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ABSTRACT. We propose a modification to the basic global optimization algorithm of interval analysis. The
proposed modification consists of processing all boxes present in the list at each algorithmic iteration, instead
of processing only one box in the list at each iteration as is currently done. Using INTLAB on a PC/Pentium-
IIT machine, we test and compare the performance of the proposed algorithm on a benchmark suite of thirty
five test functions. Our results show that the proposed modification is significantly faster. On an average,
it runs about 433 times faster, and somewhat surprisingly, requires less number of function evaluation, flops
and list length in about 60 — 80% of the test functions.
Glossary

Bold letters: interval quantities

f - objective function to be optimized

f(X) - exact range of f over interval X

¢ - index that goes over the subboxes (1 to 2).

J - index that goes over all components (1 to [) present in list L.

k - the maximum width component direction, used for bisection

L - the list at a given iteration

[ - the number of components of z, i.e., number of variables to be optimized
l,— the length of list L at a given iteration

l,»— the (temporary) length of list L at a given iteration

m - the number of components making up the objective function f , i.e., f depends on fi,...fm
m(X) - mean of an interval X

n - index that goes over all items in list L

np - the number of test functions

ng- number of algorithms (solvers)

p - a test function

P - test set of functions

r - the iteration number

Tp,s - performance ratio

t, s - computing time required to solve a test function p by algorithm s.

v!, v? - minimum value of F over V! and V?2

V! V2 - the subboxes obtained by bisection

w (X) - width of an interval X

x - the variables to be optimized

X - The search region for optimization

z - the second component of any pair in list L, i.e., minimum value of F' over Z.

Z - the first component of any pair in list L, a subbox
1
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p,(T) - performance profile

1. INTRODUCTION

Let R be the set of reals, X C % be a right parallelepiped parallel to the axes (also called as a box),
and f : X — R be a differentiable function. Let f (X) denote the set of all values of f on X. We seek
global optimization algorithms that are able to efficiently determine arbitrarily good lower bounds for the
minimum of f (X).

Many algorithms based on interval analysis (IA) are available to solve this unconstrained global opti-
mization problem, see for instance, [5], [7], [14]. A model or basic! branch and bound algorithm of TA
consists of the Moore-Skelboe algorithm [9] augmented with the midpoint test of Ichida and Fujii [6] and
the monotonicity test detailed in [14]. Although this basic algorithm is reliable, it is sometimes found to be
slow for ‘difficult’ problems. In this paper, we therefore propose a modification of the same with an aim to
improve the speed of the algorithm.

As is well known to interval analysts, in the basic algorithm we choose for processing only the first box
from the list in each iteration. In the proposed modification, we choose for processing all boxes from the list
in each iteration. We recently investigated the effect of such a modification in a different context of finding
zeros of system of nonlinear equations, see [12], [13]. The modification yielded there algorithmic speed-ups of
up to 2 orders of magnitude with INTLAB [16] on a PC/Pentium III. Here, we investigate the effectiveness
of the same kind of modification in the context of global optimization. We conduct the investigations on a
benchmark suite of thirty five optimization problems given in [10].

2. BASIC ALGORITHM FOR GLOBAL OPTIMIZATION

Let I (X) be the set of all boxes contained in X. Let the width of X be defined as w (X) = max X —min X
if X € I(R), and as w(X) = max {w(X1),...,w(Xy)}, if X € I (R'). Let the mean of X be defined as
m (X) = (min X + max X) /2 if X € I (R), and as m (X) = {m(Xy1),... ,m(X;)}, if X € I (R'). We call
a function F': I (X) — I (RN) an inclusion function [14] for f, if f(Y) C F(Y) forall Y € I (X).

A Basic Algorithm of TA for Unconstrained Global Optimization [15]

Inputs: The box X, an inclusion function F' (usually the natural interval extension, cf. [8]) for f: X — R,

and accuracy parameters er and ex.
BEGIN Algorithm

1. Set Z; = X, calculate F'(Z;), and set z; = min F' (Z;). Next, initialize list L = ((Z1,21)) and the
cut-off value ¢ = f (m (Z1)).

Choose a coordinate direction k parallel to which Z; has an edge of maximum length.

Bisect Z; in direction k getting boxes V! and V2 such that Z; = V! |J V2

Calculate F (V') and F (V?), and set v! =min F (V') , v = min F (V?).

Discard the pair (V¢ v?) if v > ¢, where i € {1,2}.

(Monotonicity test, cf. Remark 2.2) discard the remaining pair (Vi,vi) if 0 ¢ F; (VZ) for any j €
{1,2,...,l},and i = 1,2.

7. Add the remaining pair(s) to L. If L is empty, then EXIT. Otherwise, arrange L such that the second
members of all pairs of L do not decrease, and denote the pairs as in Remark 2.1. Choose the first
item (Z1, z1) and delete it from L.

8. Update the cut-off value as ¢ = min {c, f (m (Z;))}.

9. (Cut-off test) discard from L all pairs whose second members are greater than the cut-off value c.

10. If the termination criteria hold (cf.. Remark 2.3), then print all items in L and EXIT algorithm.
11. Go to Step 2.

S i

1The basic or model version does not include local search procedures, concavity tests, and Newton-like steps, see [3], [15].
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END Algorithm

Remark 2.1. The items in list L at iteration r consists of pairs denoted as (Z1,21),...,(Zi,, 21, ), where,

Zn =minF (Z,), n=1,..., ., and l, denotes the current list length.

Remark 2.2. In the monotonicity test, if 0 ¢ FJ’ (V’) then the interior of V? cannot contain a global
minimizer. The edge of V* still can contain global minimizer if that part of the edge which has the smallest

function values is also part of the edge of X. Otherwise, no global minimizer lies in V* . For details, see [14].

Remark 2.3. We use the termination criteria

max {w(F(Z1)),...,w(F(Z;,.))} <ep and max{w(Zy),... ,w(Z,)} < ex
3. PROPOSED ALGORITHM FOR GLOBAL OPTIMIZATION

In the basic algorithm described above, in each iteration we choose only the leading box from the list L
for processing. On the other hand, in the proposed algorithm given below, we choose all boxes from the
list for processing. To perform function and gradient evaluations, monotonicity test, midpoint test, width
checks, and bisections on all boxes in an iteration, we use vectorized interval arithmetic operations. We
could have also used FOR loops that run over all the boxes to do the same things, but we follow [1] which
strongly advocates employment of vectorization instead of FOR loops wherever possible.

In the following example, we illustrate how function evaluation can be done on all boxes from a list with
INTLAB [16].

Example 3.1. Consider, for example, the 1- dimensional function
F(x1,20) = 23 — 2122 + 22 — 2120 — 22

and suppose we want to evaluate F over all boxes from a list. Then, using the notation of INTLAB (which

is based on MATLAB), we can do this using the single program statement
F = power (z(:,1),3) — z(:, 1). x sqr (z(:,2)) + sqr (z(:,1)) — z(:,1). x x(:,2) — sqr (z(:,2))

where, x(:, 1) denotes xq for all boxes and x(:,2) denotes xo for all boxes. The function evaluation over all the
boxes is done with this statement, because the operations +, —, .*, sqr, and power are performed element-wise
between vectors (cf. [1]) and INTLAB overloads these ordinary arithmetic operations with the corresponding
interval arithmetic operations.

In a similar way, we can perform gradient evaluations, width checks, bisections, etc., on all boxes from a
list. We next present the proposed algorithm.

Proposed Algorithm for Global Optimization

BEGIN Algorithm

1. Set Zy = X, calculate F'(Z1), and set z; = min F'(Z1). Next, initialize list L = ((Z1,21)) and the

cut-off value ¢ = f (m (Z1)).

2. Set [, as the length of L. Then, choose a coordinate direction k,, parallel to which Z,, has an edge of
maximum length, n =1,... ,[,.
Bisect Z,, in direction k, getting boxes V! and V2 such that Z, = VL (JVZ, n=1,...,l,.
Calculate F (V},) and F (V2), and set v}, = min F (V},), fori =1,2, andn =1,... ,1,.
Discard the pair (V%,v%) if v, > ¢, where i € {1,2} ,n € {1,... 1.} .
(Monotonicity test) Discard the remaining pairs (V;, vg) if0¢ FJ’ (V;) for any j € {1,2,...,l}, and
i=1,2n=1,...,1,.

7. Delete all items from L, and enter the remaining pair(s) of above step to L. Set [,» as the (temporary)

Al

length of L. If [,+ is empty, then EXIT. Otherwise, arrange L such that the second members of all
pairs of L do not decrease, and denote the pairs as in Remark 2.1.
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8. Update the cut-off value as ¢ = min {c, f (m (Z1)),..., f (m(Z.,,))}.

9. (Cut-off test) Discard from L all pairs whose second members are greater than the cut-off value c.
10. If the termination criteria hold (cf.. Remark 2.3), then print all items in L and EXIT algorithm.
11. Go to Step 2.

Remark 3.1. Note that the cut-off test in proposed algorithm is based on the function values at midpoints
of all the boxes present in the list.

4. TEST RESULTS

For evaluating the effectiveness of the proposed algorithm, we consider the benchmark suite of thirty five
optimization test functions given in [10]. We carry out all computations on a single processor PC/Pentium-II1
800 MHz machine with 256 MB RAM using version 3 of INTLAB [16]. In all the problems, given f; : ® — R
fori=1,...,m, with m > [, our aim is to find

min {i f2(z):z € X}

For most test functions, we select the initial domain X as per Hansen [5, pp.135-136]. We choose the
accuracies as ep = ex = 1072 or 10~%. For the rest, since with this initial domain selection both the
algorithms fail (due to excessive time requirements), we choose smaller initial domains such that they include
all the starting points given in [10].

To compare the performances, we use the following performance metrics

e Number of functional evaluations (fe)
e Number of floating operations (flops)

Computational time, seconds (t)
e Maximum list length (ml)

Table 4 gives the obtained results in terms of these performance metrics for the various test problems?
(the notation used for the entries in Table 4 is given in brackets above). At the outset, note that for the
considered domains and accuracy, the proposed algorithm is able to solve all the test functions, whereas the
basic algorithm is able to solve only 77.14% of the test functions.

For each metric, in the last two columns of Table 4 we also give the values of ratio and the percent
reduction computed as

. Perf. metric with basic algorithm
Ratio =

Perf. metric with proposed algorithm

) Perf. metric with basic algorithm - Perf. metric with proposed algorithm
Percent reduction = —— - - % 100
Perf. metric with basic algorithm

We compare the performance of the two algorithms using different methods: ranking, statistical measures,
average and other measures, and performance profiles.

4.1. Ranking. Ranking of the algorithms has been used for performance comparison, for instance, in [2],
[11], [17]. Ranking is based on the number of times an algorithm comes in the k" place, here k = 1, 2. Table
1 gives the ranking of the algorithms in our studies (A higher rank is assigned to the algorithm with lesser
performance metric value).

Table 1 shows that in a majority of the solved test functions, the proposed algorithm is better in terms
of various performance metrics used (two test functions require same number of function calls and same
maximum list length with either algorithm, and they are assigned both the ranks). Especially, the proposed
algorithm is able to achieve the 1%¢ rank in all the test functions for the computational time metric.

2A ¥ entry in the last two columns of Table 4 indicates that a solution could not be obtained by the basic algorithm for

the prescribed accuracy, due to excessive time requirements (greater than 10 hours).
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TABLE 1.

Rankings

Performance metric

Algorithm with
1%t Rank

Number
of problems

Algorithm with
24 Rank

Number
of problems

Function evaluations | Proposed algorithm | 21 Basic algorithm | 16
Flops Proposed algorithm | 24 Basic algorithm | 11
Computational time | Proposed algorithm | 35 Basic algorithm | 0

Maximum list length | Proposed algorithm | 28 Basic algorithm | 09

(<3

TABLE 2. Statistical measures

Performance metric | Minimum | First Quartile ‘ Median | Second Quartile | Maximum
Function evaluations | —2432 —442 -2 71208 534138
Flops —2.74 x 107 | —201362 79301 2.483 x 107 1.118 x 1010
Computational time | 0.02 3.6 18.1 1133.2 3.59 x 104
Maximum list length | —10923 -3 4 306 38125

TABLE 3. Minimum, Mean, and Maximum of Ratios and Percent Reductions

Ratio Percent Reduction
Performance Metric | Min. | Mean | Max. Min. | Mean | Max.
Function Evaluations | 0.19 | 1.85 9.34 —423.66% | —52.38% 89.29%
Flops 0.21 |57.05 |1235.32 | —374.91% | —32.37% 99.92%
Computational time | 1.08 | 433.23 | 8744 4.66% 81.83% 99.99%
Max. list length 0.43 | 1.56 8.08 —131.82% | 7.72% 87.63%

4.2. Statistical measures. Next, we compare the performance of the algorithms based on the distribution
of the difference between the performance metrics. Such a comparison has been done, for instance, in [2].
The minimum, first quartile, median, third quartile and maximum of this distribution are reported in Table
2.

A positive value of the median for flops, computational time and maximum list length indicates that
proposed algorithm requires less flops, computational time and maximum list length for more than half
of the solved test functions. A negative value of median for the function evaluation shows that proposed
algorithm requires more function evaluations for more than half of the test functions. The inter-quartile
distance clearly shows the advantage of the proposed algorithm in terms all the performance metrics.

4.3. Minimum, mean, and maximum measures. In Table 3, we give the average (over all test functions)
of the ratio and percent reduction defined earlier.

Table 3 shows that with the proposed algorithm, on an average, we obtain an increase in the number
of function evaluations and flops, but a decrease in maximum list lengths. Moreover, we obtain a good
reduction in the computational time with the proposed algorithm for all test functions.

4.4. Performance profiles. Performance profile is proposed as a tool for evaluating and comparing perfor-
mance of algorithms in [4]. The performance profile for an algorithm is the (cumulative) distribution function
for a performance metric. Performance profiles eliminate the influence of a small number of problems on the
final evaluation conclusions.

For computational time as the performance metric, performance profiles can be generated as follows. Let
‘P be the test set of functions, ns be the number of algorithms and n, be the number of functions. For each
test function p and algorithm s, define
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F1GURE 1. Performance profile plots for number of function evaluations

tp s = computing time required to solve a test function p by algorithm s

The performance ratio for computation time is calculated as

S tp,s
P2 min {t,s 1< s <ng}

We choose a parameter ry; > rp, 5 for all p, s, such that r, s = rjs if and only if algorithm does not solve the
test function p. Now, the performance profile for computing time can be defined as

1 .
po(T) = —size{peP:rps <7}
Tp
Similarly, performance profiles for other performance metrics can be defined.
The following observations are made from the performance profile plots computed for various performance
metrics.

4.4.1. Number of function evaluations. Performance profile plots for the number of function evaluations (cf.
Figure 1) show a better performance with the proposed algorithm. The proposed algorithm solves 70% of
the (number of) test functions for 7 = 1 and remaining 30% for 7 < 5.5. The basic algorithm is able to solve
only 42.8% of the test functions for 7 = 1 and 34.3% of the test functions for 7 < 10. This shows that the
proposed algorithm is able to solve all the test functions for 7 < 5.5, and that it requires less number of
function evaluations for 70% of the test functions.

4.4.2. Computational effort (flops). Performance profile plots for computational effort in terms of flops are
shown in Figure 2. The proposed algorithm solves 71.4% of the test functions for 7 = 1, and the remaining
38.6% for 7 < 4.75. The basic algorithm could solve only 57.1% of the test functions for 7 < 1.6, and 20%
of the test functions for 7 < 1250. This shows the proposed algorithm is able to solve all the test functions
for 7 < 4.75, and that 71.4% of the test functions require less computational effort with it.
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FIGURE 3. Performance profile plots for computational time.

4.4.3. Computational time. Performance profile plots for computational time (cf. Figure 3) show the pro-
posed algorithm is able to solve all the test functions for 7 = 1. The basic algorithm is able to solve only
77.1% of the test functions for 7 < 3000. In all test functions, the proposed algorithm is considerably faster.

4.4.4. Mazimum list length. Performance profile plots for maximum list length (cf. Figure 4) show that
the proposed algorithm solves 80% of test functions for 7 = 1, and remaining 20% for 7 < 2.5. The basic
algorithm solves just 25.7% for 7 = 1, 65.7% of test functions for 7 < 2, and the remaining 11.5% for 7 < 10.
This shows that the proposed algorithm is able to solve all the test function for 7 < 2.5, and that it requires
less memory for 80% of the test functions.
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FIGURE 4. Performance profile plots for maximum list length

5. SUMMARY

For the considered domains and accuracy, the proposed algorithm is able to solve all the test functions,
whereas the basic algorithm is able to solve only about 77% of the test functions.

On an average, the proposed algorithm requires 52% more function evaluations and 32% more computa-
tional effort; however, it gives a speed improvement of 82% and requires 8% less list length.

While the improvements in speed are obtained in all the test functions, improvements (i.e., reductions)
in number of function evaluations, flops, and maximum list lengths are obtained in 58%, 69%, and 79% of
test functions, respectively.

Lastly, the performance profile plots show a clear superiority of the proposed algorithm over the basic
algorithm for all the performance metrics considered.
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TABLE 4. Performance of the algorithms on test functions

Test function Dim Domain EF, Perf. Basic Proposed Ratio | Percent
Ex metric | algorithm algorithm reduction
1. Rosenbrock |1=2 | [-1.5,1.5)2 1074 | fe 150 592 0.25 | -294.67%
m=2 fl 16,027 53,367 0.30 | -232.98%
t 1.15 0.45 2.55 | 60.87%
ml 11 16 0.69 | -45.45%
2. Freudenstein | 1=2 | [-7.5,7.5]? 1074 | fe 1926 2244 0.86 |-16.51%
and Roth m=2 fl 450,068 348,920 128 | 22.47%
t 18.90 0.80 23.63 | 95.77%
ml 75 66 114 | 12.00%
3. Powell badly |1=2 | [-10,10? 1074 | fe > 244,440 1,122,986 | * *
scaled m=2 fl > 8.53061x10° | 353,189,839 | * *
t > 36000 147.04 * *
ml > 44,184 192,988 * *
4. Brown badly |1=2 | [-1075,10%2 | 1074 | fc > 2,918,744 104,366 * *
scaled m=3 fl > 437,810,978 | 11,725,776 | * *
t > 36000 16.12 * *
ml > 16 16,385 * *
5. Beale 1=2 | [-4.5,4.5] 1074 | fe 756 648 117 | 14.29%
m=3 fl 181,496 130,095 1.39 | 28.32%
t 7.50 0.57 13.16 | 92.40%
ml 27 23 117 | 14.81%
6. Jenrich and | 1=2 | [-0.4,0.4)2 1074 | fe 1338 1342 0.99 |-0.29%
Sampson m=10 fl 3,754,786 3,675,485 | 1.02 | 2.10%
t 13.90 1.20 11.58 | 91.37%
ml 70 46 152 | 34.29%
7. Helical valley | 1=3 | [0.001,1.5] | 107% | fc 356 386 0.92 | -8.43%
m=3 | [-1.5,1.5]? fl 113,250 114,002 0.99 |-0.66%
t 4.90 1.10 445 | 77.55%
ml 12 10 120 | 16.67%
8. Bard 1=3 | [-2.5,2.5], 1074 | fe 613,786 79,648 7.71 87.02%
m=15 | [0.01,2.5)2 fl 1.1287x 1010 111,450,644 | 101.27 | 99.01%
t 35,983 37.58 957.50 | 99.89%
ml 12,714 5781 2.19 54.53%
9. Gaussian =3 | [1.51.53 1074 | fe 504 1556 0.32 | -208.73%
m=15 fl 2,956,930 8,063,792 | 0.33 | -203.15%
t 8.22 2.50 3.28 | 69.59%
ml 54 72 0.75 | -33.33%
10 Meyer 1=3 | [0.01,1000], |10 2 | fc > 534,367 48,290 * *
m=15 | [1000,4001], fl > 1.109x 1010 | 145,900,198 | * *
[234.7,260.7] t > 36000 48.22 * *
ml > 4612 9745 * *
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Test function Dim Domain er , | Perf. Basic Proposed Ratio Percent
EX metric | algorithm algorithm reduction
11. Gulf 1=3 | [0.1,5], 1072 | fc > 416,557 327,062 * *
research m=16 | [0,5]2 f > 9.87128x 107 | 523,567,828 | * *
and t > 36000 170.60 * *
development ml > 59,825 44,875 * *
12. Box three |1=3 | [-20,20], | 107% | fc 290,421 83,179 3.49 71.36%
dimensional m=3 | [1,20]? fl 67,365,662 42,526,087 | 1.58 36.87%
t 3600.81 11.36 316.97 | 99.68%
ml 4011 2881 1.39 28.17%
13. Powell 1=4 | [-3,3]% 1074 | fc 5462 5462 1.00 0.00%
sigular m=4 fl 2,470,078 1,556,099 1.58 37.00%
t 75.20 1.90 39.58 | 97.47%
ml 72 72 1.00 0.00%
14. Wood 1=4 | [3,3* 1074 | fe 400 1988 0.20 -397.00%
m=6 fl 169,457 726,677 0.23 -328.83%
t 6.10 2.00 3.05 67.21%
ml 22 51 0.43 -131.82%
15. Kowalik 1=4 | [-0.1,02]*] 1074 | fc > 193,814 333,996 * *
and m=11 fl > 1.0133x10° | 760,996,038 | * *
Osborne t > 36000 307.33 * *
ml > 37,133 57,060 * *
16. Brown and | 1=4 | [-25,25]* | 107% | fc 173,221 18,550 9.34 89.29%
Dennis m=20 fl 58,184,027 52,903,173 1.09 9.07%
t 231.91 13.20 17.57 | 94.31%
ml 322 207 1.56 35.71%
17. Osborne 1 | 1=5 [ [0.5,1.5], [ 1072 | fc 39,548 27,359 1.45 30.82%
m=33 | [1,1.5], fl 299,422,685 279,891,059 | 1.07 6.81%
[-1,1.5], t 386.50 77.19 5.00 80.03%
[0.05,1.5] ml 1082 936 1.16 13.49%
18. Bigg EXP6 | 1=6 | [1,1.3], 1072 | fc 79,295 37,993 2.09 52.08%
m=31 | [2,2.3], fl 485,637,919 298,041,529 | 2.13 53.04%
[1,1.33 t 1197.90 64.74 18.50 | 94.60%
ml 2585 1698 1.52 34.31%
19. Osborne 2 | 1=6 | See 1072 | fe 102,810 17,661 5.82 82.82%
m=31 | end of fl 4.579%x10° 1.09795x10° | 4.17 76.02%
Table t 3490 322.60 10.82 | 90.76%
ml 2343 544 4.31 76.78%
20. Watson 1=6 [0,0.4)6 1072 | fc 37,731 38,459 0.98 -1.93%
m=31 fl 271,541,024 298,918,263 | 0.91 -10.08%
t 648.50 106.82 6.07 83.53%
ml 1405 1099 1.28 21.78%
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Test function | Dim | Domain er, | Perf. Basic Proposed Ratio | Percent
EX metric | algorithm algorithm reduction
21. Extended |l=4 |[1.2-1.2]* |107% | fc 262 1372 0.19 | -423.66%
Rosenbrock | m=4 fl 71,022 337,294 0.21 | -374.91%
t 2.90 1.30 2.23 | 55.17%
ml 11 22 0.50 | -100.00%
22. Extended |1=4 | [-3,3]* 1074 | fe 2672 2674 0.99 | -0.08%
Powell m=4 fl 976,677 761,642 1.28 | 22.02%
singular t 33.60 1.50 22.40 | 95.54%
ml 33 32 1.03 | 3.03%
23. Penalty I |1=4 | [-4,4]* 1074 | fe > 187,224 184,876 * *
m=5 fl > 1.0245x 109 | 632,126,399 | * *
t > 36000 35.53 * *
ml > 444,742 27,065 * *
24. Penalty IT | 1=4 | [-0.5,0.5]* [ 107* | fc > 192,884 282,360 * *
m=8 fl > 9.6243x 109 | 451,369,117 | * *
t > 36000 156.76 * *
ml > 40,705 26,919 * *
25. Variable |1=2 |[-1.5,1.52 |107% | fc 42 74 0.57 | -76.19%
dim. m=4 fl 8,273 14,370 0.58 | -73.69%
t 0.43 0.41 1.08 | 4.65%
ml 2 2 1.00 | 0.00%
26. Trigono- |1=4 | [-0.25,0.25]* | 107 | fc 882 882 1.00 | 0.00%
metric m=4 fl 3,462,401 3,381,955 | 1.02 | 2.32%
t 52.10 5.10 10.22 | 90.21%
ml 31 27 115 | 12.90%
27. Brown 1=4 |[-2525% |107%]fe 266,612 125,362 2.13 | 52.98%
almost m=4 fl 2.4498x109 | 46,190,896 | 53.04 | 98.11%
linear t 10,104 18.50 546.16 | 99.82%
ml 5962 3121 1.91 | 47.65%
28. Discrete | 1=2 | [0.5,0.5]2 | 107% | fc 146 126 1.16 | 13.69%
boundary m=2 fl 30,818 23,414 1.32 24.02%
value t 1.58 0.41 3.85 | 74.05%
ml 9 6 1.50 | 33.33%
29. Discrete | 1=4 | [-1,1]* 1074 | fe 132 234 0.56 | -77.30%
integral m=4 fl 141,014 217,454 0.65 | -54.21%
equation t 4.60 2.60 1.77 | 43.48%
ml 8 11 0.73 | -37.50%
30. Broyden |1=4 | [-1,1]* 1074 | fe 794 2,536 0.31 | -219.39%
tridiagonal m=4 fl 348,179 868,626 0.40 | -149.47%
t 10.70 1.60 6.69 | 85.05%
ml 85 107 0.79 | -25.88%
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Test function Dim | Domain | €f, Perf. Basic Proposed Ratio Percent
EX metric | algorithm algorithm reduction
31. Broyden =4 |[1,1]* | 1074 | fe 396 814 0.49 -105.56%
banded m=4 fl 231,244 432,606 0.53 -87.07%
t 7.30 1.80 4.05 75.34%
ml 56 35 1.60 37.50%
32. Linear =4 |[1,1]* | 107% | fe 1280 3712 0.34 -190.00%
full rank m=4 fl 639,859 1,120,696 | 0.57 -75.15%
t 16.10 1.40 11.50 | 91.30%
ml 103 59 1.75 42.72%
33. Linear- rank 1 | 1=4 | [0,1]* [1072 | fc 134888 34,030 3.96 74.77%
m=4 fl 7.961x10° | 6,444,498 | 1235.32 | 99.92%
t 2.6145x10* | 2.99 8744.15 | 99.99%
ml 43507 5382 8.08 87.63%
34. Linear rank-1 |1=2 | [-1,1]2 | 107 | fc 196,570 125,362 1.56 36.23%
with zero m=2 fl 6.2032x10% | 49,201,583 | 126.08 | 99.21%
column t 2.599x10% | 28.58 909.38 | 99.89%
and rows ml 43,690 54,613 0.80 -25.00%
35. Chebyquad 1=3 | [-1,1]® | 107 | fc > 253,870 | 62,988 * *
m=3 fl > 7.66x10% | 2.3068x 109 | * *
t > 36000 1,617.8 * *
ml > 37,374 5283 * *

Note: the initial domain for test function number 19, Osborne 2, is

[1.2,1.4],[0.6,0.75],[0.6,0.75], [0.7,0.75], [0.5,0.61], [2.9, 3.1], [4.9, 5.1], [6.9, 7.1], [1.9, 2.1], [4.4, 4.6], [5.4, 5.6]



