Element Linear Element

F1GURE 2.1. The closed loop nonlinear system.

Pairt & iz limit cycle point
M)

Re(3)

|
G(iw.)

F1GURE 2.2. Graphical method of DF analysis.

2. THE ZERO-FINDING PROBLEM

Consider the closed loop system of Fig. 2.1, where G (s,pg) denotes the transfer function of the LTI element
with parameter vector pg, N (¢,w,pn) denotes the DF of the nonlinear element with parameter vector py,
and a,w denote the amplitude and frequency of the periodic input signal to nonlinear element. Under certain
assumptions (see [3]), the necessary condition for existence of limit cycles is obtained from the characteristic

equation of the nonlinear system in Fig. 2.1 as
(2.1) 1+ N (a,w,pn) G (jw,pg) =0

When the DF does not depend upon w, we can consider it as N (a,pn), and find the limit cycle points
graphically using (2.1) as the intersection(s) of the plots of G (jw,pg) and N(‘;=,;N) in the complex plane, as
shown in Fig. 2.2.

However, the graphical method is rather tedious and unsuitable when the nonlinearity is frequency dependent
or when the LTT or nonlinear element has parameters with uncertain values. For such situations, we use a
computational method to find the limit cycle points.

Expressing (2.1) in terms its real and imaginary components gives
(22)  fre(z,p):=Re{l+N(a,w,pn) G (jw,pa)} =0; fim(2,p) :==Im {1+ N (a,w,pn) G (jw,pa)} =0
with
(2:3) f(2,p) = (fre (2,0), fim (2,9)), 7 := (a,0), p:= (PG, PN)

Then, from (2.1), (2.2), (2.3), limit cycles are predicted at all #* = (¢*,w™) in the set
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(2.4) S(f,x%p) = {z* €x": f(z*,p) =0}

We refer to such a z* as a limit cycle point in the search box x° for p.

Next, suppose uncertainty exists in the parameters pe and pa of the LTI and nonlinear elements, with each
parameter p; € p varying independently over a given real interval p?,i = 1,... ,m, where m denotes the total
number of parameters (i.e., the length of the vector p). Then, we have a box p° = (p(l), . ,p?n) of parameters,

and the limit cycles for the uncertain nonlinear system are predicted at all z* in the set
(2.5) S (f, XO,pO) = {x* € x¥ : there exists some p € p° such that f (z*,p) =0 }

We refer to z* € S ( f,x%, pO) as a limit cycle point in search box x° for parameter box p°. For brevity, we may
sometimes simply refer to z* as a limit cycle point in the box (XO, pO).

From (2.5), we see that the problem of prediction of limit cycles is equivalent to the problem of finding all
points x* in the set S. The latter is essentially the well-known problem of finding the zeros of a parameter-
dependent system of nonlinear equations. We can (sometimes) find a solution to this problem using one of the
following methods: (i) random search, (ii) an exhaustive grid search on the given box, (iii) more specialized or
ad hoc methods such as the Jenkins-Traub method, and (iv) Homotopy continuation methods [17]. In contrast,
IA methods provide rigorous enclosures of all solutions given by (2.5) to a prescribed accuracy. For a discussion
of the various solution methods for solving parameter-dependent system of nonlinear equations, see [10].

3. INTERVAL ANALYSIS TOOLS

3.1. Initial search box. The amplitude @ and frequency w are nonnegative, so x € #2+. However, instead of the
semi-infinite box 2+ for the search box x9, in practice we use [0, rea.lmw]2 where real,,,., is the largest machine
representable number on the computer. Further, some idea of the ranges in which limit cycle amplitudes and
frequencies occur is often available in a particular problem. If so, the search box x® can be limited to enclose these
ranges. Alternatively, we can construct a ‘safe’ initial search box in which all limit cycle points are guaranteed

to lie, using Moore’s procedure [16, chapter 6].

3.2. Natural interval extension. A natural interval extension of f can be simply obtained by replacing real
variables and vectors with corresponding interval variables and vectors, and then evaluating f with interval
arithmetic. We denote a natural interval extension of f on domain x as f (x).

For instance, if f (z) = 1— 521+ 1/323+ 5, then f (x) = 1 —5x1 + 1/3x3+ 5 is the natural interval extension of
f onx. As another example, if f (z) = 2y sinzs — x3log sy, then f (x) = x; * ISIN (x9) — x3*ILOG (x2) is the
natural interval extension of f on x, where ISIN and ILOG are the pre-declared interval sin and log functions
in some programming language. A key property of natural interval extensions is the inclusion property.

Let fra"&° (x) denote the range of f on x. Then,

Theorem 3.1. [16](Inclusion property of natural interval extensions):
frange (X) g f (X)
3.3. Mean-value interval extension.

Lemma 3.2. [16] Let f: D C R™ — R" be a continuously differentiable function in the open domain D. Let '

denote a natural interval extension of the Jacobian matriz f' on D. Then, for any box x C D
f@)ef@+fx)(x—2) foralzex

where, & is the midpoint of x.
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Proof. From the mean value theorem of calculus,
f@=f@+f)(xz—-2), zex
for some ¢ between z and 2. Now z,2 € x = ( € %, so f'({) € f'**"¢¢(x). Applying the inclusion property

of natural interval extensions (Theorem 3.1) to the Jacobian function f’ gives f/™"¢¢(x) C f’(x). Hence the

assertion of the lemma. |

3.4. Zero exclusion test. Consider a search box x C x° and a parameter box p C p°. To verify if x contains
any limit cycle points for p, ie., to verify existence of z* € S(f,x,p), we can construct a natural interval
evaluation f for the function f in (2.3), and evaluate f on the box (x,p). By the inclusion property of natural

interval extensions given in Theorem 3.1,

frenee(x,p) € f(x,p)

Hence,
If 0 ¢ f(x, p), then 0 ¢ f*"¢° (x,p)

Consequently, if 0 ¢ f(x, p), then the limit cycle set S (f,x, p) is empty, i.e., there are no limit cycle points in x
for p, and the box (x,p) can be discarded.

However, due to interval dependency effects, f(x, p) generally (considerably) overestimates the range f™"8° (x,p).
Therefore, there may or may not be a limit cycle point in x for p, if 0 € f(x,p). In this case, a more refined

method, such as the generalized Krawczyk method, is needed. This method is next described.

3.5. The generalized Krawczyk method and fixed point theory. The Krawczyk method [13] is an enclo-
sure method based on interval analysis for finding solutions of a system of nonlinear equations. The Krawczyk
method considers the classical multivariate Newton method as a fixed point iteration. But whereas the classical
Newton method only provides approximations to a zero, the Krawczyk method yields enclosures for the zero.
Moreover, the classical Newton method provides no equivalent to the existence and non-existence tests possessed
by the Krawczyk method.

The Krawczyk method is readily extended to the parameter-dependent case as follows. Suppose f in (2.3)
is (Gateaux) differentiable with respect to z, and let f, denote the derivative of f with respect to x. Further,
let f and f/ denote the natural interval extensions of f and f. on the domain (XO,pO). Let x € x%p C p°
be nonempty search and parameter boxes. Let # denote the midpoint of x, and Y € %£2%2 be an arbitrary

nonsingular real matrix. Then, the generalized Krawczyk operator is defined as
(3.1) K (x,p) i= & — Y (2,p) + {1 - Y, (x,p)} (x — )
Further,

Theorem 3.3. [15] (In above notation)

1. (Existence test for limit cycle points):
IfK (x,p) C x, then at least one limit cycle point exists in x for every p € p
2. (Non-existence test for limit cycle points):
IfK (x,p) mx = 0, then there are no limit cycle points inx  (for anyp € p)

Proof. The proof is largely based on properties of interval arithmetic and the Brouwer fixed point theorem.

Consider a fixed but arbitrary p € p. Define the function g as
(3.2) g(z,p) =2-Yf(z,p), forzex

Since f is continuous by hypothesis, ¢ is also continuous. Further, the nonempty search box x is clearly convex

and compact. Then, by Brouwer’s fixed point theorem [11],

g (x, p) C x implies the existence of some z* € x: g (2™, p) = 2™
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Moreover, as Y is nonsingular by hypothesis, this further implies f (z*,p) = 0. That means, for nonsingular Y,
(3.3) g8 (x, p) C x implies the existence of a limit cycle point in x
By Lemma 3.2
f(z,p) € f(&,p)+ £, (x,p)(x—2), foralzex
Substituting the above in (3.2) gives
g(x,p) = z=Yf(z,p)
€ w-Y{f(Bp)+ £ (x,p) (x—2)}
€ z-Yf(zp -Yf (x,p)(x—2), forallzex

Therefore, by Theorem 3.1

g (x,p) € x—Yf(2,p) Y1, (x,p) (x— &)
C #-Yf(p) +{I-Yf (x,p)} (x—2)
C K(x,p)

From (3.3) it follows that K (x,p) C x implies the existence of at least one limit cycle point in x.

*

Further, if there is a point z* € x for which f (z*,p) = 0, then from (3.2), g (z*,p) = z*. Hence, z* €
g (x,p) C K (x,p). In other words, any limit cycle point in x is also in K (x, p). Therefore, if K (x,p) (x =0
then there are no limit cycle points in x.

The above arguments are for a fixed but arbitrary p € p. The assertions of the theorem for the (entire)

parameter box p follow readily by applying the arguments for every p € p. 1

Remark 3.1. (exclusion tests). If condition (2) in Theorem 3.3 is satisfied, then we discard (x,p) in our search
for limit cycle points. We note that this exclusion test based on generalized Krawczyk operator is in addition to

the zero exclusion test given in section 3.4.

Remark 3.2. From the above proof, it is evident that any limit cycle point in (x,p) is also in K (x,p). So
K (x,p)x # 0, we can replace the box x with the smaller box x' := K (x,p)[\x and continue the search,

without losing any limit cycle points that may be present in x for p.

Remark 3.3. (The generalized Krawczyk method) More precisely, if the enclosure of a limit cycle point is not
tight enough (in terms of the side-lengths of x), then by repeated application of the generalized Krawcezyk operator,
we can have an tterative method for improving the enclosures of limit cycle points. For a given p, since z* € X
= z* € K(x,p), it is natural to consider the iterations

X x
(3.4) xH) = K (X(l),p) Nx®, 1=012,...
Here we put x4 =0 if xU = 0. The method given by (8.4) is termed the generalized Krawczyk method.

3.6. Branching and bounding. If the initial search and parameter boxes are narrow enough, we can apply
directly the generalized Krawczyk method. Then, the method starts with x° in which we seek limit cycle points,
and improves the enclosure of limit cycle points iteratively, till a prescribed accuracy (in terms of the side-
lengths of x) is achieved. As noted above, an important feature of this method is that it can be also used to
computationally verify that there exists no limit cycle points in a search box.

Often, however, the initial search and parameter boxes are too wide, and bisection methods must complement
the generalized Krawczyk method. The basic principle of a bisection method consists of repeated splitting of the
search and parameter boxes (x,p)(this enables the ‘branching’ process) until they can be further reduced (this
step involves ‘bounding’) by means of interval iteration. This branch and bound philosophy requires that a list

of currently unprocessed boxes be stored in a list. Clearly, the method has no difficulties in also finding several
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(isolated) limit cycle point regions in the initial search and parameter boxes (XO, pO), since sooner or later such

regions will be isolated by branching. For details of interval branching and bounding strategies, see [11].

3.7. Convergence and accuracy. Moore [16, Theorem 5.4] has shown that the condition K (x,p) C interior
of x is sufficient to guarantee the convergence of the method to all the zeros in x. Further, using rounded interval
arithmetic on a computing machine, the convergence to a prescribed accuracy can be obtained in a finite number
of steps [16, sec 5.2, pp. 65-66]. Thus, we can compute arbitrarily tight enclosures of all possible limit cycle

points in a given search region.

3.8. Non-differentiable functions and slope matrices. In the above, we assumed that f is Gateaux differ-
entiable w.r.t. z. If it is not so, then a slope matrix of f may be used in place of the Jacobian. For details of slope
matrices, see [11, sec 1.3]. Further, usage of slope matrices instead of Jacobians has an additional advantage

that it leads to tighter enclosures of the limit cycle points.

4. A BRANCH AND BOUND PROCEDURE FOR LIMIT CYCLE COMPUTATIONS

In this section, we present an interval branch and bound procedure for constructing enclosures of all limit
cycle points z* € § ( f,x%, pO) to a prescribed accuracy. The proposed procedure uses the zero exclusion test
and the generalized Krawczyk method in a branch and bound strategy to discards irrelevant parts of the initial
search box x°. Before giving the procedure, we define the class of closed loop systems and uncertainties to which

the procedure can be applied.

Assumption 1. We assume that the function f is continuous w.r.t. p and continuously differentiable w.r.t. =
on the box (XO, pO). Subject to this assumption, the LTI transfer function G as well as the describing function
N can be described by any sequence of arithmetic expressions involving = and p using +, —, *, /, V) €xP, log,

power, trigonometric functions, inverse trigonometric functions, etc.

Remark 4.1. We require the continuity properties of f and its derivatives w.r.t. x, in order that the corre-
sponding natural interval extensions also be continuous. The latter property ensures that the width of f (x) tends
to zero as the width of x tends to zero (by width of an interval, we mean the difference between the upper and
lower endpoints of the interval), so that in turn, convergence and arbitrary accuracy can be achieved. If f is not

differentiable w.r.t. x, then as mentioned in sec. 3.8, a slope matriz may be used in place of the derivatives.

Procedure to find enclosures of all limit cycle points in a given initial search region (cf. Remark 3.1) to a
prescribed accuracy.
Inputs: the parameter box p°, the search box x° for limit cycle points, natural interval extensions f and f,
and an accuracy parameter ¢ for the limit cycle results.
Outputs: A list L5 of boxes of maximum side lengths e, such that all limit cycle points must lie in these
boxes.
BEGIN Procedure
1. Set x « x°, p « p° and initialize lists L = {}, L**' = {}. Enter the box (x,p) into the list L.
2. (Start a fresh iteration): Pop all the boxes present in L for processing.
3. Discard irrelevant parts of all boxes:
— (Find Natural interval evaluations): Evaluate f over all the boxes (x,p).
— (Perform zero exclusion test): Discard all those boxes (x, p) for which 0 ¢ f (x,p). If there are no
more boxes remaining, go to step 7.
— (Find derivatives and setup Krawczyk operator): Evaluate f, and set up the generalized Krawczyk
operator as defined in (3.1) for all boxes (x, p).
— (Perform generalized Krawczyk test): Find and discard all boxes (x,p) for which condition (2)
in Theorem 3.3 is satisfied. If there are no more boxes remaining, go to step 7. Else, obtain

smaller boxes (x',p) containing the limit cycle points from the remaining boxes (x,p), where
X' =K (x,p) ()%
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4. (Extract Solutions): Find all boxes (x, p) for which x have side-lengths at most equal to ¢, and deposit
the corresponding x in L*°'. Then, discard all such boxes (x,p) from processing.

5. (Perform Tessellation): If there are no boxes remaining, go to step 7. Else, for each remaining box
(x,p), find the coordinate direction along which it is longest, and bisect it along this direction. Push
all the resulting halved boxes into the list L.

6. (Terminate current iteration): Go to step 2.

7. Stop.

END procedure.

Remark 4.2. An interval arithmetic implementation of proposed procedure gives reliable results, i.e., the results

are trustworthy despite computational errors, see [12].

5. ILLUSTRATIVE EXAMPLES

We programmed the proposed procedure using the interval arithmetic toolbox INTLAB [20] on a PC/Pentium-
ITT 850 MHz machine with 2566 MB RAM. We extensively tested the procedure on several nonlinear system
examples given in [9], [6],[21], [19], [8], [3],[7]. These examples cover

1. LTI elements of different types
(a) Rational elements
(b) Nonrational elements
2. Different parametric uncertainty structures
(i) independent
(ii) affine linear
(iii) mulsilinear
(iv) nonlinear
3. Nonlinear elements of different types
(a) Frequency independent nonlinearities
(i) memoryless: ideal relay, saturation, deadzone
(ii) memory type: backlash, relay with hysteresis, relay with deadzone and hysteresis
(b) Frequency dependent nonlinearities

(i) Clegg integrator

Here, space considerations permit us to discuss only two examples. We select these two examples in order to
demonstrate the wide range of applicability of the proposed procedure.

Note: for convenience, in this section we use the notation G (s) and N, for G (s,pg) and N (a,w, py), respec-
tively.

Example 5.1: The first example demonstrates the applicability of the proposed procedure to nonrational
transfer functions, general nonlinear parametric dependency structures, and nonlinearities of memory type. The
LTT element is a third order nonrational transfer function having nonlinear parametric dependency

Ofs) = — (LHVNg) - 5) e

CIn(Az) - 82 4 cos(3% + Athe) - s+1

. A1 €[0.1,0.2), Ay €[0.2,0.3], As € [13,17]

The nonlinear element is of memory type, in the form of a hysteresis element having relay output M = +1 and
uncertainty in the total hysteresis as H € [0.3,0.4]. We choose the initial search box for limit cycle points as
x = ((0.4,100],[0.01,100]), and set the prescribed accuracy ¢ = 0.1.

Proposed procedure: We execute the proposed procedure, and obtain a set of 14,997 boxes enclosing the limit
cycle points. The procedure takes 26 iterations and 455 seconds to generate these limit cycle enclosures. The

results are plotted in Fig. 5.1.
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TABLE 5.1. Comparision of limit cycle results obtained using proposed, graphical, and simula-

tion methods in Example 5.1

Case | Variable Proposed Procedure | Graphical | Simulation | Property

Case 1 | Amplitude-1 | [4.5041, 4.5042] 4.5041 4.58 Stable
Frequency-1 | [0.6679,0.6680] 0.6680 0.668

Case 2 | Amplitude-1 | [2.9455,2.9456) 2.9455 2.82 Stable
Frequency-1 | [0.5973,0.5974] 0.60 0.59
Amplitude-2 | [0.4522,0.4527] 0.452 - Unstable
Frequency-2 | [1.8228,1.8233] 1.82 —

Case 3 | Amplitude-1 | [3.6144, 3.6264] 3.6144 3.514 Stable
Frequency-1 | [0.5260, 0.5266] 0.5263 0.527
Amplitude-2 | [0.7447,0.7454] 0.7450 - Unstable
Frequency-2 | [1.4057,1.4060] 1.4058 —

We next cross-check these results versus those of the graphical method and nonlinear simulations. To enable
cross-checking, we pick (arbitrarily) a few combinations of parameter values from the given parameter ranges,

and designate them as various cases as follows.

Case 1: )\1 = 0.1, )\2 = 02, )\3 = 13, H=03
Case 2: A\ =0.15, A\ =025, \3=15, H=0.35
Case 3: )\1 = 02, )\2 = 03, )\3 = 17, H=04

The limit cycle points (amplitude and frequency) obtained using the proposed procedure are given in column
3 of Table 5.1 for the various cases.

Graphical method: Fig. 5.2 shows the polar plots of G (jw) and —1/A for the three cases. As mentioned in
section 2, we can find the limit cycle points graphically as the intersections of the plots of G (jw) and —1/N; for
this task, we use the enlarged plot in Fig. 5.3. The limit cycle points obtained with the graphical procedure are
given in column 4 of Table 5.1 for the various cases. In all cases, we find the results of the proposed procedure
to be nearly identical to those of the graphical method.

Nonlinear simulations: The closed loop (as in Fig.
SIMULINK toolbox of MATLAB [1].

From the figure, we record the limit cycle amplitudes and frequencies, and report them in column 5 of Table

2.1) nonlinear simulations are performed using the

The simulation results are plotted in Fig. 5.4 for the various cases.

5.1. The Table shows minor differences between the results of nonlinear simulations and the proposed procedure.

However, such minor differences are perhaps expected, due to the approximate nature of the DF method itself.

Example 5.2: This example demonstrates further the applicability of the proposed procedure to include
frequency dependent nonlinearities. The LTI element is a second order transfer function
Ao

Gls) = — 20
(S) )\182 + Aos + )\3,

Ao € [10,20],)\1 € [1,2],)\2 € [1,2],)\3 € [1,2]

and the nonlinear element is a Clegg integrator having a frequency dependent describing function
4 N

N=(1-59)

The Clegg integrator is a nonlinear integrator that can be used as a more efficient compensator than a LTI

integrator, see |7, pp 79 - 81]. We note that the DF of a Clegg integrator is dependent on the frequency but

not on the amplitude of the input signal. We therefore choose the initial search box for limit cycle points as
x = ([1,1],[0.01,100]), and set the prescribed accuracy ¢ = 0.025.

We execute the proposed procedure, and obtain a set of 3060 boxes enclosing the limit cycle points. The

procedure takes 31 iterations and 6 seconds to generate these limit cycle enclosures. The procedure outputs a
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F1cUuRE 5.1. Limit cycle enclosures obtained using proposed procedure in Example 5.1.
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FIGURE 5.2. Polar plot of G(jw) and —1/N for the three cases in Example 5.1. This plot is
used to graphically obtain the limit cycle points for the three cases to cross-check the results of

the proposed procedure.

limit cycle cluster with frequencies in the interval [2.3535, 3.1836]. The amplitude of the limit cycle is immaterial
in this example, as the DF of the Clegg integrator is amplitude independent.

As in the earlier example, to enable cross-checking of our results, we pick (arbitrarily) a few combinations of
parameter values from the given parameter ranges, and designate them as various cases as follows.

Case 1: )\0:10,)\1:1, )\2:1,)\3:1

Case 2: )\0:20,)\1:2, )\2:2,)\3:2

For these two cases, the proposed procedure gives an empty L list, that is, it predicts that no limit cycles
exist. We next proceed to cross-check this finding using graphical and simulation methods.

Graphical method: Fig. 5.5 shows the polar plots of G (jw) and —1/N, for case 1. We see that in this
figure, although the plots of G (jw) and —1/A intersect, the frequencies at the point of intersection are different.



AN INTERVAL BRANCH AND BOUND PROCEDURE TO COMPUTE LIMIT CYCLES IN UNCERTAIN NONLINEAR SYSTEM$1

F1cURE 5.3. The previous polar plot is zoomed here to show more clearly the limit cycle points

for the three cases in Example 5.1.
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F1GURE 5.4. Closed loop nonlinear simulation results for the three cases in Example 5.1. Case-1
(dotted), case-2 (solid), and case-3 (dashed) lines.

These frequencies are w = 1.82 for G (jw), and w = 5.47 for —1/N. Hence, the graphical method confirms the
non-existence of limit cycles for case 1. For case 2, at the point of intersection, we find that the frequencies are
w = 3.45 for G (jw), and 2.88 for —1/N. Hence, the graphical method confirms the non-existence of limit cycles
also for case 2.

Nonlinear simulations: The closed loop simulation responses obtained with SIMULINK do not exhibit any
limit cycle behavior for these two cases. This further confirms the findings of the proposed procedure for the two

selected cases.
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270

FI1GURE 5.5. Polar plot of G (jw) and DF curve —1/N for case 1 in Example 5.2. Though these
plots intersect, the frequencies at the intersection point are different. Thus, no limit cycle points

are predicted for this case.

6. CONCLUSIONS

We have presented a branch and bound procedure for limit cycle analysis of nonlinear systems in the presence
of parametric uncertainties in the LTI and nonlinear elements. The procedure has a wide scope of applicability
that covers nonrational LTT elements, nonlinear elements (involving memoryless, memory, frequency independent,
or frequency dependent type), and parametric uncertainty structures (including interval, affine, multilinear, or
general nonlinear structure). The procedure computes rigorous guaranteed enclosures of all the limit cycle points
to a prescribed accuracy. If no limit cycle points exist in the initial search region, the non-existence of the same
is computationally verified. We have extensively tested the procedure on several examples, and successfully

validated the results with those of graphical and simulation methods.
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