A Study of Neutral Point Potential and Common Mode Voltage Control in Multilevel SPWM Technique
P. K. Chaturvedi, Shailendra Jain, and Pramod Agrawal, Member, IEEE

Abstract—Conventional 2-level PWM inverters generate high dv/dt and high frequency common mode voltages which is very harmful in electric drives applications. It may damage motor bearings, conducted electromagnetic interferences, and malfunctioning of electronic equipments. Due to capacitor voltage unbalancing, neutral point potential also varies from zero. This paper presents a simple method to control the harmonics, common mode voltages and neutral point potential variation in neutral point clamped (NPC) inverters using different structures of sine-triangle comparison method such as Phase Disposition (PD), Phase Opposition Disposition (POD), and Common Mode Voltage offset voltage addition method. Simulation results confirm the effectiveness of these simple methods to control common mode voltages. Neutral point potential variation is limited to less than 2% of dc capacitor voltage using a simple closed loop PI regulator. Experimental results presented have been obtained using dSPACE board DS 1104.

Index Terms—Common Mode Voltage, Harmonics, Multilevel Inverter, Neutral Point Potential Control.

I. INTRODUCTION

Recently, multilevel inverters have been found wide spread acceptability in medium and high voltage applications. Multilevel inverters have the advantage of producing high voltage high power with improved power quality of the supply. It also eliminates the use of problematic series-parallel connections of switching devices. However, multilevel PWM inverters generate common mode voltages as in the case of conventional 2-level inverters. The problem of common mode voltage generation in multilevel inverters has been studied extensively during last decade [1-5]. Common mode voltages are generated due to shaft voltages, circulating leakage currents through parasitic capacitance between motor windings, rotor and frame. The number of current spikes and magnitude of common mode voltage is determined by dv/dt and number of commutations. Several methods have been suggested for solving this problem. Some methods are based on additional circuit like filters. Other methods use advanced modulation strategies avoiding the generation of common mode voltages. But, these methods work at higher switching frequency, thus increasing the losses [1]-[3]. Various multilevel inverter control techniques, using sine-triangle comparison, for harmonic reduction have been reviewed in [4]. But the issue of common mode voltage control was not covered. Opportunities of harmonic reduction in cascaded multilevel inverters were investigated in [5-6] using carrier based PWM techniques. Conventional multilevel SPWM techniques generate a significant amount of common mode voltage which may be around the dc voltage level.

Fig. 1. Structure of 3-phase, 3-level diode clamped inverter.

Another problem which NPC inverter faces is neutral point potential (NPP) variation due to voltage unbalancing between two capacitors. Due to the variation in NPP, excessive high voltages may be applied across switching devices. Several methods have been investigated to control the NPP variation and neutral point current [7-10]. A neutral point voltage regulator has been modeled and designed in [10]. But it works at 5kHz switching frequency resulting in high switching losses. In this paper, a NPP regulator is presented which works at low switching frequency of 2 kHz. But it works at 5kHz switching frequency resulting in high switching losses. In this paper, a NPP regulator is presented which works at low switching frequency of 2 kHz. This paper also investigates the possibilities of using different multilevel SPWM techniques such as Phase Disposition (PD), Phase Opposition Disposition (POD) and Common Off-set voltage addition method (Bias method) to reduce the common mode voltages in 3-level diode clamped inverter. Results show drastic reduction in THD using modified SPWM methods. At the same time common mode voltages are also controlled up
to nearly half of the magnitude as compared to conventional multilevel SPWM methods. Neutral point potential variation is also controlled by closed loop PI regulator. This regulator provides capacitor voltage balancing and harmonics reduction in load voltage and current below IEEE-519 standard.

II. OPERATION OF 3-LEVEL SPWM

Fig. 1 shows the very popular topological structure of diode clamped 3-phase, 3-level inverter considered here for study. The switching states of the inverter are shown in Table I for one leg. It gives the output pole voltage \(V_{AO} \), output line voltage \(V_{AB} \) and switch state. Switch state ‘1’ means ‘on’ and ‘0’ means ‘off’. This switching pattern can be achieved by means of different multilevel control strategies such as square wave switching, sine-triangle comparison method (SPWM), space vector modulation (SVM), selective harmonic elimination technique, hysteresis current control, sigma-delta modulation etc. Of these methods, sinusoidal pulse width modulation (SPWM) is the simple and cost effective method to implement, therefore considered here.

TABLE I

<table>
<thead>
<tr>
<th>Switch States</th>
<th>(V_{AB}) (Output Pole Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-\frac{V_{dc}}{2})</td>
</tr>
<tr>
<td>1</td>
<td>(0)</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{V_{dc}}{2})</td>
</tr>
</tbody>
</table>

SPWM technique is again subdivided into following categories:
- Phase Disposition (PD) method,
- Phase Opposition Disposition (POD) method,
- Phase Shifted (PS) method,
- Hybrid method,
- Third Harmonic Injection (THI) method.

Basic principles of pulse generation for 3-level PD and POD SPWM techniques are shown in Fig. 2 and 3. Fundamental frequency three-phase sinusoidal reference waves \(v_r, v_y \) and \(v_b \) are compared with two high frequency triangular carrier waves ‘carrier 1’ and ‘carrier 2’. Each intersection gives rise to the control pulses for switching devices of inverter. The reference sinusoidal waves can be represented by,

\[
\begin{align*}
 v_r &= V_m \sin (\omega t) \\
 v_y &= V_m \sin (\omega t - 120^\circ) \\
 v_b &= V_m \sin (\omega t - 240^\circ)
\end{align*}
\]

PD and POD SPWM techniques have been selected for study without and with addition of common mode voltage off-set as shown in Fig. 2 to Fig. 5. Common mode voltage or zero sequence voltage in output voltage of inverter can be represented by,

\[
V_{cm} = \frac{(v_r + v_y + v_b)}{3}
\]

where, \(v_r, v_y, \) and \(v_b \) are the phase voltages of inverter. This voltage is around 150-200 volts (peak) in conventional 2-level inverters for a dc voltage of 200 volts. To reduce it, following common mode off-set voltage is to be added,

\[
V_{offset} = -\frac{[\min(v_r, v_y, v_b) + \max(v_r, v_y, v_b)]}{2}
\]

Therefore the new reference or modulation wave becomes,

\[
V^* = v(r, y, b) + V_{offset}
\]
phase inverter output voltages are sensed and converted into per unit system. These per unit voltages are converted into dqo axis using following 3-phase to two-phase conversion,
\[V_d = \frac{2}{3} [V_a \sin(\theta_t) + V_b \sin(\theta_t-120^\circ) + V_c \sin(\theta_t-240^\circ)], \]
\[V_q = \frac{2}{3} [V_a \cos(\theta_t) + V_b \cos(\theta_t-120^\circ) + V_c \cos(\theta_t-240^\circ)], \]
\[V_o = \frac{V_a + V_b + V_c}{3} \] \hspace{1cm} (5)

These dqo voltages, \(V_{dqo} \), are compared with set values of dqo voltages \(V_{dqo}^* \). It results in voltage error which is processed through a proportional-integral (PI) controller to generate two axis command signals \(V_{dq} \). Then three phase reference voltage signal for PWM generator is synthesized using following two-to-three phase conversion,
\[V_a = \frac{V_d}{2} \sin(\theta_t) + \frac{V_q}{2} \cos(\theta_t) + V_o \]
\[V_b = \frac{V_d}{2} \sin(\theta_t-120^\circ) + \frac{V_q}{2} \cos(\theta_t-120^\circ) + V_o \]
\[V_c = \frac{V_d}{2} \sin(\theta_t-240^\circ) + \frac{V_q}{2} \cos(\theta_t-240^\circ) + V_o \] \hspace{1cm} (6)

Amplitude modulation index, \(m \), is defined as,
\[m = \sqrt{V_d^2 + V_q^2} \] \hspace{1cm} (7)

and the gain of PI controller is,
\[G = K_p + \frac{K_i \cdot T_s}{(s+1)} \] \hspace{1cm} (8)

Values of \(K_p \), \(K_i \) and limits of integration are tuned to achieve fast response of modulation index and to reduce NPP variation below 2%. Output of 3-level PWM generator block is the 3-phase sinusoidal reference signals to be applied to the PD SPWM scheme as discussed in previous section.

IV. SIMULATION RESULTS

A simulation model has been developed in Matlab environment. Simulation parameters are given in Appendix I. Fig. 8 and Fig. 9. show the waveforms and harmonic spectrum of line voltage with PD SPWM without and with filter. It is observed that fundamental voltage is increased from 173.2 volts to 181.2 volts with reduction in % THD from 29.34% to 2.00%. Switching frequency used is 1 kHz. Table II gives the % THD and fundamental value of line voltage \(V_{1ab} \) and current \(i_{1a} \) without and with filter. From this table, it is clear that the fundamental voltage increases with filter and maintaining the low THD, well below the IEEE-519 standard.

The proposed PI voltage regulator aims to stabilize the dc link voltage to control neutral point potential variation by controlling the charging and discharging of upper and lower dc bus capacitors without dc capacitor voltage sensing. Three-
The variation in NPP was observed at 1.4 % of dc bus voltage across one capacitor.

Fig. 10 gives the common mode voltages with normal and modified PD and POD SPWM techniques. It is clear from the Fig. 10, that peak of the common mode voltage \(V_{cm} \) is less sharp in the case of Fig. 10(c) and amplitude is reduced from around 60 volts in PD SPWM to around 34 volts in POD SPWM. Also frequency of \(V_{cm} \) is reduced in Fig. 10(d) as compared to its counterpart in Fig. 10(b). Therefore, POD-SPWM technique will be advantageous in view of the common mode voltage amplitude and frequency stress on motor windings.

Fig. 11-15 shows, the results of closed loop control of inverter voltages and neutral point potential control with PI regulator. Upper and lower dc link voltage and neutral point potential is shown in Fig. 11. It is observed that % THD in NPP is well below the IEEE-519 standard of 5 %. The frequency of NPP was observed at 150 Hz. Average dc bus voltage across capacitors is 268 volts with % THD of 0.76.

Fig. 12. Inverter output voltage, \(V_{ab} \), and its harmonic spectrum at 2 kHz switching frequency.

Inverter output voltage its harmonic spectrum for two cycles is shown in Fig. 12. Voltage across load is shown in Fig. 13. It is observed that % THD in voltage is reduced from 17.17 to 2.05 when using LC passive filter with 2mH inductance and 2kVar capacitive reactive power. Inverter line currents without and with filter are shown in Fig. 14 and Fig. 15. Current THD also reduces from 12.20 % to 1.27 % using suitable passive filter.
V. EXPERIMENTAL VERIFICATION

A laboratory prototype of 3-phase, 3-level diode clamped inverter has been developed using IGBTs. Control logic has been developed in Matlab environment and interfacing was performed using dspace DS-1104. A dc link capacitor of 2200 μF is used. Three-phase uncontrolled diode bridge rectifier is used to supply input dc voltage to 3-level inverter at 40 volts. Only few selected results have been presented. Fig. 16 shows firing pulses generated with PD SPWM. Fig. 17 shows phase voltage and line voltage waveforms at 2 kHz switching frequency. It is in agreement with simulation result shown in Fig. 8. Harmonic spectrums of phase and line voltages are shown in Fig. 18. Harmonic contents in inverter output phase and line voltages are 36.9 % and 15.1 %, which are comparable with simulation results of 40 % and 19.60 %. Common mode voltage and neutral point potential control study are in progress experimentally and will be reported in future.
VI. CONCLUSION

Common mode voltage generated in PWM inverter output may damage the motor windings, shaft, and bearings. Although, some methods have been developed for completely eliminating common mode voltages (with space vector PWM techniques) which is very complex to implement, it may be possible control it via simple SPWM techniques and their modified forms such as addition of common mode voltage offset to the actual reference voltage wave as presented in this paper. Simulation results show that modified SPWM technique not only controls the THD in output voltage of inverter but also reduces the amplitude, switching transients and frequency of common mode voltages. Simple closed loop PI voltage regulator has been proposed to control neutral point potential without sensing dc capacitor voltages. Experimental work on control of common mode voltage and neutral point potential control is in progress and will be presented in future work.

VII. APPENDIX-I: SIMULATION PARAMETERS

Load: 50 kW, 1 kVar (inductive), 400 volts, 50 Hz.
Source: 3-phase, 10 MVA, 11kV, 50 Hz.
Step Down Transformer: 10 MVA, 50 Hz, 11kV/400 Volts.
Inverter Output LC Filter: 5 mH, 1 kVar (capacitive).
(open loop), and 2mH, 2kVar (closed loop PI regulator)
Voltage Regulator Gains: $K_p = 0.1$, $K_i = 10$.
Switching Frequency: 2 kHz.

VIII. ACKNOWLEDGEMENT

This work was supported in part by the MHRD sponsored R & D project “Development of DSP Controlled Multilevel Inverter, F.26-12/2005, TS V, and AICTE New Delhi under Career Award Scheme for Young Teachers Grant F. No. 1-51/FD/CA/(011)/2003-05.

IX. REFERENCES

X. BIOGRAPHIES

Shailendra Jain received the B.E. degree from Samrat Ashok Technological Institute, Vidisha, India, in 1990, the M.E. degree from Shri Govindram Seksaria Institute of Technology and Science, Indore, India, in 1994, and the Ph.D. degree from the Indian Institute of Technology, Roorkee, India, in 2003. He was a Post Doctorate Fellow at University of Western Ontario, Canada in 2007. Currently, he is Assistant Professor in the Department of Electrical Engineering at Maulana Azad National Institute of Technology (Deemed University), Bhopal, India. His fields of interest include power electronics, electrical drives, active power filters, Fuel Cell technology and high power factor converters.

Pramod Agarwal (M’99) received the B.E., M.E., and Ph.D. degrees in electrical engineering from the University of Roorkee, Roorkee, India, in 1983, 1985, and 1995, respectively. Currently, he is Professor in the Electrical Engineering Department at the Indian Institute of Technology, Roorkee, India. He was a Lecturer in the Department of Electrical Engineering at the University of Roorkee in 1985 and became an Assistant Professor in 1996. He was a Post-Doctorate Fellow at the University du Quebec, Montreal, QC, Canada, from 1999 to 2000. He has guided more than 50 B.E. and 25 M.E. projects, and published many papers in various national and international journals and conferences. He has developed a number of educational units for laboratory experimentation. His fields of specialization are electrical machines, power electronics, microprocessor- and microcomputer-controlled ac/dc drives, active power filters, and high power factor converters.

P. K. Chaturvedi received B.E. and M.E. degree from Samrat Ashok Technological Institute, Vidisha (MP), India, in 1996 and 2001 respectively. He has been with the department of Electrical Engineering as Lecturer at Samrat Ashok Technological Institute, Vidisha (MP), India. Currently, he is working towards Ph.D. degree at Maulana Azad National Institute of Technology (Deemed University), Bhopal, India. His fields of interest are electrical drives, high power factor converters and multilevel inverters.