A PARALLELIZED VERSION OF THE COVERING ALGORITHM FOR SOLVING
PARAMETER - DEPENDENT SYSTEMS OF NONLINEAR EQUATIONS

P. S. V. NATARAJ AND A. K. PRAKASH

Systems and Control Engineering Group
Department of Electrical Engineering
IIT Bombay 400 076, India.

Email: nataraj@ee.iith.ernet.in

ABSTRACT. The so-called covering algorithm for enclosing the solution set of parameter - dependent systems
of nonlinear equations has been recently proposed by Neumaier [12]. However, in the covering algorithm, only
one box is processed in each iteration. This paper presents a parallelized version of the covering algorithm, in
which all boxes present are processed simultaneously in each iteration. It is shown through several examples that
this strategy results in speed-up of the algorithm by several orders of magnitude, particularly so in demanding
problems. The proposed parallelized version can be run even on ordinary computers, i.e., it does not require a

parallel computer.

1. INTRODUCTION

This paper addresses the problem of finding in a given box (i.e., a rectangular parallelipiped) all solutions of a
nonlinear system with more variables than equations. This problem is clearly of a broad scope and has numerous
applications in engineering and sciences.

The problem can sometimes be solved by one of the following methods [3] : (i) random search, (ii) an exhaustive
grid search on the given box, (iii) more specialized or ad hoc methods, such as the Jenkins-Traub method for
finding all roots of a single polynomial, and (iv) homotopy continuation methods [9]. The interested reader is
refereed to [3], [4] for a discussion and comparision of these methods.

In the frame work of interval analysis [7], Neumaier proposed the so-called covering algorithm [12] to solve

the problem. Consider a finite-dimensional system of nonlinear equations of the form
(1) F(z)=0

where F' is a function defined on a subset D C R™ with values in R™, m < n. If F is continuously differentiable

in D and F’ (Z) has rank m for all Z in a neighborhood of the solution set

M={ZeD|F@) =0}

then the solution set M of (1) is a p-dimensional manifold in R™, p = n — m. The vector Z of variables often
contains p distinguished variables, called as parameters.
We are interested in that part of M for which all variables (and parameters) lie within certain bounds

11§51<’U,Z (@zl,,n)

so that only the solutions of (1) contained in a box 2% = [I,u] € IR™ are sought.
1

For any « € ID (the set of interval boxes contained in D), define

(2) > (Fx):={Fcx|F (@) =0}.

The covering algorithm of Neumaier [12] consists of covering the set > (F, wo) by a collection of smaller and
smaller boxes which give increasingly accurate information about the location of the solution set. The algorithm
uses the zero exclusion test and the generalized Gauss-Seidel method to discard irrelevant parts of z°. However,
in each iteration of the covering algorithm, only one box is processed.

The aim of this paper is to show that the covering algorithm can be speeded up by several orders of magnitude,
if in each iteration of the algorithm, we simultaneously process all boxes that are present.

2. NEUMAIER’S COVERING ALGORITHM

We first outline Neumaier’s covering algorithm to solve (1).
Algorithm: Neumaier’s covering algorithim [12]
Inputs: the initial box 2, a continuous interval extension (also denoted as F') of the given function F, and a
parameter € to check if the width of a box is small.
Begin Algorithm
1. Enter the initial box into the stack.
2. If the stack is empty, go to step 9.
3. Choose the first box from the stack.
4. Discard irrelevant parts of the box using the zero exclusion test and the GGS method (see Remarks
2.1 and 2.2 below).
If the box is empty, go to step 2.

ot

6. If the width of the box is less than or equal to &, print the box and go to step 2.

7. Bisect the box along the maximum width coordinate direction and enter the halved boxes into the
stack at the end.

8. Go to step 2.

9. Stop.

End Algorithm.

Remark 2.1. The function is evaluated using the interval extension F and a box x from the stack. We may use
a natural interval extension [7), e.g., if f (Z) = 1—57+1/3%2, then F (z) = 1 —5x+1/322 is the natural interval
extension of f(Z). As another example, if f(T) = Ty x sinZy — T3, then F (x) = xy x ISIN (xq) — x3 is the
natural interval extension of f(Z), where ISIN is the pre-declared interval sin function in some programming

language.

Remark 2.2. If 0 ¢ F(x) then x contains no solution point and is discarded (the zero exclusion test). Note
that since F(x) generally overestimates the range {F(Z)|T € x}, there may or may not be a solution point in x

if 0 € F(x). In this case a more refined test is used as in the following remark.

Remark 2.3. The algorithm is speeded up by finding a smaller box containing all solutions in x, using the
generalized Gauss-Seidel method (GGS) [12]. The GGS method is applied to the homogeneous linear interval
equation

(3) Ad=0,Ac A ded

where
(4) dved:_<$;§>,KEA:_(F’(x),F(E));

and z € z. If this linear interval system is found incompatible then x can be discarded. FElse, the algorithm
proceeds by replacing x with ¥’ = Z + d', where d' is the solution constructed using the GGS method. To further
speedup the algorithm, preconditioning of the linear system is done, and interval slopes [5] instead of gradients

are used.

3. PROPOSED ALGORITHM

Note that in each iteration of Neumaier’s covering algorithm, only one box is processed. Such processing is
inherently slow, due to its sequential nature. On the other hand, in each iteration of the covering algorithm,
it is clearly possible to simultaneously process all boxes that are present (this can be done without altering in
any way the essence of the algorithm). As will be seen below, the strategy results in greatly speeding up the
algorithm, because all boxes present in every iteration are processed simultaneously , i.e., in a parallel manner.
We call this version of the covering algorithm as the parallelized covering algorithm.

Algorithm: Parallelized covering algorithm

arises from Neumaier’s covering algorithm by making the following changes.

e Step-3: Choose all the boxes present in the stack.

e Step-4: Discard irrelevant parts of all boxes:

— (parallelized zero-exclusion test): using vectorized interval arithmetic operations, evaluate the
interval extension F' over all the boxes. Discard all those boxes for which 0 ¢ F(x). If there are
no more boxes remaining, go to step 9.

— (parallelized GGS method) using vectorized gradient or slope evaluations, set up the A, d matrices
in (3, 4) for all boxes. Using vectorized interval arithmetic operations, apply the GGS method
simultaneously to all the resulting homogeneous linear interval equations, and obtain smaller boxes
containing the solution points in the respective boxes.

e Step-5: Find and discard all empty boxes. If there are no more boxes remaining, go to step 9.

e Step-6: Using vectorized interval arithmetic operations, find the widths of all boxes. Then, find and
print all those boxes satisfying the box-width condition (i.e., width of box < ¢). Discard the just
printed boxes.

e Step-T: If there are no boxes remaining, go to step 9. Else, using vectorized interval arithmetic oper-
ations, find the maximum width coordinate directions for all boxes, and bisect simultaneously all the

boxes along these (respective) directions. Enter all the resulting halved boxes into the stack.

Remark 3.1. The functions can be programmed in the following way to obtain parallelized evaluation. Consider,

for example, the 1- dimensional manifold in [12]
F (z1,29) = :U:f - zlxg + 1‘% — xT1To — mg

and suppose we want to evaluate F' over a set of boxes taken from the stack. Then, using the notation of INTLAB

(which is based on MATLAB), we can do this using the single program statement

F = power (z(:,1),3) — z(:,1). x sqr (x(:,2)) + sqr (z(:,1)) — 2(:,1). x 2(:,2) — sqr (z(:,2))

4

where, x(:,1) denotes x1 for all boxes and x(:,2) denotes x4 for all boxes. The function evaluation over all the
bozxes is done in a parallelized manner with this statement, because the operations +, —, ., sqr, and power are
performed element-wise between vectors (cf. [1]) and INTLAB overloads these ordinary arithmetic operations

with the corresponding interval arithmetic operations [13].

Remark 3.2. [t is emphasized that the formulation of the algorithm is independent of MATLAB / INTLAB, and
it can be run on any computer that has an interval arithmetic compiler supporting vectorized interval arithmetic

operations, such as Forte Fortran 95 [2].

Remark 3.3. The parallelized covering algorithm does not require a parallel computer. That s, the paralleliza-

tion is efficient even on serial architectures where vectorization brings advantages.

Remark 3.4. It follows from a result in [10, Theorem 4.15] that for £ > 0, the above algorithm terminates after

at most x™ — 1 iterations, where x = w (:UO) /€.

4. NUMERICAL RESULTS

We consider some examples for comparing the performance of the proposed parallelized covering algorithm
with that of the covering algorithm. The examples are listed in Appendix.

All computations are carried out on a PC/Pentium-III 550 MHz machine with 384 MB RAM using INTLAB
[13]. Tables 1 and 2 give the computational results for the various examples. The Tables list the number of boxes
in the covering of the solution set, the execution time (seconds), and the number of floating operations (flops)
taken. We used two values of ¢, that is, ¢ = 0.01 and 0.001.

The following observations are made regarding the results given in the Tables :

1. The same number of covering boxes are obtained using either algorithm.

2. The proposed algorithm is faster than the covering algorithm in all examples. In all examples except
example 3, the reduction in computational time is around 96 — 99%. In example 3, the same is around
30 — 40%.

3. The speedup is particularly attractive in those examples demanding large computational times using the
covering algorithm. In such examples, the proposed algorithm is faster than the original one by up to 2
orders of magnitude.

4. The speedup factor gets better with accuracy.

5. The number of flops is less with the proposed algorithm in every example.

We conclude the paper with some remarks:

Remark 4.1. The observed reduction in computational overhead (in terms of flops) can be attributed to the
fact that in INTLAB, interval arithmetic and slopes are done by operator overloading, which incurs substantial
overhead. This overhead is needed once for each box in the (sequential) covering algorithm, but only once per

magor iteration in the parallelized version [11].

Remark 4.2. The actual speedup factor perhaps varies considerably with the computing environment used, and

may be less conspicuous in programming languages where control structures are more efficiently implemented
than in MATLAB.

(<3

5. CONCLUSIONS

A parallelized version of Neumaier’s covering algorithm was proposed for solving finite-dimensional systems
of parameter - dependent nonlinear equations. It was demonstrated through several test examples that the
parallelized algorithm is significantly faster (by up to 2 orders of magnitude in demanding problems) than
the original algorithm. Moreover, it is noteworthy that the parallelized algorithm does not require a parallel
computer, but can be run on any computer (such as a PC) that has an interval arithmetic compiler supporting

vectorized interval arithmetic operations.

Acknowledgments

The authors are grateful to Prof. A. Neumaier for suggesting the parallelization of the covering algorithm
and for his comments on a draft of the paper, and to Prof. S. M. Rump who inspired the latter with the idea
through some parallel range computations using INTLAB. The authors also wish to thank Prof. Rump for the
software INTLAB, which they have found a delight to use. Finally, the authors are grateful to the anonymous
referees who suggested several improvements to the paper.

REFERENCES

[1] MATLAB user guide, version 5.3. The MathWorks Inc., MA, USA, 2000.
[2] Forte Fortran 95 user manual. Sun Microsystems, Palo Alto, CA, USA, 2001.
[3] R. B. Kearfott. Abstract generalized bisection and a cost bound. Mathematics of Computation, 49(179):187-202, 1987.
[4] R. B. Kearfott. Some tests of generalized bisection. ACM Transactions on Mathematical Software, 13(3):197-220, 1987.
[5] R. Krawczyk and A. Neumaier. Interval slopes for rational functions and associated centered forms. STAM J. Numerical Analysis,
22:604-616, 1985.
[6] J. D. Lawrence. A catalog of special plane curves. Dover, New York, 1972.
[7] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 1979.
[8] A. Morgan and V. Shapiro. Box bisection for solving second degree systems and the problem of clustering. ACM Trans. Math.
Software, 13:152-167, 1987.
[9] A.P. Morgan. Solving polynomial systems using continuation for engineering and scientific problems. Prentice-Hall, Englewood
Cliffs, N. J., 1987.
[10] P. S. V. Nataraj and G. Sardar. Template generation for continuous transfer functions using interval analysis. Automatica,
36:111-119, 2000.
[11] A. Neumaier. personal communication.
[12] A. Neumaier. The enclosure of solutions of parameter dependent systems of equations. In R. E. Moore, editor, Reliability in
Computing: The Role of Interval Methods in Scientific Computations. Academic Press, 1988.
[13] S. M. Rump. INTLAB - INTerval LABoratory. In T. Csendes, editor, Developments in reliable computing. Kluwer Academic
Publishers, 1999.
[14] A. Ushida and L. O. Chua. Tracing solution curves of nonlinear equations with sharp turning points. Circuit Theory and
Applications, 12:1-21, 1984.

Table 1: Comparisons of Algorithms for =o0.01

S.No Examples m|n Solutions Covering | Proposed | Speed up
algorithm | algorithm | factor
1 One dimensional | 1 | 2 | covering boxes 2406 2406
manifold time(s) 180.55 1.6 100.3
[12] flops 1354502 | 1060178
2 Tunneling diode | 1 | 2 | covering boxes 1473 1473
[14] time(s) 122.13 1.25 97.7
flops 1051102 783391
3 Combustion 2 | 2 | covering boxes 2 2
chemistry time(s) 1.81 1.09 1.79
8] flops 13865 12947
4 Hippopede 2 | 3 | covering boxes 896 896
[6] time(s) 84.05 1.22 68.89
flops 795304 358268
b) PUMA 8 | 8 | covering boxes 28 28
robot time(s) 105.39 4.08 25.83
8] flops 1351569 | 1193709
Table 2: Comparisons of Algorithms for <=o.001
S.No Examples m|n Solutions Covering | Proposed | Speed up
algorithm | algorithm | factor
1 One dimensional | 1 | 2 | covering boxes 26955 26955
manifold time(s) 3274.1 10.46 313.01
[12] flops 14218727 | 11142507
2 Tunneling diode | 1 | 2 | covering boxes 17060 17060
[14] time(s) 1693.8 6.21 272.75
flops 10011584 | 7503713
3 Combustion 2 | 2 | covering boxes 2 2
chemistry time(s) 2.15 1.46 1.47
8] flops 17575 16567
4 Hippopede 2 | 3 | covering boxes 6884 6884
6] time(s) 635.07 3.35 189.57
flops 5231611 | 3685222
5 PUMA 8 | 8 | covering boxes 40 40
robot time(s) 125.3 4.63 27.06
8] flops 1635829 | 1444654

Example 1 : The 1- dimensional manifold in [12]

where, z1 = [-3,3],22 = [-5, 5].

APPENDIX A. LIST OF EXAMPLES

3

x —xyxd 2t —rwe — 23 =0

Example 2 : This is an equation of a simple tunneling diode [14]
0.4323 — 2.692% + 4.56z; = 2.5235 — 10.523 + 11.8z2 = i
where z1=[0,5],z2 = [0,3], and i = 5 mA.

Example 3 : This problem is an example from combustion chemistry [8]. The system consists of two cubic
equations:
alemg + agx% + agxrir9 + aqx1 +asre = 0
Qg lﬂfﬂvz + aﬂllvg + agxrire + agwg + a10$% +apre oz = 0
where, a; = —1.697 x 107, ap = 2.177 x 107, a3 = 0.55, ay = 0.45, a5 = —1, ag = 1.585 x 1014, ay = 4.126 x 107,
ag = —8.285 x 10%, ag = 2.284 x 107, ayg = 1.918 x 107, oy = 48.4, ayp = —27.73. The box x; = [0,1],
T — [0, 1] .
Example 4 : The hippopede problem in [6]
z:x%—l—x%, az:mg—i—zQ
where z1 = [—1.5,1.5], zo = [-1,1], 2 =[0,4], and a = 1.1 .
Example 5 : This is a set of kinematic equations for a PUMA robot in [8]
Y1 T1T3 + Yox2X3 + Y3T1 + V4T2 + V5Ta + V67 + Y7 =
V8 123 + V9Z2Z3 + Y10%1 T Y11%2 + V12Ta + V13 =
V14 T6Z8 + V15T1 + V16T2 =
Y17%1 + Y18 T2 T Y19 =
22 vai-1 =

2l -1 =

o O o o o o o

:cg + mg -1 =
zg + x% -1 =0
where, v; = 4.731x10°3, Vg = —0.3578, v3 = —0.1238, v, = —1.637x10°3, vs = —0.9338, v = 1, v, = —0.3571,

v = 0.2238, g = 0.7623, 710 = 0.2638, v;; = —0.07745, 719 = —0.6734, 7,5 = —0.6022, y,4 = 1, 7,5 = 0.3578,
Y6 = 4.731 x 1073, y,, = —0.7623, ;5 = 0.2238, v, = 0.3461. The box z; € [~1,1],i =1, ..., 8.

