

Table Of Contents

Message from the Chairs 1

Technical Program committee 2

Program Schedule 3

Session – I

Topic: Power Aware Design and Test

Session Chair: Seiji Kajihara, Kyushu Institute of Technology, Japan

A Test Pattern Optimization to Reduce Spatial and Temporal Temperature Variations

Tomokazu Yoneda, Makoto Nakao, Michiko Inoue, Yasuo Sato, and Hideo Fujiwara

(NAIST, Japan, and Kyushu Institute of Technology, Japan)

7

Test Scheduling for 3D Stacked ICs Under Power Constraints

Breeta SenGupta, Urban Ingelsson, and Erik Larsson

(Linkoping University, Sweden)

13

Low Power Programmable Controllers for Reliable and Flexible Computing

Masahiro Fujita, Hiroaki Yoshida, and Jaeho Lee

(Tokyo University, Japan)

19

Session – II

Topic: VLSI Test

Session Chair: Mark Zwolinski, Southampton Univ., UK

Dynamic Scan Clock Control in BIST Circuits

Priadarshini Shanmugasundaram and Vishwani Agrawal

(Auburn University, USA)

25

A Pattern Partitioning Algorithm for Field Test

Senling Wang, Seiji Kajihara, Yasuo Sato, Xiaoxin Fan, and Sudhakar Reddy

(Kyushu Institute of Technology, Japan, University of Iowa, USA)

31

Optimal Universal Test Set for Bridging Faults Detection in Reversible Circuit Using Unitary

Matrix

Susanta Chakraborty, Pradyut Sarkar, and Bikramadittya Mondal

(BESU Sibpur, Simplex Infrastructure, and BPPIMT, Kolkata)

37

Session -- III:Advances in Test

Topic: Reliable Systems

Chair: Tomokazu Yoneda, NAIST, Japan

On The Design of Self-Recovering Systems

Yang Lin and Mark Zwolinski

(Southampton University, UK)

43

Approximate and Bottleneck High Performance Routing for Self-healing VLSI Circuits

Achira Pal, Tarak Mandal, Alak Datta, Rajat Pal, Atal Chaudhuri

(HSBS, PMI Service Centre Europe Krakow Poland, Asam Univesrity Silchar, Jadavpur University

Kolkata)

48

A Scalable Heuristic for Incremental High-Level Synthesis and Its Application to Reliable

Computing

Shohei Ono, Hiroaki Yoshida, and Masahiro Fujita

(Tokyo University, Japan)

54

A Study of Failure Mechanisms in CMOS & BJT ICs and Their Effect on Device Reliability

Adithya Thaduri, M. Rajesh Gopalan, Gopika Vinod, and Ajit Verma

(IIT Bombay, BARC, and IIIT Pune)

60

Posters

Test Data Compression Technique for IP Core Based SoC using Artificial Intelligence

Usha Mehta, KS Dasgupta, Nirjan Devashrayee, and Harikrishna Parmar

(Nirma University Ahmedabad and ISAC Ahmedabad)

65

A Design Methodology for Specification and Performances Evaluation of Network-on-Chip

Adrouche Djamel, Sadoun Rabah, and Pillement Sebastien

(Ecole Nationale Politechnique Algeraia, and Univ. of Rennes)

71

FOCAS: A Novel Framework for System-On-Chip Datapath Validation

Balvinder Khurana, and Atul Gupta

(Freescale Semiconductors, Noida, India)

77

Synthesis of Reversible Logic Circuit using Unitary Matrix

Susanta Chakraborty, Bikramadittya Mondal and Pradyut Sarkar

(BESU Sibpur, BPPIMT Kolkata, and Simplex Infrastructure Kolkata)

84

Efficient SOPC-Based Multicore System Design Using NOC

Arunraj Subramanyan, Vanchinathan Thankavel

(Anna University and Femto Logic Design)

89

Author Index 95

Message from the Chairs

Welcome to RASDAT 2011, the Second Annual International Workshop on Reliability Aware System

Design and Test, being held in conjunction with the International Conference on VLSI Design in Chennai

on January 6 and 7, 2011. In launching this new series of annual workshops last year, the Steering

Committee’s vision was to complement the broader International Conference on VLSI Design by

bringing into sharper focus key challenges and design issues related to reliability and test of aggressively

scaled microelectronic systems. The overwhelming success of the first RASDAT workshop has

encouraged us to plan an even more ambitious and interesting program this year.

The scaling of CMOS technology has now clearly come up against physical limits of material properties

and lithography, raising many new challenges that must be overcome to ensure IC quality and reliability.

Unfortunately, there appears to be no obvious alternate technology that can replace End-of-Roadmap

CMOS over the next decade. Therefore, the many reliability challenges resulting from increasing defect

rates, manufacturing variations, soft errors, wearout, etc. need to be addressed by innovative new design

and test methodologies, if device scaling is to continue on track as per Moore’s Law to 10nm and beyond.

A key objective of this workshop is to provide an informal forum for spirited creative discussion and

debate of these issues. The aim is to encourage the presentation and discussion of truly innovative and

“out-of-the-box” ideas to address these many challenges that may not yet have been fully developed for

presentation at more formally reviewed conferences.

We are very pleased to introduce the first RASDAT program. On a day and a half, we will have a keynote

addresses, an embedded tutorial, four invited talks, a panel and three sessions where 10 papers and 5

posters will be presented. The workshop begins on January 6 with a keynote address by John Carulli

(Texas Instruments, USA), followed by an embedded tutorial on Post Silicon Debug by Masahiro Fujita

(Tokyo University, Japan), two invited talks by Arun Somani (Iowas State University, USA), and Sanjit

Seshia (University of California, Berkeley). On January 7, it will start with a keynote address by Michel

Renovell (LIRMM, France). We will have a special session on hardware security and the speakers will be

Jacob Abraham (University of Texas, Austin, USA), Michiko Inoue (NAIST, Japan), and Rajat Moona

(IIT kanpur, India) and an invited talk by M. Ravindra (Indian Space Research Organization, India), . The

10 papers accepted to RASDAT are organized into the three sessions entitled power aware design and

test, VLSI test, and reliable systems. In addition 5 posters will be presented in interactive session during

coffee break. The workshop will be concluded by a panel entitled “Volume Diagnosis: Power in

Numbers?”.

Any technical meeting is the result of the work of many dedicated volunteers; RASDAT-11 has certainly

been a team effort. We would like to wholeheartedly thank the Steering Committee, the Organizing

Committee and the Program Committee. We also wish to thank all the authors who submitted their

research ideas to RASDAT-11, and all the program participants for their contribution at the workshop.

Finally, thanks are owed to the IEEE Computer Society Test Technology Technical Council for its

technical sponsorship and support. We are thankful to VLSI Society of India (VLSI), Indian Institute of

Technology Madras, Chennai, LSI Technologies, and AMD for sponsoring the meeting. Last but not

least we are also thankful to IISc, Bangalore and MNIT, Jaipur for their support.

We hope that you will find RASDAT-11 enlightening and thought provoking, and overall a rewarding

and enjoyable experience.

Adit Singh Erik Larsson

Virendra Singh Rubin Parekhji

Michiko Inoue Ilia Polian

Sreejit Chakravarty MS Gaur

General Co-Chairs Program Co-Chairs

RASDAT 2011 Page 1

Technical Program Committee
• M. Azimane, NXP Semiconductors, The Netherlands

• B. Bhattacharya, ISI, India

• P. Bernardi, Politecnico di Torino, Italy

• K. Chakrabarty, Duke University, USA

• K.T. Cheng, University of California, Santa Barbara, USA

• G. Di Natale, LIRMM, France

• E. Fernandes Cota, Universidade Federal do Rio Grande do Sul, Brasil

• P. Harrod, ARM, United Kingdom

• U. Ingelsson, Linkoping University, Sweden

• G. Jervan, Tallinn University of Technnology, Estonia

• P. Girard, LIRMM, France

• S. K. Goel, USA

• V. Hahanov, Kharkov National University of Radioelectronics, Ukraine

• K. Hatayama, Semiconductor Technology Academic Research Center, Japan

• S. Hellebrand, Universität Paderborn, Germany

• T. Inoue, Hiroshima University, Japan

• V. Kamakoti, IIT Madras, India

• S. Kajihara, Kyushu Institute of Technology, Japan

• R. Kapur, Synopsys, USA

• H. Ko, McMaster University, Canada

• S. Kundu, University of Massachusetts Amherst,USA

• S. Kumar, University of Jonkoping, Sweden

• V. Laxmi (Malaviya National Institute of Technology, India)

• Y. Makris, Yale University, USA

• E. Marinissen, IMEC, Belgium

• S. Mitra, Standford University, USA

• C. Metra, University of Bologna, Italy

• Z. Navabi, Tehran University, Iran

• N. Nicolici, McMaster University, Canada

• C.Y. Ooi, Malaysia Technology University, Malaysia

• A. Osseiran, Edith Cowan University, Australia

• S. Othake, Nara Institute of Science and Technology, Japan

• J. Raik, Tallinn University of Technnology, Estonia

• S. Ravi, Texas Instruments, India

• M. Renovell, LIRMM, France

• B. Rouzeyre, LIRMM, France

• M. Sonza Reorda, Politecnico di Torino, Italy

• N. Tamrapalli, AMD, India

• P. Thaker, Analog Devices, India

• P. Varma, Bluepearlsoftware, USA

• V. Vedula, Intel, India

• B. Vermeulen, NXP Semiconductors, The Netherlands

• M. Violante, Politecnico di Torino, Italy

• H.-J. Wunderlich, Universität Stuttgart, Germany

• Q. Xu, The Chinese University of Hong Kong, China T. Yoneda, Nara Institute of Science and

 Technology, Japan

• Z. You, Hunan University, China

• M. Zwolinski, University of Southampton, United Kingdom

RASDAT 2011 Page 2

Advance Program

Day­1: 6t h January (Thursday)

Venue: IIT Madras, Chennai

Time Program

9:00 am – 2:00 pm Registration

2:00 pm – 2:15 pm Inaugural Ceremony

2:15 pm – 3:00 pm Keynote Address

Speaker: John Carulli, Texas Instruments, USA

3:00 pm – 3:45 pm Embedded Tutorial

Speaker : Masahiro Fujita, Tokyo University, Japan

Topic: Post Silicon Debug

3:45 pm – 4:15 pm Coffee Break

4:15 pm – 4:45 pm Invited talk –I

Speaker: Arun Somani, Iowa State University, USA

Topic: RAKSHA: Reliable and Aggressive frameworK for System design using

High­integrity Approaches

4:45 pm – 5:45 pm Session – I

Topic: Power Aware Design and Test

Session Chair: Seiji Kajihara, Kyushu Institute of Technology, Japan

5:45 pm – 6:15 pm Invited Talk – II

Speaker: Sanjit Seshia, Univ. of California, Berkeley

Topic: On Voting Machine Design for Verification and Testability

6:30 pm – 8:30 pm Cultural program and Banquet

RASDAT 2011 Page 3

Day­2: 7 t h January (Friday)

Venue: IIT Madras
Time Program

8:30 am ­ 9:15 am Keynote ­ II

Speaker: Michel Renovell, LIRMM, France

9:15 am ­ 10:45 am Special Session on Hardware Security

Chair: Ilia Polian, Univ. of Passau, Germany

Speakers

Jacob Abraham, Univ. of Texas, Austin, USA

Michiko Inoue, NAIST, Japan

Rajat Moona, IIT Kanpur, India

10:45am ­11:15 am Coffee Break and Poster

11:15am ­12:15 pm Session–II

Topic: VLSI Test
Sess ion Chair: Mark Zwolinski, Southampton Univ., UK

11:15 am ­12:45pm Invited Talk ­ III

Speaker: M. Ravindra, ISRO, India

12:45 pm ­ 1:45 pm Lunch Break

1:45 pm ­3:15 pm Session ­III: Advances in Test

Topic: Reliable Systems

Chair: Tomokazu Yoneda, NAIST, Japan

3:15 pm ­ 3:45 pm Coffee Break

3:45 pm ­5:15 pm Panel Discussion

Topic: Volume Diagnosis: Power in Numbers?

Moderator: Sudhakar Reddy, Iowa University, USA

Panelists:

Srikant Venkataraman, Intel, USA
Nagesh Tamrapalli, AMD, India
Rubin Parekhji, Texas Instruments, India

Adit Singh, Auburn University, USA

Vishwani Agrawal, Auburn University, USA

RASDAT 2011 Page 4

Time Program

5:15 pm ­ 5:30 pm Closing

Session-I: Power aware design and test

S1.1. A Test Pattern Optimization to Reduce Spatial and Temporal Temperature Variations

Tomokazu Yoneda, Makoto Nakao, Michiko Inoue, Yasuo Sato, and Hideo Fujiwara

(NAIST, Japan, and Kyushu Institute of Technology, Japan)

S1.2. Test Scheduling for 3D Stacked ICs Under Power Constraints

Breeta SenGupta, Urban Ingelsson, and Erik Larsson

(Linkoping University, Sweden)

S1.3. Low Power Programmable Controllers for Reliable and Flexible Computing

Masahiro Fujita, Hiroaki Yoshida, and Jaeho Lee

(Tokyo University, Japan)

Session-II: VLSI Test

S2.1. Dynamic Scan Clock Control in BIST Circuits

Priadarshini Shanmugasundaram and Vishwani

Agrawal (Auburn University, USA)

S2.2. A Pattern Partitioning Algorithm for Field Test

Senling Wang, Seiji Kajihara, Yasuo Sato, Xiaoxin Fan, and Sudhakar Reddy

(Kyushu Institute of Technology, Japan, University of Iowa, USA)

S2.3. Optimal Universal Test Set for Bridging Faults Detection in Reversible Circuit Using Unitary

Matrix Susanta Chakraborty, Pradyut Sarkar, and Bikramadittya Mondal

(BESU Sibpur, Simplex Infrastructure, and BPPIMT, Kolkata)

Session-III: Reliable Systems

S3.1. On The Design of Self-Recovering

Systems Yang Lin and Mark Zwolinski

(Southampton University, UK)

S3. 2. Approximate and Bottleneck High Performance Routing for Self-healing VLSI Circuits

Achira Pal, Tarak Mandal, Alak Datta, Rajat Pal, Atal Chaudhuri

(HSBS, PMI Service Centre Europe Krakow Poland, Asam Univesrity Silchar, aJadavpur University

Kolkata)

S3.3. A Scalable Heuristic for Incremental High-Level Synthesis and Its Application to Reliable Computing

Shohei Ono, Hiroaki Yoshida, and Masahiro Fujita

(Tokyo University, Japan)

RASDAT 2011 Page 5

S3.4. A Study of Failure Mechanisms in CMOS & BJT ICs and Their Effect on Device

Reliability Adithya Thaduri, M. Rajesh Gopalan, Gopika Vinod, and Ajit Verma

(IIT Bombay, BARC, and IIIT Pune)

Posters

P1. Test Data Compression Technique for IP Core Based SoC using Artificial

Intelligence Usha Mehta, KS Dasgupta, Nirjan Devashrayee, and Harikrishna

Parmar

(Nirma University Ahmedabad and ISAC Ahmedabad)

P2. A Design Methodology for Specification and Performances Evaluation of Network-on-Chip

Adrouche Djamel, Sadoun Rabah, and Pillement Sebastien

(Ecole Nationale Politechnique Algeraia, and Univ. of Rennes)

P3. FOCAS: A Novel Framework for System-On-Chip Datapath

Validation Balvinder Khurana, and Atul Gupta

(Freescale Semiconductors, Noida, India)

P4. Synthesis of Reversible Logic Circuit using Unitary Matrix

Susanta Chakraborty, Bikramadittya Mondal and Pradyut sarkar

(BESU Sibpur, BPPIMT Kolkata, and Simplex Infrastructure

Kolkata)

P5. Efficient SOPC-Based Multicore System Design Using

NOC Arunraj Subramanyan, Vanchinathan

Thankavel (Anna University and Femto Logic Design)

RASDAT 2011 Page 6

� ���� ������� 	
����
����� �� ������ �
����� ��� ���
���� ���
�������

����������

�������� ���	
���
 ������ �������
 ������� ����	��
 ����� ������ ��
 ��
	� ����������

����� ��������	 �� ���	��	 ��
 �	�������
 �����!���
 ����
 "#$!$%&'
 (�)��

�* �� � ��������	 �� �	�������
 ������!���
 �������
 +'$!+,$'
 (�)��

� (�)�� ���	��	 ��
 �	������� -�	��
 ./0��
 .�� �
�!��
 ��� �
 %$'!$$1,
 (�)��

��������
������� ������	
�	������
 �� 	��	
���� �� ����	�	 ���� ��	� �	���

������� �
 ��	 �		
 ���������

���	��� �
	 �� ��	 �	� �	��
���	�

��� ������� ������	
�	������
 �� �
��
	 �	��� �	����	�	
� �� �	���

�	�� �� ��
���	 ��	 ������� �	��� ����� ����	� �� ���
������ ���

�
�� ���	�	�� ��	 �	��� ����� ��	 ����	�
�� �
�� �� ���
������

���
� ��� ���� �� 	
����
�	
��� ��
�����
� ���� �� �	�
	�����	

�
� ������	� ��	�	���	� ��� �������	 ������	
�	������
� �� �� ���

����
� �� 	����
��	 ��	 	
����
�	
��� �	��� ��������
� ���� ��	

�	����	 �	���� ��� ��
����
� ��	 ������ �	��� ����� ����	� �� ���

�
�� ����
�
	�
�	�	
�� �
��	� �	��
���	�
 �
���������
 �	����

�� �	���	� �
����� �
� �	�
���� �	�
	�����	 ��������
� ����
� �	�

��� �	��� ��
�	��	
���� �	 ��
 	����� 	����
��	 ��	 �	�
	�����	

��
���	� �	��� ��������
� ���� ��	 �	����	� �	���� ��� �������	

������	
�	������
� !
	���	
��� �	����� ��� "��#$$ �	
������ ����

����� ���� ��	 	�	����	
	�� �� ��	
��
��	� �	���� ���
��	� ��

��	 	!����
� �

�����	��

��������� �	��
���	�
 ���	��
�� ��	������
��������� �	��� ������

���
� �	���������� ������	
�	������
�

� �	��
����

	

����� �������	 �� 	�
���� ���
����
���� ������
����	 ����
��

�� ����� ���	��� ������	�	 �� ����	�	��� ���	��� ��� ����������
 ����

�
����� ����� ��� ���� ���

����	 ����	�� �� ��� ������
����	�

���� ��
� ��
����
��� �	 �������� ����� ������� ��� ���������
 ���

��� 	�
����	� �	 �		�����
 ��� ���������� ��
����
��� ���

����	 	
��

�	 ���
��
��� ���

��	 ��� ����	�	��� ����� ��� ��� �� �� ��� �����

���
�������	 �� ��
��� 	�
����	� �	 ����
�� ���

�� ����������� !���
��

���

�� ���������� �������	 ��� ���
������ �� � ����
�� ���

�� �
��

��� �����
 	�	��� ��������� ������ ��� ���������� �� ��� �����

�"�� ��� �� �	 ����
 ��� ���������� ����	�	��� ����� ����
	� �� ���

����
�
 ���
�� �� ��
�� ����������� �"� #�� $��

�� ���������� ���

�� �������� �� �

���
� %��	 �
� ��� ��	�� �������
� �	 �� ����
��

��� ����
�
 ��
�� 	���� ��
	�� �� ����	�	��� ����� ��	��� � �����

&�%����� ��� ��
�� 	���� ��� ��
	�� ��� ��
� �� ����	�	��� �����

�
� �
	� �� ������������
 ���������	 	
�� �	 ��������
�� ��� ��
��

���� ���������
�� ��� ���
���� ���

�� ����������� ����
�� ��
�� �	

%�

 �	 ��������
�� ��� ��
���� ��� ��

����� ���������

�� ��� ���

��

����� ���� �	 ���
�'�� ������� �� ������� �� ������� ���

��	

�(�)� *�� +� �)� *�� ��
��	 ��� ���	
��� %��� ��������
�� ��� ��
��

���� ��� ��� ���	
��� ��
��	 ��� ����	
���� ���� ��
��	 �� � ������

���� ��������
�� ��� ��
����
	��� ��� ���	
��� ��������
�� ���

��
���� �� �
������� ��� ������������
 ��
�� ���������	� ,���� ���

����	
���� ��
��	 ��� �������� �� ��� ��	� ����	
���� ��
�� ��

�	

	����� �� ������� �� ������� ������ �� �	������ ��� ���
�
 ��
��

	���� ��
	�� �� ������

,�� �-��
���� �� ��
��� 	�
����	� ���
�	� ��� �
��� ���� �.��

$�� �-���
�� ��� �-�����
� �����
�� ��	� �������	 ���� 	�������

�

������ ����� �/� ��� ��0� 	�����
 	�����	 �� �
�� 1�	���	� ��

��������� ������
����	� ��� ��������
������
��� ��
�� ���������	

�
���� ��	� �	 �	 �
�� �	 ���� �	 ��
	�� �� ������� �����		 ������

����	 ��2�� ,�������
�� ��������� ���%��� ��������
�������	 �� �

����
�� ��� �� �	 ���� �	 #23! �� (23!� ��� ������
 ���� �������
	

��� ��������
�� ������	 ���� ���� ��� ���� 	���� ���� �� ��

�	���

���	� ,��	 ��������	 ���� %� ���� �� ����� �
�� �� ��������
��

	��	��	 ���� 	�����

�������	 %����� � ���� �� ��

��� 	�����

� ���

�������

� ���
���� ��������
�� ����
� �
���� ��	�� &�%����� ���	

�	 ��� ��� ��	� �������� 	�

���� 	���� �� ���
�	 �
�� �� ���������

4��� �� %� ��

� ������ ��� ��������� �� ���
���	 5�6 �
�� �� ���� ��

�� 	����� �� ��� ������ ��� 5�6 � ����
�- ������
�� �� �
�������

��� ��������
�� ���
��� ��
�� ���������	 ���� ��� ���	
��� ��
��

��

�	 ��� ���

�� ���
�	�	� ,��������� %� ���� � ��	� �������� 	��

���� �� �
������� ��� 	�����
 ��� �������
 ��������
������
���

��
�� ���������	 ��� ���
���� ���

�� �����������

1��
0
�
��� �� �
� �����	�� � ��%�� ���������� �����%��0

��� %�����
���
 ��	���
������
����� 578,1+6 %���� ��� �
������

��������
�� ����	 �� �� ���������� �� � ���	���� ��

� ���� ����

,��� �����		�� ��� ����
�� �� �������
 ��%�� ���������	 �
��

��� 78,1+ ��� �����	�� ������	 ���� �����

��� ��	� �������	 ��

������'� ��� �������
 �������� �� ��%�� ���	
������ �� � ���
��

������
� ��	�	� &�%����� �	 ����
	�� � �
���
 ��%�� ��

� ���

����
�� ��� ���� �
��0 ���
�� ��� 	�����
 ���������	 �� ��%�� ����

	
������ �� � ����
�� %��� ��� ���	������� 9���� 	�����
 ������

����	 ��� �
���
 ����
��	� ��� �
���
 ��%�� ��

� ��� ����
�� %�

�

��� �� ���
�� �� �
������� ������

���������� �	�����

�� ��� �

���� ����
��� ������
�� %� �����	�� � ������
�
�����������%���

:��

��� �������
� ���� ������'�	 	�����
 ��������
�� ���������

��� ���� �
�
��� ��� ���
���� ��
�� ��	���� ��"�� 7� �
	� 	��%��

��� ����� �� ��� ���
 ��������
�� ����
�	 �	 %�

 �	 ��� ��%��

����
�	� &�%����� ����� 	��

 �-�	� �������
 ��������
�� ���������	

���� 	��

� �� ������'�� �� �
������� ��������
������
��� ��
��

���������	 ��� ���
���� ���

�� �����������

+� ���	 ������ %� ���	��� � ����
 ��	� ������� ������'�����

������ �� ������'� 	�����
 ��� �������
 ��������
�� ���������	

�
���� ��
�� ��	�� 9���� ��� ������'�� ��	� 	��
���� ������	 � 	���

���

� ��� �������

�
������ ��������
�� ����
� �
���� ��	�� %�

��� ��

��� ��� ��������
�� ����
� ���
����
� %��� ��% 	��	��	 ���

��	�
� �
������� ��� ��������
�� ����
��� ��
�� ���������	 ����

��� ���	
��� ��
��	 ��� ���
���� ���

�� ����������� ,�� �����	��

������ ���	�	�	 �� �� :��

��� �������
� ��� � ��	� ������� ������

��� �������
� ��� ����� ��	� 	��
����	 %���
�	������� ���	 5:;	6�

,��������� �� �	 ��	�
� �������� ���� ��� �
����� ��	��� <�% %����

�
� ���
�		 �� ��

� ��������� ,� ��� ��	� �� �
� 0��%
����� ���	

�	 ��� ��	� ����� ���� �����		�	 � ����
� 	�

���� �� ������� 	�����

��� �������
 ������
�
��������� �
���� ��	�� ,�� ���� �������
�

����	 �� ��� ����� ��� �	 ��

�%	�

� +� 	��%	 ���� ��	� �������	 ��������� �� � ���������
 �,=>

������ 	��������� ���
�� �� 	�����
 ��� �������
 ��������

�
�� ���������	� ��� �����	�'�	 ��� ���������� �� ���������

	�����
 ��� �������
 ������
�
��������� ��� ���� �
�
��� ���

���
���� ��
�� ��	�����

� +� ���	���	 � ����
 ��	� ������� �������� ������ ���� �����

%

RASDAT 2011 Page 7

gate-level
description ATPGATPG test patterns

logic
simulation

logic
simulation

power
profile

temperature
profile

power
simulation

power
simulationVCD file thermal

simulation

thermal
simulation

Layout &
floorplan

������ �� ��	
 �	 ����
��� �	
�� ��� ��
���������

��'�	 �������
 ��������
�� ���������	 %��
� ���	������ ���

	�����
 ��������
�� ���������	�

� ,�� ������
 	��

����� ��	

�	 ��� +,!;// ��������0 ����

�
��	 	��% ��� ����������		 �� ��� �����	�� ��	� ������� ���

����'����� �������
��

,�� ��	� �� ���	 ����� �	 ������'�� �	 ��

�%	� 9������ � ���
�

���	 ��	� �������	 ��������� �� � ���������
 �,=>
	��� ���

������
 ���
�	�	 <�%� ,�� ���

����� 	��%	 ��� ���� �� ������
�

��������� ��� ���� �
�
��� ��
�� ��	�� 9������ " �����	 ��%��

��� ��������
�� ����������'�����
	�� �� ���	 ������ 9������ #

���	���	 � ��	� ������� ������'����� ������ ���� �������	 ������
�

���������� 9������ (��%	 	��� �-���������
 ��	

�	
	���

+,!;// ��������0 ����
��	� $���

�� 9������) ����

��	 ��� ���

����

� ������� �	����
�
� �����	� ���� ������	�

+� ���	 	������� %� ���

��� ��� ��������
�� ����
�	 �� ��	� ����

����	 ��������� �� � ���������
 �,=>� 7� ����
���� ��� <�%

	��%� �� $��
�� �� ���
	�� +,!;// ��������0 ����
�� ��* ���

� #(��
������ ��#� �� ���

��� ��� 	�����
 ��� �������
 ��������

�
�� ���������	 �� ��� ��	�	� 7� ���������
�
�����������
�� 58�!6

��	� �������	 %���
�	������� ���	 5:;	6 ��������� ����	����� ��
��

��

�	� �2�222 �������	 %��� ���������
	��� ����������� ����

%��� ������� ����������� ,���� %� ��������� ������ �

 ���

�����
� ����	����� �

 �� :;	 ��	�������
� �� �������� �%� ����	

�� ��	� 	��
����	 %��� �������� ����������	���	� ,�� ����
�� %�	

����
�

� ������� ���� # � # 	�
���
���
� �
��0	 %��� ��� 	���

	�'� %��� �������� ��� ��%�� ��� ��������
�� ����
�	� +� �����

�� ����� ��� �������� �� ����
�- ���
���� ����
��� %� ��� ���

��

�%��� ����	��������� 	� �	 �� ����� �� ��� ��������� ��

�	 ��

+,�9 ��(� %��� %� ��� ������
 	��

�����	� 7� ��	� ��
����� ���

����
�� 	�'� �� �#2 ���� ��� ���� �
������ ��� ��%�� ���	��� ��

���# %���� %��
� ���	������ ��� ��%�� ���������	 �� ��� ������

��
 ����
��� ,��	� ��

�	 ��� ��� ��������� ����
�� 	�'� ��� ��%��

���	��� ��� ��� ���� �� �2�2 �� +,�9 ��(��

$��
�� � 	��%	 ��� ��������
�� ����
�	 ��� ��* �������� �� ���

����� <�%� +� ���	� �-���
�	� %� �		
��� ���� ��� ������
 ��

�

	����	 ���� � 	����� 	���� ��������
�� ��� ����
������� ��	 ������

����	 �
���� ��	�� ,�� 	����� 	���� ��������
�� �	 ��� ��������
��

���� ��������� �� %��� ��� ����
�� ���	����
� ���	
��	 ��� �����

��� ��%�� �� ��� ��%�� ����
�� $��
�� �5�6 	��%	 ���� ��� ��	�

	��
���� %��� ������ �

���	 �� � 	��������� 	�����
 ��������

�
�� ���������	� � ��� ����� ����� $��
�� �5�6 	��%	 ���� ��� ��	�

	��
���� %��� �����
� ����	����� �

 ��
	�	
���� ���
�� �� ����

����
 ���������	 �	 %�

 �	 	�����
 ���������	� 7� ��

� ��	���� ��

�������� 	���
����� ����� ��� ��������
�� ����
�	 �� ���
���
�

�
��0	� ,��	� �����	 ��� ��� 	��� �	 ���	� �� ��� ��	� 	��
����	

%��� 2��

 ��� ���

 �� �
� ���
������� �-��������	�

$��
�� " 	��%	 ��� ��������
������
��� ��
�� 	��	������� �� �

���� �	��

���� 5�* 	����	� �.2�� �����		 ������
���6 �)�� +� 	��%	

���� ����� �	 �����-�����
� �*2 �	 ��
�� ������	� �� ������ ��� ���

��� �23! ��	� �� ��������
��� 1��0 �� $��
�� �� ��� ��-��
� 	���

���
 ��������
�� ��������� �����
���
� �
��0	 �	 ���
�� �23!

-20

-15

-10

-5

0

5

10

15

20

0 200 400 600 800
Time [ms]

block0_0 block1_0 block2_0 block3_0
block0_1 block1_1 block2_1 block3_1
block0_2 block1_2 block2_2 block3_2
block0_3 block1_3 block2_3 block3_3

Temperature difference from average [C]

��� ������ ���

-20

-15

-10

-5

0

5

10

15

20

0 200 400 600 800
Time [ms]

block0_0 block1_0 block2_0 block3_0
block0_1 block1_1 block2_1 block3_1
block0_2 block1_2 block2_2 block3_2
block0_3 block1_3 block2_3 block3_3

Temperature difference from average [C]

����	�	�
� ����
	�	�� ���

������ �� ��
�������� ��	���� �	� �%1�

3
3.5

4
4.5

5
5.5

6
6.5

7

-60 -40 -20 0 20 40 60 80 100 120

Delay [ns]

Temperature [degree C]

������ �� ��
���������������� ����� ������������

�� ���� ��	�	� ��� ��� ��-��
� �������
 ��������
�� ���������

���� ���� �-����	 �(3! �� ��� �����
� ����	����� �

� ,��	 	
��

��	�	 ���� ����� ��� �-�	� "22�"#2 �	 	�����
 ��� �������
 ��
��

���������	 �
���� ��	��

,��	� �-���
�	 �������� ���� 5�6 %� ���� �
�� �� 	��	��	 ��

��

��� ��������
�� ����
�	 ���
����
� ��� 5�6 ���� �� ��� ���
����

��������
�� ����
�	 �
���� ��	� ��� ����
��
�� �� �	 ��Æ�

� �� �
���

����� ��� ��������
�� ���
��� ��
�� ���������	 ���� ��� ���	
���

��
�� ��

�	 	���� ���� ��� ����
������� ,��	� �-���
�	 �����

���� ��� ���� �� ������
�
��������� �
���� ��	� ��� ���
���� ���

��

�����������

� �
��� �	� ����������� ���������
���

	

+� ���	 	������� %� ��	�
		 ��� ����������	���	 �� ��� ��%�� ����

	
������ ��� ��������
�� �
���� ��	�� ��� ����� 	��� ������	 ��

���

��� ��������
�� ���������	�

�
���
�� ��� ��%�� ���	
������ �� ���� ��

 �� � ����
�� �����	

	���������
� ��	� �� ����� �
��0����
� �
���� ��	�� �� �	 0��%� ����

��� ��������
�� ���	 ��� ������ �	 �����
� �	 ��� ��%�� ���	
���

���� ���	� ,�����
 ���� �������
	 ��� ��������
�� ������	 ����

���� ��� 0��%� �� �� �� ��� ����� �� ��

�	�����	 ��2�� ,���������

%�
	� ��� ��%�� %��� �����������
���� 5����� �� ������� ��%��

���%��� �%� ����
�� ���
�	 ��� ���� ��	� ������� �	 �
� ������

��
 ��%�� ��	�

����� $�� ��� 	�����
 ��%�� ��	�

����� %�
	� ���

��%�� ���	
������ %��� �
��0����
���� 5����� ��� ��%�� ��

� ���

���
� �
��06� 	���� � �������
��0 ������� �	 �
���
�'�� ����
���

%���� ���
�	 �
�� ��	��� ���� � ����
���%��� ��������

+� ���	 ������ %�
	� ��� ���� ?��������
�� ��� ��	� ������� � ��

�
��0 &� ��� �@ �� ������ ��� ��������
�� �� �
��0 & �� ��� ���� %���

��� ��	���	� ��� � �	 ����
���� 7� �
	�
	� ��� ��

�%��� ������	

�� ���

��� ��� ��������
�� ���������	 �
���� ��	� ��� � ����
�� %���

' �
��0	 ��� ��� � ����� ��	� 	��
���� �� (��	� �������	�

� 9�����
 �������� �� ��������
�� ��� ��	� ������� �

)
���

�
5�6 � �

�

��
���5��� � � ������6

�

%���� ������ �	 ��� ������� ��������
�� ����� �

 ��� �
��0	

��� ��	� ������� ��

� 9�����
 �������� �� ��������
�� ��� ��� ����� ��	� 	��
����

)
���

�
�

�

	

�	
���)

���

�
5�6

'

RASDAT 2011 Page 8

-20

-15

-10

-5

0

5

10

15

20

0 200 400 600 800
Time [ms]

block0_0 block1_0 block2_0 block3_0

block0_1 block1_1 block2_1 block3_1

block0_2 block1_2 block2_2 block3_2

block0_3 block1_3 block2_3 block3_3

Temperature difference from average [C]

������ �� ��
�������� ��	�

��� �	� �%1 ����� ����
���

����	�
�����
��� ������

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

0 20 40 60 80 100

Power [W]

Switching Activity [%]

������ �� �� � �
��� 	� ���

������ �	
�� ���������

� ,������
 �������� �� ��������
�� �� �
��0 &

)

���

�
5 &6 � �

	

�	
���5��� � � ��
���
� �6

�

%���� ��
���
� � �	 ��� 	����� 	���� ��������
�� �� �
��0 &�

� ,������
 �������� �� ��������
�� ��� ��� ����
��

)

���

�
�

�

�

��
���)

���

�
5 &6

� ���� ������	 ���
�
���

	 �
� ����
�� �	� ����
�
��� �������� 	
�
��
��

�!� �"��"
��

+� ���	 	������� %� ���	��� � ��	� ������� ������'����� ������

�� ���
�� ��������
������
��� ��
�� ���������	 ��� ���
���� ���
�

�� ����������� ,�� ���
 �� ���	 ����� �	 ������'��� ��� 	�����

�������� �� ��������
��)
���

�
��� ��� �������
 �������� �� �������

��
��)

���

�
������ �� ��� ������
	 	������ 	��

�����
	
�� ,��

������'����� ����
�� ��� 	�����
 ��� �������
 ������
�
���������

*���� �	 �����

� ������ �	 ��

�%	�

	�
��
��� � *���� A >���� � ����
�� %��� � ��	� 	��
���� + � 5��

������� ��	� 	��6 �� (��	� �������	 %���
�	������� ���	 5:;	6�

���	���
 ����������� 5-������������	 �� ���� ��

	6 ��� �
����

��
���
� �
��0	 ' ��� ��������
�� ���
�	�	� ��������� :��

 ��
�

�	 ��� ���
�	������� ���	 ��� �� ����� �� ��� ��	� �������	 	� ����

��� 	�����
 ��������
�� ��������)
���

�
��� ��� �������
 ��������
��

��������)

���

�
��� ������'���

7� 	�
�� *���� ���
���� ��� ��

�%��� �%� 	���	�

+�	
,- ,�����
�B�����������%��� :�$�

���

,�� �����	�� ������ 	����	 %��� � ��	� 	��
���� + � ���

����

�	������� ���	 5:;	6 ��������� �� � ���������
 �,=>� �	 ���

�	� 	���� ��� ������
�
�����������%��� :��

��� �������
� ��"� �	

��������� �� ������ � ��	� 	��
���� + � ��� �� ��	� �������	 %��� �

�

	������� ���	� +� ���	 	���� ����� ��	� ������� � � � �	 ����
����� �

�� ��� :;	 ���	 ��� ���� ��	� ������� � ��� 	������� 	� �	 �� ����

���'� ��� 	�����
 ��������
�� �������� ��� ��� ��	� �������)
���

�
5�6

%��
� ���	������ ��� ��%�� ��� ��������
�� �� ��
�����
�
�%
���
�

$��
�� # 	��%	 ��� ��������
�� ����
� ��� ��* ����� 9����� !���

����� �� ��� ��������
�� ����
�	 �� ��� ������ �

 �� �����
�

����	����� �

 	��%� �� $��
�� �� ��� 	�����
 ��������
�� ���������

�	 ���
��� 	���������
� ��� ���� �
��0 ��	 � ���� �����
����� ��

��������
��	 %��� ����� �
��0	� &�%����� �������
 ��������
��

���������	 5���
�� �23! �� ���	 �-���
�6 ��� 	��

 ����������

+�	
.- ,�����
�B�����������%��� ,�	� =������ �������

,�� ��������� �� ���	 	��� �	 ����������� �� ����� �� ��� ��	�

�������	 �� + � ��� %��� �

� 	������� ���	 	� ���� ��� �������
 ����

�����
�� ��������)

���

�
�	 ������'�� %��
� ���	������ ��� 	�����

��������
�� ��������)
���

�
�������� �� ��� �	� 	���� ,�� ���� ����

�	 �� ����� � 	
��	��
�������	�� �������� 	�������� ��� ��������

���������� ��������� ��� ������'� ��� �
���� �� 	
��	��
����	

	�� ��� ��� ��������� ,�� 	�����
 ������
�
��������� �	 ��
�� ��
�

��� ��� �
����� ����� �� + � ��� �������� �� 9����� C��� �����	�
��

���� ��� ��
�� ��
� ��� ��� �
����� ��	���	��������� ���� %����

��� 	��

�����
	
� 	������ �
���� ��	� �� ��� �
����� ������ ,�����

����� ��� 	
��	��
�������	�� �������� ��	�
� ��� ���	���� ��� 	���

���
 ������
�
��������� %����
� ��� ���	��������� �� ���
����� ��

	
��	��
����	 �	
��� ���
��� ��� ���
	 �
� �����	 �� ������'���

��� �������
 ��������
�� ��������� ,��	 	���
�������� ���
��	 ���

����
�������
 ��	� �� ���	 	��� 	���������
� 	���� ������
 	��

��

���� �	 ���������
�
	�� 5�-�
�����
����6�

9���� ��� ������
�
�����������%��� :��

��� �������
� %�	 �
�

����� �����	�� �� ��"�� %� ���;� ������� ��� �����
 �� ��� �����

���
� �� ���	 ������ ��� %� ���
	 �� ��� ������
�� �� ��� ��	� ����

���� �������� ������� %���� %�

 �� �-�
����� �� ��� ��-� 	�������

�!� �������� 	
�
��
�������� ���� ������	 ���
���
	# $�����%

,�� �����	�� ������
�
�����������%��� ��	� ������� ��������

������
�� ���	�	�	 �� ��� ��

�%��� ����� 	���	A 5�6 *��	� *����	

 ��������
� 5�6 �	�� +	��	
�	 *�������
�
� ��� 5"6 +���+	��	
�	�

���	� ���	��
�� ,�� �����
�� ������
�� ��� ���� 	��� �	 �-�
�����

�� ��� ��

�%��� 	
��	������	�

+�	
 .�,- *��	� *����	 ��������

,�� ��	� 	��� �	 � ���������� �� ��%�� ����
� ��� ��� ��	� 	��

�
���� + � ��� �������� �� 9����� ,�� ��%�� ����
� ��� + � ��� �	 ���

�
���� �� ������ ������
 ����
�	 �� ���� 	
��	��
���� ��� ���

���
 ��	� 	��
���� �� ��� ��

�%��� 	���	� 9���� %� ������ ���

��	� 	��
���� %��� 	�����
 ������
�
��������� ��� ����� � 	
��

	��
�������	�� ��������� ��� 	�����

� �
���
 ��%�� ������ 5�����

	���
� ��%�� %���� �	 	
������� �� �

 ��� �
��0����
���� ��%��

���	
������6 ��� ��
	�� �� ���

��� ��� ��������
�� ����
� ��

��� ����
�� �	 	��%� �� $��
��)� &�%����� ��� <�%
	��� ���
����

��� ��%�� 	��

�����	 	��%� �� $��
�� � �	 	��

 ����
�������

�

�-���	��� �� ������ ��%�� ����
�� ,��������� %�
	� � 	���
� ���

���
���� ��%�� �	�������� 	����� ���� ���	�	�	 �� ��� ��

�%���

�%� 	���	�

�� =�������+���������� 9����� =�%�� ���
�	�	A B	��� ��� 	�����

��%�� ���
�	�	 ���� �� ��%�� 	��

����� %� ��	� �	������ ��� ���

����� ��%�� ���	
������ %��� 9� �� ����� $$ �� ��� ����
�� �	

�		
��� �� �� �D� %���� � �	 ������ ���� 2D �� �22D %��� �2D

���������� ,�� 9� �� ���� $$ �	 ���������� ��
���� ��

	 ���

�
��0 ��
�

����� �� ��� ������� ��%�� ���	
������ �� � ����
���

,�� ��
�

���� ��%�� ��

� ���

��	 ������� ���
��0��� ��%��

�� $$	 �	 %�

 �	 ���	� ��
���� ��

	� �� �-���
� �� ��� ��%��

���
�	�	 ��	

�	 ��� 	��%� �� $��
�� (�

�� 8����� +������
�����A 7� ��
�

��� ��� 9� ��� ���� ��	� ��������

��� �	������ ��� ��%�� ���	
������
	��� ��� ����������� �� 9�

�	 ��

�%	� 9
���	� ���� ��� �%� �������� ��������� 9�	 �		
���

�� ��� 	����� ��%�� ���
�	�	 ��� ����� �� ��� ����������	 5!�� ��6

��� 5!�� ��6 %���� ! ��� � �����	��� 9� ��� �����	������� ��%��

���	
������� ��	�������
�� $�� � ������� � %��� 	%������� ��������

+ /� �� ��� �������
 5!�� !�6� ��� �����	������� ��%�� ���	
������

*� �	
�����
� �������
���� �� ��� ��

�%��� ��
������

*� � �� � 5+ /� � !�6 �

��
�

�����

+�	
 .�.- �	�� +	��	
�	 *�������
�
�

#

RASDAT 2011 Page 9

8 8 . 5

0 50 100 150 200

Tunify

Tunify – Trange/2

Tunify + Trange/2

Time [ms]

Temperature

��� ������ �����	��

8 8 . 5

0

8 8 . 5

0

8 8 . 5

0

8 8 . 5

0

8 8 . 5

0

8 8 . 5

0 50

Tunify

Tunify – Trange/2

Tunify + Trange/2

sub1 sub2 sub3 sub10 sub11 sub12

7244832
Time [ms]

Temperature

��� ����� ����	�	��	��

8 8 . 5

0 50 100 150 200

heating

cooling

Tunify

Tunify – Trange/2

Tunify + Trange/2

Time [ms]

Temperature

��� ����� �����	��

������ !� "������� � �
����

,�� ���
 �� ���	 	��� �	 �� ������ + � ��� ���� ��� 	��	 �� 	
��

	��
����	 ���� ��� ���� ��� 	� ���� 5�6 ��� ��������
�� ����
� �� ����

	
��	��
���� �� �	 %����� � 	������� ��������
�� ����� ������ ���

5�6 ��� �
���� �� 	
��	��
����	 0 �	 ������'��� +� ����� �� ���

	
�� ���� ��� ��������
�� ����
� �� ���� 	
��	��
���� ���	 ���

�-���� ������� ������
 	��

����� �	 ���������
� ��������� %���

%� ������ + � ���� $��
��)5�6 ��� 5�6 	��% �-���
�	 �� ��������

�
�� ����
�	 ������ ��� ����� ��� ��	� 	��
���� ������������� ��	����

����
�� ������ �	 � 0�� ��������� �� ������
 ��� �������
 ��������

�� ��������
��)

���

�
� ��� %� %�

 ���

��� ��� ��
����� ���%���

������ ���)

���

�
�� ��� �-���������
 ��	

�	 	������� ,�� ������
��

�� ���	 	��� �	 �	 ��

�%	�

�� !�
�

��� 	����� 	���� ��������
�� ���� �
 ��� + � ��� �� ������

	��

�����
	��� ��� ��%�� ����
� *1 �	������� �� ��� ������
	

	����

�� 9��
�%�� ���
���� ��
�� ��������
��	 �� ��� �� �	 ��

�%	A

�� � ���� �
 � �������� ��� �� � ���� �
 � ���������

"� ������ =����		�	 # ��� (
���
 *1 ������	 ������

#� �
� ������
 	��

����� ���� ���� �

	��� *1 �� ��� ��� ��	�

������� � 	� ���� ��������
�� ��� � ?��@ ������	
�		 ���� �� ��

���� ���� �� �

(� !
� ��� ��	� � � � �������	 ���� + � ��� �	 ��% 	
��	��
���� ��

��� ������ ��� �����	������� ��%�� ��

�	 ���� *1� !
�		��� �

���� ��� ���
� �� �	���
� 	
��	��
����	 �� �� � ���� �
� ����%�	��

�
�		��� � ���� ��� ���
� �� �����
� 	
��	��
����	� 9���
��
�� �
�	�

	��� � ���� ��� ���
� �� ��
� 	
��	��
����	 �� ���
����� �� ���

	
��	��
���� �	 ���� ���� ��� 	������� ���	���� 2
�� ����%�	��

�
�		��� � ���� ��� ���
� �� ����� 	
��	��
����	�

)� ������ =����		 *
���
 ��� �
����	 �� �	���
� ��� �����
� 	
��

	��
����	 ������ ��� 	����

*� 9�
��� ���
����	� 	
��	��
����� ��� ������ �� ���� �%� 	
��

	��
����	A ��� ��	� 2��� 5� 	������� ���	����6 �������	 ��� ���

��������� �������	� B����� ��� 	���
	 �� ��� �%� 	
��	��
����	A

�	���
� �� �����
�� ��� ��
� �� ������

+� ��� ����� ������
��� %��� %� ������ � ��% 	
��	��
�����

%� �
%��	 �
� ��� ������
 	��

����� ���� ��� 	����� 	���� �������

��
�� ���� �
 ����
	� �� ��� ��

�%��� ���	��	� 9���� ���� �
 �	 ��
�
�

���� ���� ��� ������� ��%�� ���	
������ �� *1� �� �	 �
�	� �� ���

������� ��������
�� �
���� ��	� �	 	��%� �� $��
��)5�6� ,�����

����� �� �	 	
����
� �	 ���
������ ��������
�� ��� %� ��� �
�����

��� ���� ��� 	��� �
���� �� �	���
� ��� �����
� 	
��	��
����	 ���

��������

,�� 	
��	��
����	 ������� �� ��� ����� ������
�� ���� ���

��

�%��� ������
 ����������	���	� 4���� ����� 	
��	��
���� ����

���	 ��������� ��� ����� ��������
�� ����
� �	 	��%� �� $��
��

)5�6� +� � 	
��	��
���� �	 �
�		���� ���� ��� ���
� �� �	���
�

	
�� �	 	
��	��
���� �� 5	
���6 �� $��
��)5�6� ��� ��������
��

����
� 	��%	 ��������� ��� ����� ������	�� ����%�	�� �� 	��%	

��������� ��� ����� ������	� 	
�� �	 	
��	��
����	 � 5	
��6 ���

" 5	
�"6 	��%� �� $��
��)5�6� � ��� ����� ����� ��
� 	
��

	��
����	 ������ ������������� ��������
�� ����
�� 4��� �� ��

�	 �
�		���� ���� ��� ���
� �� �	���
� 5�����
�6� ��� ��������
��

����
� ����� 	��% ��� ����� �� �������� ������	� 5������	�6 ��

��� ����������

+�	
 .�3- +���+	��	
�	����	� ���	��
�

,�� ����� 	��� �	 �� �������� �� ��� 	
��	��
����	 ������� ��

9������� ,�� ��	�� 	������� �� ��� �����	�� ������ �	 �� �����

��� �	���
� ��� �����
� 	
��	��
����	 �� �� �����
������ ������

�	 	��%� �� $��
��)5�6 	���� �� �	 �
�������� ���� ��� �
����	 ��

�	���
� ��� �����
� 	
��	��
����	 ��� ��������
 �� ��� ����������

��� 	���� 7� ��������� ��� ����� ��� �� ��� 	��
�����

� ����

��� ���������� 9
���	� ���� %� ���� �
����� ���������� ��� ��	�

� � � 	
��	��
����	� 7��� %� ��������� � �� 	
��	��
����� %�

����0 ��� ������
 ����������	��� 5�	���
� �� �����
�6 �� � � � ��

	
��	��
����� ,���� %� �
%��	 	�
��� � 	
��	��
���� ���� ��	 ���

��	��� ������
 ����������	��� �� ��� 7� �
	� ����0 ��� �
����� ����

�����
�� ���� 5����� ��������
�� �� ��� ��� �� �� � �� 	
��	��
����6

	��� ������
 	��

������ +� ���� �	 �
�	� �� �� �� ��� %� 	�
��� �

����� 	
��	��
���� 	� ���� ��� ��������
�� �� ��� ��� �� � �� 	
��

	��
���� �	 ��� �
�	�	� �� ���� �
� +� %� 	�
��� � ��
� 	
��	��
�����

��� ��������
�� ����� �
����� ������	� ������ �� �� ������	� ���

�% �� �� ��� ��������� �� � �� 	
��	��
���� 	���� �� ������	 ����

��������� ��������
�� ����
�� +� ���� �	 �
�	� �� ���� �
� %� ���

	�
��� ��� 	
��	��
���� 	���� ��� ��������
�� ����
� �� ���� 	
��

	��
���� �	 �
�������� �� �� %����� ������� +� ���	 ��	�� %� 	�
��� �

����	� 	
��	��
����� ,�� ������
�� �� ���	 	��� �	 	
�����'�� �	

��

�%	� +� ��� ������
��� %�
	� � ��������� � �� �������� %���

%� 	�
��� � ��
� �� ����� 	
��	��
�����

�� 9�� � � �� ���� � ���� �
�

�� ������ =����		�	 " �� (
���
 ����� �	 �� ����
�	�
����� 	
��

	��
�����

"� +� �� � � � ���� � �� � �� 	�
��� � 	
��	��
���� � 	� ���� 5�6

� ��	 ��� ����	��� ������
 ����������	��� �� � � � �� 	
��	��
����

��� 5�6 � �	
����	� 	
��	��
�����

#� +� ���� � �� � � �� ���� � �� � �� 	�
��� � 	
��	��
����

� 	� ���� 5�6 � ��	 ��� ����	��� ������
 ����������	��� �� � � � ��

	
��	��
����� 5�6 � �	 ����� 	
��	��
���� 5�� �-�	�	6 ��� 5"6 ���

��������
�� �� ��� ��� �� � �	 �
�	�	� �� ���� �
�

2

RASDAT 2011 Page 10

��#�� �� $�������������� 	� #����
��% ���������
������� ��� ����	
���
 ��� ���� � �����

�� ��� ����� � � � � ������ �����

�� ��� ����� � � � � ������ �����

�� ��� ������ � � � � ������ �����

�� ����� ������ � � � �� ������ �����

�� ��� ������ � � � �� ������ �����

�� ��� ������ � � � �� ������ �����

�� ��� ������ � � � �� ������ �����

80

82

84

86

88

90

92

94

0 50 100 150 200 250
Time [ms]

original
proposed (Trange = 4)
proposed (Trange = 1)

Temperature [C]

��� ���
���� � ����������

84

86

88

90

92

94

96

98

0 50 100 150 200 250
Time [ms]

original
proposed (Trange = 4)
proposed (Trange = 1)

Temperature [C]

��� ���
���� � ����	��

������ &� '������ 	� ���� ������� 	������� �	� �
	 �����������

�	
�� ��	�����

(� 9�� � �	 � �� 	
��	��
����� B����� ���� �� ������
 	��

�����

��� 	�� � � � � ��

& '(���
��	���)������

+� ���	 	������� %� ���	��� �-���������
 ��	

�	
	��� 	�����

+,!;// ��������0 ����
��	� 7� ���

��� ��� ��

�%��� �%� ����

�	����	 �� ���	 ������

� ����������		 �� ������
�
�����������%��� ��	� ������� ������

��� ��� ���
���� �������
 ��������
�� ���������

� ����������		 �� �����

 ��	� ������� ������'����� ������

5���

���� ������
�
�����������%��� :��

���6 ��� ���
����

	�����
 ��� �������
 ��������
�� ���������	

7�
	�� ��� 	��� �-���������
 	��
� �-�
����� �� 9������ �

�� �������� � ������
 ��	� 	��
���� �� �2�222 ��	� �������	 %���
��

	������� ���	 ��� ���� ����
��� ,�� ����������	���	 �� ��� ����
��	

	�� �� ��� �-��������	 ���
�	��� �� ,��
� �� +� �
� �-��������	�

%�
	�� ' 	�
���
���
� �
��0	 %��� ��� 	��� 	�'� ��� ��� ��%��

��� ��������
�� ���
�	�	 ��� �		
��� ���� �
��0 ��	 ��� 	���

����� ���� ���	�	�	 �� �

 �� ��� $$	 �� ��� �
��0� $�� ��������

	�� �
���	�� ��� ��� �-�	���� :��

��� �������
�	 ��� ���
��� ��

��� ������
 ��	� 	��
���� %����
� �������� ��� ������ ,��� ��� ���

	�����

� ������
�
�����������%��� �

 ��"�� ������ �

 5������

6

��� �����
�%���%����������� �

	 5�����
� ����	����� �

5����

�

6� 2��

 ��� ���

6� 7� �
	�
	�� ��� 	��� <�% �-�
����� ��

9������ � �� ���

��� ��� ���
 ��%�� ��� ��������
�� ����
�	 ��

���� �������

&!� ���� ������	 �����
	#

7� ���

��� ��� ����������		 �� ��� �����	�� ��	� ������� ������

��� ��	�
� ��� ���
���� �������
 ��������
�� ���������� +� �� �����

���� ���� ���
�� ��� �����	�� ������ ���	���� ���� 	�����
 ���

�������
 ��������
�� ���������	� ���� %� ���
	 �� ��� ���

�����

�� �������
 ��������)

���

�
�� ��� �
������� ������ �	�
	�����	 ���

��
����� ���%��� ������ ���)

���

�
�� ����
���� ��� ����������		 ��

��� �����	�� �������� ��	�
��

7� ����������� �%� 	�����

� �
���
 ��%�� ����
�	 �� (2�222

�������	 %��� �������� ����������	���	 ��� ��� �����	������� 	���

���

� �
���
 ��������
�� ����
�	 ��� 	��%� �	 �

�
���	 �� $��
��

*� +� ��� 	��� ��
��� ��� ��������
�� ����
�	 ����� �������� %���

��#�� �� (�

��� 	� ���� ������� 	������� �	� �
	 �����������

�	
�� ��	�����
�����	 � � �!	���	" �����	 � �����!"

�����	�#� ������ ������

�����#�� ������	! �����#�� ������	!
�������$%" & � � & � �

���� �$%" ����� ����� ����� ����� ����� �����

���� �$%" ����� ����� ����� ����� ����� �����

�	�

 �$%" ����� ���� ���� ���� ���� ����

�
����

 ����� ���� ���� ���� ���� ����

��
����

 �'" & ����� ����� & ����� �����

���
&�	(� ��� ���� � ��� ����

-20

-15

-10

-5

0

5

10

15

20

0 200 400 600 800
Time [ms]

block0_0 block1_0 block2_0 block3_0

block0_1 block1_1 block2_1 block3_1

block0_2 block1_2 block2_2 block3_2

block0_3 block1_3 block2_3 block3_3

Temperature difference from average [C]

��� ������ � ���

-20

-15

-10

-5

0

5

10

15

20

0 200 400 600 800
Time [ms]

block0_0 block1_0 block2_0 block3_0

block0_1 block1_1 block2_1 block3_1

block0_2 block1_2 block2_2 block3_2

block0_3 block1_3 block2_3 block3_3

Temperature difference from average [C]

��� ������ � ���

������)� ��
�������� ��	���� �	��%1 ����� ���� ������� 	��������

������ � # ��� ������ � � ��� 	��%� �	 ��� ��� �����
���	� ��	����

����
�� ,�� ��	

�	 ��� �
	� 	
�����'�� �� ,��
� �� �)

���

�
������	

��� ��
����� ��������� �� �������
 �������� ���%��� ?�������
@ ���

?�����	��@� ��� ?E	
��	��@ ������	 ��� �
���� �� 	
��	��
����	

������� �� ��� �����	�� ������� $��� ��� ��	

�	� %� ��� ��	����

���� ��� ��������
�� ����
�	 ��� ��������
� ������

�� �� ��� ����

��	�� ������ ��� ��� �������
 ��������	 ��� ���	����

� ���
����

,�� 	��

�� ������ �	� ��� ���� ��� �
���� �� 	
��	��
����	 �	 ��

���
�� ��� �������
 ���������� +� ��	� �� ������ � �� ��� ���
�����

�	 ���� ���� //D ��� ���� ��%�� ����
�	� ������� ��������� ���

	�������� �	 ���� ������'��� ��� �������
 �������� �
	�
���	 �� �

���
����� �� ���0 ��������
��� +� ��	� �� ������ � �� %� ��������

)�23! ��� #��3! ���
����� ��� ��� ����
� � ��� �� ��	�������
��

&!� �"����� ���� ������	 ���
�
���

	

+� ���	 	������� %� ���

��� ��� �����

 ��	� ������� ������'�����

������ 5���

���� ���� ��� ������
�
�����������%��� :��

���

��"� ��� �������� ���	����� �� 9������ #��6 �� ����	 �� ��� 	���

���
 ��������� �������
 �������� ��� ���0 ��������
���

$��	�� %� 	��% ��� �
��0����
���� ��������
�� ����
�	 �� ���

���
 ��	� 	��
����	 ��� ��* �������� �� ��� �����	�� ������ ��

��	� �� ������ � " ��� ������ � � �� $��
�� .� !������� �� ���

��������
�� ����
� ������ ��� �������� ������
�� 	��%� �� $���

�� #� %� ��� 	�� ��� ��

�%��� ��	��������	� $��	�� ���� ���
��

%� ������ ��� 	�����
 ��������� ���
	� ��� 	�����

� �
���
 ��%��

��� ��������
�� ������	 �� ��� �������� ������
�� �� ���
�� ���

����
�������
 ��	�� ��� �����	�� �������� ������ ��� ���	����

��� 	�����
 ������
�
���������� 9������ ��� 	�����

� �
���
 ��%��

��� ��������
�� ������	 ��� ��������
� ������

�� ��� ��������
��

����
�	 �� �

 ���
���
� �
��0	 �� ��� �������� ������
���

,���� %� ����
���� ��� ��
����� ���������	 �� ?	�����
 �����

���� �)
���

�
@� ?�������
 �������� �)

���

�
@ ��� ?���0 ��������
��

�����@ ���%��� ��� �����	�� ������ ��� ��� �-�	���� �������
�	�

,��
� " 	
�����'�	 ��� ��	

�	 ��� �

 ��� ��������0 ����
��	
	��

�� ��� �-��������	� +� �������	�� %��� ��� 	�����

� ������
�

�����������%��� �

 ��"�� %� ��	���� ���� � 	��������� ���
��

���� �� �������
 �������� %�	 �������� �� ��� �����	�� ��	� ����

,

RASDAT 2011 Page 11

��#�� �� '������	� �� ������� ��� ��
�	��� ��
�������� �������� ���
� �
�
 ��
�������� #� ��� ��	�	���
���	��

)��* �#&��� �&��� �&��� ��#!&���

������� ������ ��
���

 ��
����

 ����� ��
���

 ��
����

 ����� ��
���

 ��
����

 ����� ��
���

 ��
����

 ����� ��
���

 ��
����

 �����

�$%" �'" �'" �'" �'" �'" �'" �'" �'" �'" �'" �'" �'" �'" �'" �'"

�� � ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� &����� ���
� ���� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� ���� ���

�� � ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� &���� ����
� ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� ���� ����

�� � ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� &����� ����

� ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� ���� ����

�� � ��� ���� ��� ���� ���� &���� ���� ���� &���� ���� ���� &���� ���� &����� ����

� ��� ���� ��� ���� ���� &���� ���� ���� &���� ���� ���� &���� ���� &���� ����

�� � ��� ���� ��� ���� ���� &���� ���� ���� &��� ���� ���� &��� ���� &����� ���

� ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� ���� ���

�� � ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� &����� ���
� ��� ���� ��� ���� ���� &��� ���� ���� &��� ���� ���� &��� ���� ���� ���

�� � ��� ���� ��� ���� ���� &���� ���� ���� &��� ���� ���� &��� ���� &����� ���
� ��� ���� ��� ���� ���� &���� ���� ���� &��� ���� ���� &��� ���� ���� ���

�+	���	 � ��� ���� ��� ���� ���� &���� ���� ���� &���� ���� ���� &��� ���� &����� ����
� ��� ���� ��� ���� ���� &���� ���� ���� &��� ���� ���� &��� ���� ���� ����

���� ��������� 7� �������� (#D ��� /�D ���
����� �� �������

�� �������
 �������� �� ��	� �� ������ � " ��� ������ � �� ��	����

����
�� C�������� %� �������� "D ���)D ���
����� �� �������

���� �� 	�����
 �������� �� ��	� �� ������ � " ��� ������ � �� ���

	�������
�� +� �������	�� %��� ��� �����
�%���%����������� :��

�������
�	� %� �������� ���
�� *(D ���
����� �� ������� �� 	���

���
 ��������� $
���������� %� �������� ���� ���� *�D ��� /(D

���
����� �� ������� �� �������
 �������� �� ��	� �� ������ � "

��� ������ � �� ��	�������
�� $���

�� �� �������	�� %��� �������

�

� ���
�� *(D ���
����� �� ������� �� 	�����
 �������� %�	 ���

������� >�����

�� �������
 ��������� �� ��������

 �	 �
��� 	��

�	 	��%� �� $��
�� �5�6� &�%����� �� ��	� �� ������ � �� %� ���

������ "/D ���
����� �� ������� ���� �� ��� �������
 ��������� +�

����	 �� ���0 ��������
��� ��� �����	�� ������ ���
���� . �� ��D

������	� �� ������� �������� �� ��� �����
�%���%����������� :�

�

 �������
�	� &�%����� ���� ��� 	��

 "��D ��� ���.D
�%�� ����

���	� �� ��"� ��� ��������

 �� �������� ��	�������
�� ,�� ���

	

�	 	��% ���� ��� �����	�� ��	� ������� ������'����� ������ ���

�������
� ���
��	 ��� 	�����
 ��� �������
 ���������	 %��� �
���
�

������	� �� ���0 ��������
���

* �
	����

	�

+� ���	 ������ %� ���� 	��%� ��� ���������� �� ���������

	�����
 ��� �������
 ������
�
��������� ��� ���
���� ���

�� ����

�������� 7� ���� ���	����� � ����
 ��	� ������� ������'�����

������ ��� ������
�
���������� %���� ������'�	 	�����
 ��� ����

����
 ��������
�� ���������	 �� � ����
��� !��	��
���
�� �� ��0�	

��	� �� �
������� ��� ��������
������
��� ��
�� ���������	 ����

��� ���	
��� ��
�� ��

�	� %���� �	 ��������� ��� ���
���� ���

��

����������� 4-���������
 ��	

�	 ��� +,!;// ��������0 ����
��	

���� 	��%� ��� ����������		 �� ��� �����	�� ������ �������� ��

��� �-�	���� ���������	� 9���� ��� �����	�� ������ ���	�	�	 ��

��� ������
�
�����������%��� :��

��� ��� ��	� ������� ��������

��� ����� ��	� 	��
����	 %���
�	������� ���	� �� �	 ��	�
� ������

��� ���� ��� �
����� ��	��� <�% %����
� ���
�		 �� ��

� ���������

��+	
����#��	��

��	
 ��! �

������� 	� ���� "# $���� ���	��# ��� ��� %��&

���	�� �� ��	���� �$�%��
���� '����
&	�&�	� ��� (�
�� ��	��&

�	
�
����)�*��+,,,-.�* ��� �
����
 �
�� �	!� �� ����! %���* ��	/	 0�&

/	���� 	� 0#

#
 1�
�	�
�� �� ���������#2 %���* (
!	#� �	
�� 	� ��!#�

��������	��� 3�	4��
	�# ��� %���* ����
�	 5���!� 	�)��� 1�
�	�
�� �� ��	&

���� ��� ���������# ��� ���	� 	�4��
�"�� �	
�

	��
*

)�����	���

6�7 (* 8	2 �* ��!��2 ��� �* �	���2 9���%: ����
����� �
������

 ��	�

���&��
�

	��
����� ��
� �������
2; 	� ����� ���	
��
������	��� ���

���� 	� ������2 ��* <<-=<.,2 ���* �,,<*

6�7 >* 1��
�2 (* 8	2 ��� �* �	���2 9?���: ?	��
��	@��	��&�

	
��� ����
�&

���� �
������

���&��
�2; 	� ����� ��������	���� ���� ����������2

��* �=�,2 5��* �,,<*

6A7 �* ���� ��2 �* �* %�
�2 �* B����2 ��� �* �	���2 9�	��
	� ��	�
��

����	��	�� ��� 	�
 ����	���	�� �� ����
	
��� ��	��2; 	� ����� ���� ����

������	��2 ��* �++=�<�2 ��# �,,+*

6�7 �* C* ����2 0* 0	�2 (* �* 0	�2 ��� �* �	���2 9'���&�D	�� ����#

��	�
�� ����	��	��2; 	� ����� ���� ���� ������	��2 ��* ���=��<2 ��#

�,,<*

6-7 (* 8	2 (* �* 0	�2 E* �	������2 F* �* '������2 ��� �* �	���2 954��&

���	�� ����#&�	�� ��	�
�� ��� ��	�� ��� ��"

�
#
���
2; ���� ���	
�

��� ���� �� ���������2 4��* �G2 ��* �<=A.2)�4*�F��* �,,.*

6G7 (* ����2 �* 0�/	����2 (* �	
��2 �* (�����2 �* 5���!�2 �* 1��
�2 ���

>* H
/	 ���2 9� �	��
	� ��	�
�� ����	��	�� ������	
� �F���� ���

�	�� ���� ���	�"	�	�#2; 	� ����� ��������	���� ���������� ��
���2

��* �,=�A2 5��* �,,.*

6+7 >* (2 �* (�����2 �* 1��
�2 (* ����2 �* 0�/	����2 ��� >* H
/	 ���2

9��	�� ��
�
������# ��� �����	4� ��
�
����
�	�� ��� ��� ��	�
�� ���&

�	��	��2; 	� ����� ��������	���� ����	�� ����	�
 ������	��2 ��* ��=

�G2 $
�* �,�,*

6<7 (* 8	2 5* �
��
2 ��� �* �	���2 95�����	��
#
���
����
�	�� ��� �Æ&

�	��� ���	��
���&��
� 	� ��"

�
#
���
2; 	� ����� ��������	���� ����

������� �� ���������
	��� ���	
�2 ��* �,�=�,<2)�4* �,,.*

6.7 �* �* ��"� ��� �* �	���2 9��
�	�� ��� ����
	
��� ��	��2; 	� ����� ����

���� ������	��2 ��* ��-=��,2 ��# �,,.*

6�,7 �* �* ����2 $* 8* ��

����2 �* F* ���	��2 �* 0�
��4��@	2 ��� $* ��&

�
��2 91����� �� ������� ����	���
 �� ����!
!� ��� ��
�	��2; ����

���	
� ��� ���� �� ���������2 4��* �A2 ��* ���=���2 ���*�5��* �,,G*

6��7 �* ���
!
�
�"	 ��� 0* ���!��"���#2 9��
�&������� �����	�� ���

 ����&��4�� ��
�&�
�	��&"
��&	�2; 	� ����� ���� ���� ������	��2

��* �.A=�.<2 ���* �,,<*

6��7 �* ���
!
�
�"	 ��� 0* ���!��"���#2 9%� �� ���������� ���

 ����&��4�� ��
�&�
�	��&"
��&	�2; 	� �����
�	�� ���� ������	��2

��* �A�=�AG2)�4* �,,<*

6�A7 �* (�����2 �* 1��
�2 (* ����2 ��� >* H
/	 ���2 9�������&
�	����	�#&

� ��� D&���	�� �� ���
�� ��������
��&	��
��� ����# 4��	��	�� ��� ��&

�
���� ��&
���� ��
�	��2; 	� ����� ���� ���� ������	��2 ��* �<<=�.A2

���* �,�,*

6��7)������2 9)������ �-�� ���� ���� �	"���#*;

����:�� *�������*����*

6�-7 91�������	���� ���������# ������� ���
��	����
����
2 �,,+ ��	&

�	��*;

"

RASDAT 2011 Page 12

1

Test Scheduling for 3D Stacked ICs under Power Constraints
BreetaSenGupta Urban Ingelsson Erik Larsson

Department of Computer and Information Science
Linköping University

SE-581 83 LINKÖPING, SWEDEN
Email: (breeta.sengupta, urban.ingelsson, erik.larsson) @liu.se

Abstract- This paper addresses test application time (TAT)
reduction for core-based 3D Stacked ICs (SICs). Applying
traditional test scheduling methods used for non-stacked chip
testing where the same test schedule is applied both at wafer test
and at final test to SICs, leads to unnecessarily high TAT. This is
because the final test of 3D-SICs includes the testing of all the
stacked chips. A key challenge in 3D-SIC testing is to reduce TAT
by co-optimizing the wafer test and the final test while meeting
power constraints. We consider a system of chips with cores
equipped with dedicated BIST-engines and propose a test
scheduling approach that reduces TAT while meeting the power
constraints. Depending on the test schedule, the control lines that
are required for BIST can be shared among several BIST engines.
This is taken into account in the test scheduling approach and
experiments show significant savings in TAT.

I. INTRODUCTION
Integrated circuits (ICs) with multiple chips (dies), so called
3D Stacked ICs (SICs), have recently attracted a fair amount of
research [1-5]. A 3D-SIC is obtained by stacking and bonding
individual chips, which are connected by Through-Silicon Vias
(TSVs). Due to imperfections in IC manufacturing, each
individual chip must be tested. Recent research has addressed
test architecture design for 3D-SICs [6], testing the TSVs [1-6]
and 3D-SIC-specific defects [1, 2], but no previous work has
addressed test scheduling under power constraints for 3D-
SICs, which is the topic of this paper.
Testing each individual chip is required for both 3D-SICs and
traditional non-stacked ICs. While IC packaging is costly [7],
each chip is tested twice: (1) in wafer sort test, where the bare
die is tested (pre-bond test), and (2) in final test where the
packaged IC is tested (post-bond test). For non-stacked chips
the same test schedule is applied in both pre-bond and post-
bond test. However, for a 3D-SIC the process is different. As
will be discussed in this paper, applying the same test schedule
for both pre-bond and post-bond tests in a 3D-SIC leads to
sub-optimal Test Application Time (TAT). TAT is defined as
the sum of the testing times for pre-bond tests and post-bond
tests. TAT is a major part of the overall test cost. Hence it is
important to schedule the tests for 3D-SIC such that TAT is
minimized, which is addressed in this paper.
Much work has addressed test scheduling for non-stacked
chips with the objective of minimizing TAT [8, 9]. For core-
based systems where each core is to be tested, the main
method of reducing TAT is to perform core tests concurrently.
However, performing tests concurrently leads to higher power
consumption than performing them sequentially. The test
power consumption must be kept under control [9], to avoid
false test positives due to voltage drop and damage due to
overheating. For core-based systems, Chou et al.[9] proposed a
method to schedule tests in sessions while taking resource

conflicts and power consumption into account. A session is a
group of tests that start at the same time. In the context of
systems where each core has an dedicated Built-In Self Test
(BIST) engine, all the core tests that are scheduled in the same
session can be initiated using a single control line. As a rule, a
low number of sessions is beneficial, since it leads to a low
number of control lines and implies that several tests are
performed concurrently, leading to a low TAT [8, 9, 10]. The
studies in [8, 9, 10] address test scheduling for non-stacked
chips under power constraints. However, no work has yet
addressed test scheduling for 3D-SICs under power
constraints, which is the topic of this paper. We propose a
power constrained test scheduling approach, which considers a
two-chip 3D-SIC design, consisting of cores, each equipped
with a dedicated BIST-engine. In this context we present an
analysis of the test scheduling problem in Section II leading to
an approach in Section III. The experimental results are in
Section IV and the conclusions are in Section V.

II. PROBLEM ANALYSIS
Figure 1 shows a chip with three cores where each core is
tested by its BIST test. Associated with each test are the
parameters test time and power consumption. The test
controller, which is a Finite State Machine (FSM) determines
when the test for each core is initiated. Figure 2 shows a test
schedule for the tests of the three cores in Figure 1, which have
been scheduled as per [8] where the TAT is minimized and the
power consumption at any moment is less than the maximal
allowed power consumption Pmax, which is indicated by a
horizontal line. The test schedules are represented with blocks
for the core tests, where the height of a block is the power
consumption for the test and the width of the block is the test
time. The x-axis shows the time taken to perform the tests, and
the y-axis marks the power consumption. Two types of
constraints are considered for the test schedule. The first
constraint type is resource constraints which determine that
two tests are not to be performed concurrently and the second
constraint type is a constraint regarding the maximum power
consumption, Pmax, which cannot be exceeded. The test
schedule contains three sessions: Session1, Session2 and
Session3, as marked in the figure. This chip is a single-die IC,
so the same test schedule is applied at pre-bond test (wafer
sort) and post-bond test (final test). ܶܶܣ ൌ ൅ 1ܥ as the ,1ܥ
same test schedule is run twice.
Figure 3 shows a 3D-SIC where Chip1 (from Figure 1) is
stacked on top of Chip2. The testing of the 3D-SIC requires
pre-bond tests of Chip1 and Chip2 and a post-bond test of the
stacked chip that tests the whole SIC by including tests for the
cores in Chip1 and Chip2. While testing of TSVs is important,

RASDAT 2011 Page 13

2

the actual test time is fixed and relatively low. In this paper,
the testing of TSVs is not addressed. The test durations and
power consumption values for each core tests are provided in
Table 1. The power constraint value is Pmax = 20 units.

Figure 1: Chip with 3 cores.

Figure 2: Test schedule of Chip1.

Prior to bonding chips into 3D-SIC each chip can be
considered as individual non-stacked chips and the methods in
[8, 9] apply for generating the pre-bond test schedules. Figure
4 shows an example of the pre-bond test schedules for the two
chips, Chip1 and Chip2, from Table 1. The test schedule for
Chip1 contains three sessions (Session1, Session2 and

Session3) and the test schedule for Chip2 contains two
sessions (Session4 and Session5) as shown in the figure. The
test time for the schedules as obtained by [8] are C1 and C2 for
Chip1 and Chip2, respectively.

Figure 3: 3D-SIC of Chip1 and Chip2.

Table 1: Test time and power consumption for core tests in Chip1 and Chip2.

Chips Tests Duration Power

Chip1
T1 5 15
T2 8 12
T3 6 9

Chip2
T4 2 7
T5 7 8
T6 5 9

Once the chips have been stacked, each core of the chips again
requires testing. We define three different approaches for test
scheduling depending on the available knowledge from the
pre-bond test. In this paper, the three approaches are called
Serial Processing (SP), Partial Overlapping (PO) and
ReScheduling (RS).
In case the only knowledge of the pre-bond test schedules
consist of the test time for the schedules and the fact that the
pre-bond test schedules are within the power constraint, the
limited knowledge available restricts the test schedules that are
possible. In this case the post-bond tests are scheduled by
Serial Processing, which is illustrated in Figure 4. With Serial
Processing we mean that the test schedules of individual chips
are run serially during post-bond testing. It should be noted
that, no tests from different chips are performed concurrently,
because otherwise we would risk exceeding the power limit.
For Serial Processing, the time taken to run the post-bond test
schedule is equal to the sum of the time taken to test the
individual chips, which has been denoted by TATSP in the
figure. For the schedule in Figure 4, ܶܣ ௌܶ௉ ൌ ൅ 1ܥ ൅ 1ܥ
൅ 2ܥ 2ܥ .

Figure 4: Serial Processing.

Figure 5: Partial Overlapping

RASDAT 2011 Page 14

3

Figure 6: ReScheduling

If the maximum power reached by individual sessions and the
test time for the sessions are known, post-bond scheduling by
Partial Overlapping is possible. In Partial Overlapping, we
utilize the knowledge of the test sessions to determine the
power compatible test sessions of different chips that can be
performed concurrently without exceeding the power
constraint. Figure 5 shows the Partial Overlapping test
schedule. In the post-bond test schedule, test T3 of Chip1
(Session3) and test T6 of Chip2 (Session4) are performed
concurrently because they are power compatible. The pre-bond
schedule of the chips remain unchanged, but there is a
reduction in the TAT equal to the length of test T6 (Session4)
and the resulting TATPO is lesser than TATSP.
When full knowledge is available concerning individual tests
and sessions of the pre-bond test schedules, ReScheduling of
the existing schedules can be performed. In the ReScheduling
approach, knowledge of the pre-bond test schedules is utilized
to create a post-bond test schedule to reduce test time.
ReScheduling may cause changes to the pre-bond schedules.
In this context, changing the pre-bond schedule means to split
a session and replace it with two new sessions. The benefit of
splitting a session is that the two new sessions can be
scheduled concurrently with sessions of the other chip during
post-bond test, if that reduces TAT. Figure 6 depicts the result
of the ReScheduling approach. In the original pre-bond test
schedule (Figure 4), Session4 consisted of tests T4 and T5. In
the post-bond test schedule, after rescheduling, test T4 is
performed serially with test T1, while test T5 is performed
together with test T2. This results in a reduction of the post-
bond test time equal to the duration of test T5. ReScheduling
results in splitting Session4 and renumbering the sessions, as
shown in Figure 6, Session4 is test T5, Session5 is test T6 and
Session6 is test T4. But because of the splitting of the original
Session4, there is an increase in the pre-bond test time for
Chip2 from C2 to C2RS. The increase is equal to the duration of
test T4, which is now performed serially with test T5.
Compared to SP, the reduction in TAT is equal to the sum of
the durations of tests T5 and T6, minus the duration of test T4.
From the above, it can be seen that ReScheduling leads to
lower TAT as compared to Serial Processing and Partial
Overlapping, as is shown in Figure 6. However, in contrast to
Serial Processing and Partial Overlapping, ReScheduling can
lead to an increase in the number of control lines, as a result of
splitting sessions. Our approach, detailed below, takes control
lines into account.

III. PROPOSED APPROACHES
In this section we first detail the two approaches, Partial
Overlapping (PO), and ReScheduling (RS), and then discuss
the complexity of the approaches.
PO can be considered as a special case of RS. PO considers
only the knowledge of individual sessions, and no sessions are
split in the process. Hence, PO can be obtained by disregarding
Step1 of RS.
RS is an approach in two steps as is described in the following.
Before the first step, the initial pre-bond test for each chip is
generated by the heuristic from [8]. Each session of the pre-
bond test schedules is given a unique number.

Step1: Figure 7 shows an 11 stage process for implementing
Step1 of RS. The key idea is to group the tests of two pre-bond
test sessions from different chips in two post-bond test sessions
such that the long tests are grouped together and the short tests
are grouped together. This way, there will be one long test
session and one short test session, instead of the previous two
long sessions. The sum of the newly formed session duration is
less than for the two original test sessions. In stage 1 of Figure
7, we consider two sessions, Sx and Sy, from the original pre-
bond test schedules of two different chips, ChipX and ChipY,
respectively. In stage 2, the tests of Sx and Sy are arranged in
descending order of length in a list called M. A post-bond
session, Sa, is produced in stage 3. Starting from the first test in
M, i.e. the test with the longest test time, move the test from M
to the post-bond session Sa, as shown in stage 4, and stage 5
checks if the total power of Sa is within the power constraint.
Stage 4 and stage 5 are iterated until the power constraint is
met. As soon as Pmax is exceeded as a result of moving a test
from M to Sa, that test is moved back to M (stage 6). A new
post-bond session, Sb, is created with the remaining tests of list
M, which is shown in stage 7. Post-bond sessions Sa and Sb
contain all the tests from M. The pre-bond sessions Sx and Sy
are split into test sessions (say Sxa, Sxb, Sya and Syb)
according to how the tests were allocated in Sa and Sb. The
modified TAT is calculated in stage 8. Stage 9 considers the
TAT. If the new test schedule (pre-bond and post-bond) is
shorter than the test schedule for SP, the value is included in
Table 2 as in stage 10, as the entry for session Sx and session
Sy. Otherwise, if there is no reduction the value is set to be
zero.
The process described above is repeated for all possible
combinations of two sessions from the pre-bond test schedules

RASDAT 2011 Page 15

4

 of the two chips, as is shown in stage 11 of Figure 7.
A key observation from the above is that pairs of sessions can
be handled independently. If combining a pair of sessions as
described by stage 1 to stage 11 leads to a reduction in TAT
compared to the test schedule in SP, a new test schedule can be
constructed by combining several such session pairs. The total
reduction in TAT can be summed up from the reductions in test
time when all session pairs have been considered, while each
session has been taken into account only once.
Step2: This step involves the calculation of the maximum
reduction in TAT from SP to RS (or PO) by considering all
possible session pairs. Table 2 shows the possible reduction in
TAT as a result of rescheduling a session of ChipX, as denoted
by the column number, with a session of ChipY of the
corresponding row number. Given Table 2, a schedule is
generated by rescheduling each session of one chip with
different sessions of the other chip, such that every session is
considered only once. The sessions that are not rescheduled are
added to the final schedule without any modification. The
objective is to find the combination of rescheduled session
pairs, which give the minimum TAT. The values in Table 2 are
obtained by rescheduling sessions of the example used during
the problem formulation. For example, with respect to Figure 4,
considering Session2 from Chip1 and Session4 from Chip2
results in a reduction of 3 time units on rescheduling (as
discussed in Step1), compared to the time required to perform
the original Session2 of Chip1 and Session4 of Chip2
sequentially, as in SP. In case of PO, where no sessions are

split, the values in the table would either be zero (when the
sessions are not power compatible), or equal to the length of the
smaller session. For example, it was not possible to reduce
TAT by combining Session1 with Session4 as marked by 0 in
Table 2. The test schedule and the total reduction in TAT are
obtained by rescheduling each session of ChipY, (Chip2 in the
example) with sessions of ChipX (Chip1 in the example). As
discussed before, tests from Session2 of Chip1 and tests from
Session4 of Chip2 upon rescheduling, result in a reduction of 3
time units, while, Session5 of Chip2 with Session3 of Chip1
give a reduction of 5 time units. The sessions that result from
the marked session pairs are included in the post-bond test
schedule with the summed total of test time reduction adding
up to 3 ൅ 5 ൌ 8 time units. The test time of the rescheduled
session pairs are added to the remaining sessions to give TAT.
Thus, the final post bond schedule has Session1 in series with
the combination of Session2 with Session4 and Session3 with
Session5. Thus TAT is 54 time units, obtained by reducing 8
time units from TATSP, which has 31 time units in both pre-
bond and post-bond.
Table 2: Maximum possible time reduction of sessions where ChipX and ChipY

refers to the algorithm and Chip1 and Chip2 refers to the example.

 ChipX(Chip1)
Session1 Session2 Session3

ChipY(Chip2) Session4 0 3 2
Session5 0 0 5

Finding the combination of session pairs that give the minimum
TAT on rescheduling requires comparison of all possible

1. Choose 2 sessions, Sx and Sy from different chips

2. Sort individual tests of Sx and Sy in descending order of length.
Call the list M

3. Create a new post-bond session Sa

4. Move the first test from M to Sa

Yes

No

5. Pmax met?

11. Change combination of Sx and Sy (until all possible
session pairs are exhausted)

No

Yes

9. Reduction in TAT?

10. Add reduction in Table 2

7. Post-bond session Sb is created with the remaining tests of M

8. TAT calculated with modified pre-bond and post-bond schedules

6. Undo move the latest test from M to Sa

Figure 7 Flow diagram for test scheduling

RASDAT 2011 Page 16

5

combinations of session pairs, which is complex. To arrive at
the complexity of exploring all possible schedules from Table
2, say ChipX and ChipY have x and y number of sessions
respectively, and that ݔ ൒ Then there are x columns and y .ݕ
rows. The first row has x values to choose from. Once a value
is chosen, the row and column to which the value belongs are
ignored and there remains ݔ െ 1 values to choose from in the
second row. Thus, as we process each row, the number of
choices decreases by one. This accounts for a factorial function
that describes the number of possible sets of session pairs. But,
when ݕ െ 1 rows have been traversed the last value can be
chosen from the remaining ݔ – ൅ ݕ 1 columns. Thus, the total
number of ways, N, in which values can be selected from Table
2, with each value from a unique row or column, is given by
ܰ ൌ ሺݔ – ൅ ݕ 1ሻ ⋅ݕ! . Hence, for a total number of ten
sessions each in two chips, N becomes as large as 3628800.
Thus, it can be seen that the problem of selecting session pairs
from Table 2 to explore all possible test schedules is difficult.
Existing heuristics can be applied to obtain a schedule from
Table 2. In the following we describe the greedy heuristic that
has been used. Prior to applying the heuristic, the rows are first
sorted in descending order of the highest value in each row and
then the same procedure is applied for the columns. After the
table has been sorted, an arbitrary starting value is chosen from
the table. The highest value from the neighboring row is then
considered along with it. The process is continued until all rows
are exhausted. The sum of all the values corresponding to the
session pairs considered for rescheduling give the net reduction
in test time. Sessions that were not joined with other sessions
are added to the list of session pairs to form the schedule. The
particular combination of session pairs that lead to the schedule
correspond directly to the pre-bond and post-bond test
schedules for the stacked 3D design. The combination of
session pairs that gives the largest reduction in terms of TAT
and an acceptable number of BIST control lines, as determined
by the designer of the stacked 3D chip, can be considered as the
final schedule.
To arrive to the final schedule, the heuristic is iterated K times,
where K is the sum of the number of rows and columns, with
different session pairs as starting point to produce a number of
solutions that can be evaluated by the designer of the stacked
3D chip with regard to the acceptable number of control lines.
This results in Table 3 for the considered example. Schedule1
is the result of combining Session2 with Session4 as well as
Session3 with Session5. Schedule 2 is the result of combining
Session2 with Session5.
Table 3: TAT reduction versus increase in number of BIST control lines

Schedule 1 2 3 4 5
TAT Reduction 8 2 3 5 0

BIST Control Line Increase 1 1 1 0 0
ReScheduling of sessions resulting in a reduction of TAT can
lead to a corresponding increase in the number of BIST control
lines due to splitting of sessions. Table 3 shows an example
providing the reduction in TAT and the number of additional
control lines for five of the test schedules produced by the
proposed RS approach.

Complexity of the approach: Here we study the complexity of
the RS approach. The approach consists of two steps, Step1 and
Step2.
In Step1 of the RS approach, the tests from two sessions are
initially sorted by their test durations and stored in the list M.
The average time complexity for quick-sort is O(ܰ ݈݃݋ ܰ) for
N tests.
Step2 of the problem involves obtaining the maximum sum of
individual elements from the matrix, taking one element from
each row or column. As discussed, the solution space is large,
so the greedy heuristic has been applied, which has a average
time complexity of O(ܶ ݈݃݋ ܶ), where T is the number of
elements in the matrix. Prior to applying the heuristic, the rows
and columns were sorted in descending order of the value of
individual elements. The sorting here is also done by quick-
sort, which has a complexity of O(݈݃݋ ܶ). Step 2 is iterated K
times, where K is the sum of the number of rows and columns
of the corresponding matrix.
Thus the overall complexity of the approach is O(ܶ ݈݃݋ ܶ).

IV. EXPERIMENTAL RESULTS
To demonstrate the benefits of the proposed test scheduling
approach, this section describes an experiment to compare TAT
achieved by Partial Overlapping (PO) and ReScheduling (RS)
with TAT achieved by the straight forward Serial Processing
(SP) approach, which is used as baseline. In the experiment, the
power constraint is met and the number of BIST control lines
required by different test schedules is taken into account. As
the RS approach yields a table such as Table 3 with several
different test schedule solutions where the acceptable number
of control lines determines the final test schedule selection, the
experiment is performed with the test schedule that results in
the largest TAT reduction (8 time units in the case of Table 3).
The initial pre-bond test schedules were generated by the
approach in [8] and our approaches where applied for
generating the post bond test schedule. The approach proposed
in Section III was used to find the maximum reductions in TAT
while considering the number of BIST control lines as the
number of sessions in the example designs were in a reasonable
range.
The experiments are performed with the circuits ASIC Z [10],
System L [10] and Muresan [8] (marked by Z, L and M
respectively in Table 4) and these circuits were used to create
3D-SICs. These designs are seen as single-die chips and have 9
[10], 14 [11] and 10 [8] cores, respectively. To make a 3D-SIC,
two of the three single-die chips are combined. Groups of
columns marked Chip1 and Chip2 respectively, show the chips
that are combined into 3D-SICs, and groups of columns marked
Chip1 & Chip2 and TAT contain experimental results
regarding the combined 3D-SICs. To combine the Muresan
design with ASIC Z or System L, such as in the fifth row of
results in Table 4, adjustments were made on parameters
because the values of those parameters in the original designs
were given in different orders of magnitude. In the cases
marked M* and M**, the parameter values (test time, test
power consumption and power constraint) were scaled such
that the pair of single-die chips that are combined into 3D-SICs

RASDAT 2011 Page 17

6

Table 4: Maximum possible reduction in time with increase in number of control lines. In the table: Z: ASIC Z, L: System L, M:Muresans’ Design, SP: Serial

Processing Time, PO: Partial Overlapping Time, RS: ReScheduling Time, R(ൌ
ࡿࡾࢀ– ࡼࡿࢀ

ࡼࡿࢀ
): Reduction

Chip1

Chip2 Chip1 & Chip2 TAT Incr. in
control

lines Pre-bond Test Pre-bond Test Post-Bond Test Pre-bond + Post-bond

TSP TPO TRS R (%) TSP TPO TRS R (%) TSP TPO TRS R (%) TSP TPO TRS R (%) %(orig)
Z 300 300 300 0 Z 300 300 300 0 600 560 560 6.7 1200 1160 1160 3.3 0 (6)
L 1374 1374 1374 0 L 1374 1374 1592 -15.9 2748 2107 1592 42.1 5496 4855 4558 17.1 3 (36)
M 26 26 27 -3.8 M 26 26 27 -3.8 52 52 48 7.7 104 104 102 1.9 20 (10)
Z 300 300 300 0 L 1374 1374 1374 0 1674 1374 1374 17.9 3348 3048 3048 9.0 0 (16)
Z 300 300 300 0 M* 520 520 520 0 820 780 780 4.9 1640 1600 1600 2.4 0 (8)
L 1374 1374 1374 0 M** 1040 1040 1040 0 2414 1824 1824 24.4 4828 4238 4238 12.2 0 (18)

have their parameter values in the same order of magnitude. It
should be noted that this scaling of parameter values is only
performed to enable the experiments. The results are collected
in Table 4. The first group of four columns marked Pre-bond
test for Chip1 show the test times for SP, PO and RS for the
pre-bond schedules for Chip1. The fourth column in the group
shows the relative reduction in pre-bond test time of RS
compared to SP. It should be noted that a negative reduction is
an increase. Similarly, the second group of four columns shows
the Pre-bond test for Chip2. The third group of four columns
marked Chip1 & Chip2, Post-bond test, show test time for the
post-bond test schedule generated by the three approaches, and
gives the relative amount of post-bond test time reduction
achieved comparing the result for SP with the result for RS.
The group of columns marked TAT includes the sum of the
pre-bond test times and post-bond test times. The first three
columns in the group of four show TAT for the SP, PO and RS
approaches, respectively. The relative reduction in TAT is
shown in the last of the four columns where RS is compared
against SP. The right-most column of Table 4, shows the
relative increase in the number of control lines that result from
splitting sessions in the RS approach. The number of control
lines for the SP approach is shown in parenthesis.
From Table 4, it can be seen that RS can achieve up to 42.1%
reduction in the post-bond test schedule time in comparison to
SP, when two chips of System L are stacked to form the 3D-
SIC. This is for the 3D-SIC consisting of two System L chips.
This result can be explained by a high power constraint, which
enables a beneficial post-bond test schedule where many core
tests are performed concurrently. In particular for the design
with two System L chips, one session was split, resulting in an
additional control line and an increase in the pre-bond test
schedule duration. The reduction in TAT was 17.1%. It should
be noted that other 3D-SICs consisting of two identical chips
(such as the pair of ASIC Z chips) does not lead to the same
result. For the 3D-SIC design made up by a pair of ASIC Z
chips, TAT was reduced by 3.3% and RS and PO achieved the
same result. This corresponds to a case when it is not possible
to reduce TAT by splitting sessions. In the six experiments,
only two experiments led to splitting of sessions, which
increased the number of BIST control lines. For the other four
experiments, the reduction in TAT was achieved without
splitting sessions and the best result achieved without splitting
sessions was 12.2% reduction in TAT.

V. CONCLUSION
In this paper, the problem of power-constrained test scheduling
for 3D Stacked Integrated Circuits (SICs) has been addressed
for the first time. It is shown that the test planning for 3D-SICs
is different, compared to the test planning for non-stacked ICs,
and requires specific test scheduling solutions. The paper
proposes two test scheduling approaches, Partial Overlapping
and ReScheduling that minimize test application time while
taking power-constraints and the number of BIST control lines
required to implement a test schedule into account. The two
scheduling approaches and a straight forward approach (Serial
Processing) have been implemented and experiments with
several benchmarks show up to 17.1% reduction in test
application time and an average reduction of 7.7% in test
application time with a 3.8% average increase in the number of
BIST control lines over the Serial Processing scheme.

REFERENCES
[1] E. J. Marinissen, Y. Zorian. Testing 3D Chips Containing Through-
Silicon Vias. IEEE ITC, paper ET1.1, pp. 1-11, 2009
[2] H.-H. S. Lee and K. Chakrabarty. Test Challenges for 3D Integrated
Circuits. IEEE Design and Test of Computers, Special Issue on 3D IC Design
and Test, pp. 26-35, Oct 2009
[3] D. L. Lewis and H.-H. S. Lee. A Scan-Island Based Design Enabling
Pre-bond Testability in Die-Stacked Microprocessors. IEEE ITC, paper 21.2,
pp. 1-8, 2007
[4] X. Wu, P. Falkenstern, and Y. Xie. Scan Chain Design for Three-
Dimensional Integrated Circuits (3D ICs). ICCD, pp. 208–214, 2007
[5] Y.-J. Lee and S. K. Lim. Co-Optimization of Signal, Power, and Thermal
Distribution Networks for 3D ICs. Electrical Design of Advanced Packaging
and Systems Symposium, pp. 163-166, 2008
[6] B. Noia, S. K. Goel, K. Chakrabarty, E. J. Marinissen and J. Verbree.
Test-Architecture Optimization for TSV-Based 3D Stacked ICs. IEEE ETS,
pp. 24-29, May 2010
[7] J. Verbree, E. J. Marinissen, P. Roussel and D. Velenis. On the Cost-
Effectiveness of Matching Repositories of Pre-Tested Wafers for Wafer-to-
Wafer 3D Chip Stacking. IEEE ETS, pp. 36-41, May 2010
[8] V. Muresan, X. Wang, V. Muresan and M. Vladutiu. Greedy Tree
Growing Heuristics on Block-Test Scheduling Under Power Constraints,
JETTA, pp. 61-78, 2004
[9] R. M. Chou, K. K. Saluja and V. D. Agrawal. Scheduling tests for VLSI
systems under power constraints. IEEE Trans. VLSI Systems, vol. 5, no.2, pp.
175-185, June 1997
[10] Y. Zorian. A Distributed BIST Control Scheme for Complex VLSI
devices. IEEE VTS, pp. 6–11, April 1993
[11] E. Larsson and Z. Peng. An Integrated Framework for the Design and
Optimization of SOC Test Solutions, JETTA, Special Issue on Plug-and-Play
Test Automation for System-on-a-Chip, vol. 18, no. 4, pp. 385-400, August
2002

RASDAT 2011 Page 18

Low Power Programmable Controllers for Reliable and
Flexible Computing

Masahiro Fujita Hiroaki Yoshida Jaeho Lee
University of Tokyo

Tokyo, Japan

fujita@ee.t.u-tokyo.ac.jp

ABSTRACT
In order to guarantee higher reliability for embedded systems, there
must be mechanisms of programmability even after the systems are
shipped. Programmability can be utilized for rectifying designs in
fields to accommodate designs bug fixes and changes of specifica-
tions. Moreover, even if there are some manufacturing faults or
electrical errors, programmability in fields may be able to avoid
to use those faulty portions of designs. One way to realize pro-
grammability in embedded systems is to introduce programmable
controllers for the control parts of embedded systems. Even if the
datapath parts of embedded systems are fixed, by changing con-
trol sequences in programmable controllers, some amount of bug
fixes/specification changes as well as various faults and electri-
cal errors can be overcome in fields. There have been researches
which study for implementing programmable circuits on efficient
high performance device, such as programmable loop accelerator
[1]. However, it causes the energy overhead due to the access large
size of memory. It is well known that utilizing memory hierarchy
is effective for reducing the power consumption. In this paper, we
demonstrate that the same technique is effective for programmable
accelerators.

1. INTRODUCTION
Demands of customers for embedded system products with more

functionality and higher performance is continuously increasing.
Time-to-market is now a top priority when developing embedded
systems. Customers are also very enthusiastic to have new prod-
ucts at their hand as soon as possible, shrinking life-cycles of prod-
ucts in the competitive market. Although significant amount of ef-
forts are paid to verification processes of embedded systems before
manufacturing them, some bugs can really escape such processes.
Also, there can be changes of specifications in the later designs
stages or even after manufacturing. Therefore, some sorts of pro-
grammability is essential in the developed systems to be reliable
and flexible. For example, figure 1 shows a loop from the faad2
application, which is a commonly used free audio decoder for the
Advanced Audio Coding (AAC) standard. Figure 1 a) shows an
example of a bug fix in a loop. In this case, the code changes from

Submission to RASDAT 2011

VLSI Design and Eduation Cetner
University of Tokyo
2-11-16 Yayoi, Bunkyo-ku
Tokyo 113-0032 Japan
.

for(k=0; k<N4; k++) {

...

real = Z1[k][0];

img = Z1[k][1];

Z1[k][0] = real * sincos[k][0]

- img*sincos[k][1];

Z1[k][0] = Z1[k][0] << 1;

if(b_scale) {

Z1[k][0] = Z1[k][0] * scale;

}

}

Version 1.40

for(k=0; k<N4; k++) {

...

uint16_t n = k << 1;

ComplexMult(...);

X_out[n] = -RE(x);

X_out[N2 - 1 - n] = IM(x);

X_out[N2 + n] = -IM(x);

X_out[N - 1 - n] = RE(x);

}

Version 1.34

for(k=0; k<N4; k++) {

...

uint16_t n = k << 1;

ComplexMult(...);

X_out[n] = RE(x);

X_out[N2 - 1 - n] = -IM(x);

X_out[N2 + n] = IM(x);

X_out[N - 1 - n] = -RE(x);

}

Version 1.33

a) Bug fix in faad2

for(k=0; k<N4; k++) {

...

real = Z1[k][0];

img = Z1[k][1];

Z1[k][0] = real * sincos[k][0]

- img*sincos[k][1];

Z1[k][0] = Z1[k][0] << 1;

}

Version 1.39

b) New feature in faad2

Figure 1: Feature addition and bugfix to mdct.c in faad2

version 1.33 to 1.34 consist of sign changes on the right hand sides
of some assignment statements, as might occur in bug fixes. Figure
1 a) shows that between revisions 1.39 and 1.40 of the software, the
loop has been modified with the addition of an if-clause, while the
rest of the loop remains the same. This represents the addition of
a new feature that requires certain new code in the loop. In either
case, the number of operations does not change, but the commu-
nication among operations changes, and the hardware should be
flexible enough to accommodate these. It can be seen that loops in
real applications undergo minor changes over time. Typically, the
bulk of the computation in the loop remains the same, but small
changes need to be made to fix bugs or implement new features.
Since the changes do not alter the loops significantly, it is possi-
ble to design custom hardware to accelerate the original loop, sup-
porting just enough programmability to continue to accelerate the
loop efficiently as the source code evolves with programmable con-
trollers.

In development processes, changes to design specifications after
manufacturing often occur as can be seen from the above. In such
situations, we need to spend a lot of time and designers’ efforts
to revise the designs if they are implemented on traditional hard-
wired application specific integrated circuit (ASIC)s. Chip re-spin
costs significantly in ASIC designs and the cost is often dominant in
the entire development cost. Thus, the demand for programmable
circuit after manufacturing is rapidly increasing. Programmability

RASDAT 2011 Page 19

Local MemoryRegister File

ALU1

Point-to-Point Interconnections

CMP ALU2 MUL SHFT

CMP ALU1 ALU2 MUL SHFT MUX1 MUX2 MUX12

2

3

Instruction
Memory

1

4 5 6 7 8 9 10 1211

Control Words

DatapathController

Figure 2: Template Architecture of Programmable Loop Ac-
celerator

can provide a lot of cost saving by getting rid of high recurring cost
during developments and provides fast time to market.

Compared to traditional hardwired ASIC, we can take the fol-
lowing advantages of programmable devices. First, we can re-
vise their functionality whenever we want to in fields. Also, we
can reuse existing circuit designs developed elsewhere. Hardware
reuse decreases the entire development time so that we can shorten
time to market. These are essential for reliable computing as well.
The processors are also programmable circuits in which we can
run any applications on it but they are very inefficient in terms
of power consumption per tasks to be computed and sometimes
can be tremendously slow for some types of applications compared
to customised hardware. There are specialized processors for in-
creasing performance and efficiency like DSP. However, they still
cannot compete with custom hardwares in both of speed and en-
ergy efficiency. Currently, we are facing increase in capability
of programmable devices such as Field Programmable Gate Ar-
ray (FPGA). FPGAs offer flexible programmability which enables
users to change circuit configurations after fabrication. However,
these fully programmable devices are not highly efficient in both
of speed and energy efficiency. They occupy large area, which
generally means higher power consumption, and have limited per-
formance. They cannot still satisfy the demand for the modern
portable devices; to integrate several functionalities in small size
with lower power.

As another solution, programmable hardware accelerators have
been proposed to deal with the trade-offs between programmability,
performance, implementation area and power consumption. There
is a couple of previous existing programmable accelerators which
use a microcode-based programmable controllers and a custom hard-
wired datapaths. NISC [2] [3] and programmable loop accelera-
tor [1] [4] are good examples of current programmable accelerator.
They use same programmable controllers which store instructions
for datapaths in memory. NISC was created for shrinking time-
to-market and to maximize circuit’s productivity in order to cover
broad applications with a single design methodology and frame-
work. PLA has similar purpose to NISC but it tries to minimize the
high performance and energy efficiency degradation and give pro-
grammability only for inside of loop because loops consume most
resources in embedded system applications. Microcode-based pro-
grammable controller generates control words in every cycle. The
generated control words are fed as inputs of corresponding com-
ponents in datapaths. Users can specify different control words by
modifying memory contents within programmable controllers.

However, programmable controllers which are not designed for
single application consume more power than hardwired ASICs due

to the use of memory for controller parts. In order to run multiple
application in single hardware, larger size of memory is required
and larger memory consumes more power. Especially for small
devices, this increase in memory size cause a lot of energy over-
head. There are techniques to reduce instruction delivery power
by changing memory hierarchy. Cache [5], scratch-pad [6] [7] and
filter cache [9] are methods that reduce energy of general proces-
sors. The organizations of programmable accelerators which in-
structions are directly moved to datapath are slightly different com-
pared to those of general processors. However, the concept of
reducing power consumption caused by instruction delivery from
memory is the same. Memory hierarchy is changed in such a way
that the power is reduced by accessing smaller memory instead of
accessing only large memory. Therefore, in this paper, we would
like to apply these general processors’ power reduction methods to
programmable loop accelerator and evaluate the amount of energy
consumption savings.

The rest of this paper is organized as follows: In Section 2, we
discuss related works which include the programmable loop ac-
celerator and memory hierarchy for power reduction. In Section
3, we draw out a typical scenario based on a real example, which
we can achieve power savings by introducing memory hierarchy,
to describe the motivation of our work. In Section 4, we describe
experimental result. Section 5 gives conclusions.

2. RELATED WORKS

2.1 Programmable Loop Accelerator
The circuit can be divided to controller and datapath. Controller

is controlling operations of datapath in circuit. Sometimes, it is rep-
resented as Finite State Machine (FSM). In the case of controller,
there are an output logic and a next-state logic in general. The
output logic generates corresponding control signals for datapath
and the next-state logic select a next state from candidates. Fig-
ure 2 shows how controller is organized and connected to datapath
in programmable loop accelerator[4]. Controller in programmable
loop accelerator (PLA) is composed of instruction memory block.
One instruction from instruction memory generates control words
and also includes next state’s candidates in each state. Each of cor-
responding blocks in control words is connected to each compo-
nent in datapath. Control words are control bits of functional units,
multiplexers, and register files as shown at Figure 2. Datapath is a
collection of store unit parts, interconnection parts, and functional
units, such as registers, multiplexers, arithmetic logic units, and
multipliers. We can see there are several components in datapath
as described at Figure 2. Datapath performs data processing opera-
tions or computations.

A programmable loop accelerator needs to have a programmable
unit in order to change the behavior of circuit. Therefore, con-
troller in PLA is implemented by memory which is called instruc-
tion memory block in Figure 2. In contrast to hardwired controller
in ASICs, users can modify a programmable controller by chang-
ing instructions in instruction memory on PLA. Instruction includes
microcoded control signals which are equivalent to control words
in Figure 2. If a user rewrites different contents in the instruction
memory, the user can easily change the entire behavior of circuits
in PLA. Instruction memory stores whole state’s instructions which
has same size as number of states in circuit. Also, addresses of in-
struction memory represents corresponding states. For example,
address 0 is corresponding to first state, and address 1 is corre-
sponding to second state, and so on. In each state, single control
words is generated and is transfered to datapath within each cycle.

RASDAT 2011 Page 20

(a) Original (b) Cache (c) IRF

Cache

Instructions

Tag IRF

Processor Processor Processor

Instructions Instructions

Figure 3: Instructions Delivery Methods

Control Words

DMA

Inst. Memory

DatapathController

DMA cntl

Inst. Reg. File

Figure 4: Template Architecture of PLA with IRF

Source Destination Size

Control Words Next DMA Ctrl

Control Words Next

(a) Instruction in original PLA

(b) Instruction in PLA with IRF

Figure 5: Instruction and DMA control

In contrast to programmable controller implemented by memory,
components at datapath are all hardwired in PLA. Functional units,
interconnection parts, and storage units are all connected with hard-
wire which is same as datapath in ASICs. This is the reason that
programmable loop accelerators guarantee high performance even
though it gives programmability from programmable controller. In
addition, datapath has to support enough functional units, register
files, and interconnections to run multiple applications in PLA so
it has more components compared to ASIC. However, there is al-
most no performance degradation since datapath is all hardwired.
As datapath in programmable loop accelerator might have more
components than ASIC, the size of memory in programmable con-
troller is larger as well. In order to run multiple applications on a
single hardware, the size of memory cannot help increasing. Also,
the size of memory is dependent on the largest application. It is
very difficult to optimize memory size especially for small applica-
tions which use a large memory. The large size of memory causes
the overhead of energy consumption and it leads the energy ineffi-
ciency of PLA compared to ASIC.

2.2 Memory Hierarchy for Power Reduction
In previous section, we saw that programmable controller has a

large energy overhead due to large size of memory. We know that if

1

2

3

4

5

6

7

1

2

3

7

5

6

7

8 8

Instruc onMemory

1

2

3

1

2

3

Instruc onRegister File

ControlWords IRFControl

IRF Controller

Control Signals

NextStates

S
t a

te

R
e

g
iste

r

n

2

3

4

5

6

7

0

1

2

0

1

Figure 6: Microcoded Programmable Controller with IRF

we use smaller size memories in programmable hardware, the en-
ergy consumption will be improved. In this section, we would like
to discuss how we can reduce energy consumption of controllers.
There are a couple of methods to reduce instruction delivery power
of processors. Cache [5], scratch-pad [6] [7] and filter cache [9] are
the common methods to reduce instruction delivery power by using
temporal locality. We intend to review these methods for our ref-
erence and apply them to PLA in order to reduce power overhead.
In Figure 3 a) shows that how instructions are stored at controller’s
and they are delivered to processor. Instructions are directly con-
nected to processor so corresponding instruction for each state is
fed into processor. In Figure 3 b) presents the cache structure.
There is a cache block with tag between instructions and proces-
sor. The cache stores some of frequently used instructions which
are initially stored at instruction memory. The way how instruc-
tions are delivered to processor is that firstly, tag is checked whether
necessary instruction exists in cache or not. If there is an appropri-
ate instruction in cache, it goes directly to processor. Otherwise,
if necessary instruction is not in cache, instruction from memory
is delivered to processor. At this moment, the instruction is also
copied to cache at the location where currently least frequently used
instruction’s position. The cache structure takes more than one cy-
cle in case of cache miss so that this cache structure does not fit to
our target architecture. Control words need to be generated at ev-
ery cycle in PLA because the datapath operates within single cycle.
Also, another disadvantage of cache is that if cache miss happens
frequently, the energy overhead occurs by delivering instructions to
datapath from memory and copying it in cache.

In Figure 3 c) presents method called Instruction Register File
(IRF) structure. Scratch-pad [6] [7] and filter cache [9] are possible
implementation of this method. There is an IRF block between in-
structions and processor. It has smaller size of memory and stores
some of instructions from memory. In IRF architecture, instruc-
tions are transfered always from IRF to processor because there are
always necessary instructions at IRF. All instructions are copied
from memory before delivering to processor in advance. All in-
structions at IRF are moved from memory dynamically but the lo-
cations are statically assigned. The location of copying destination
for each instruction is scheduled statically so that there is no cache
miss. Therefore, delivery of a instruction to the processor can be
performed at one cycle. We will apply this IRF method to our target
PLA architecture in order to decrease power overhead.

The details of IRF architecture is shown at Figure 4. It is mod-
ified based on original programmable loop accelerator which is
shown at Figure 2. IRF and DMA block differentiate the IRF struc-

RASDAT 2011 Page 21

ture compared to basic programmable loop accelerator architecture.
Also, the organization of instructions is slightly different from ba-
sic PLA. In IRF architecture, we need DMA extra control signals to
operate DMA block so that DMA control can be performed based
on instructions. Figure 4 shows that now instruction has control
words and DMA control. We can observe how structure of instruc-
tion is different between original one and IRF in Figure 5

IRF block behaves scratch-pad as we discussed in Figure 2. DMA
block manage copying procedure to copy instructions from mem-
ory to IRF. DMA control signals specify which instruction is need
to be copied from memory to IRF, where it has to be located, and
how many instructions. Figure 5 b) shows how DMA control signal
is organized. The first portion presents the source which is address
of instruction memory, the second region is the destination which is
address of IRF, and last section is the length of transfer. The size is
equivalent to number of instructions copied from memory into IRF.
Note that copying one instruction takes one cycle so that if several
instructions are copied, it takes as many cycles as size. The copying
procedure is executed at the same time when control word is trans-
fered to datapath. More details of the microcoded programmable
controller is shown in Figure 6.

3. MOTIVATIONAL EXAMPLE
In this section, we would like to demonstrate how an example

operates with various size of IRF. Figure 7 a) shows the example
CRC32 written in C code. Iteration of for loop is 1024 and 3 arrays
are used in C code. In Figure 7 b) C code is translated into control
data flow graph (CDFG) and scheduled with resource constraints
that only 3 multiplication units, 3 ALUs, 2 shift units, and one load
and store unit are available. The most left side column represents
states in scheduled graph in Figure 7 b). Based on scheduling re-
sult, number of states in the controller is decided and there are 11
states include the end-state which is S10 in Figure 7. Instructions
from state 0 to state 6 are executed in for loop. There are 11 in-
structions in total and 7 instructions are necessary to complete loop
for CRC32 application. State transition diagram of scheduling re-
sult is shown in figure 7 c). Figure 7 d) shows instructions stored in
memory. Each instruction is corresponding to each state and single
instruction has its control words and possible next-state candidates.
Left side of column are the representations of control signals and
instruction for S10 does not have any operation which corresponds
to no-operation. Right column are possible next-states. Only state 0
has two next-state candidates because it goes either S1 or S7 based
on the result of comparison result from datapath. In addition, as
we mentioned before, the size of memory varies depending on the
largest application. Even though there are only 11 instructions for
CRC32 example but the size of memory for PLA is larger. The fig-
ure 5 d) only shows valid memory content but note that we assumes
the size of memory is set to 512. The 11 instructions are stored as
memory has size as 512 in the example.

In order to minimize energy overhead with using small IRF, we
would like to use either size of IRF is 4 or size of IRF is 8. In the
case of size of IRF is 4, number of IRF is only 4 so we cannot store
more than 4 instructions on IRF. Therefore, we have to copy some
of instructions from memory into IRF by triggering DMA control.
If copying instruction happens frequently, we need to access mem-
ory more and it causes more energy consumption. Therefore, we
need to pin instructions in IRF as many as possible to minimize
copying procedure. Figure 8 presents instructions stored in instruc-
tion memory for IRF when the size is 4. The mapping of instruc-
tions at memory into IRF is also shown in Figure 8 a). There are 7
states in for loop and 3 instructions from loop are fastened to IRF
and other 4 instructions are overwritten at address of 3 in IRF con-

cmp

+ load

load and

load xor

loadshift

xor

store

load

store

not

S1, S7

S2

S3

S4

S5

S6

S0

S8

S9

S10

S10

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10 nop

DMA 6

DMA 1

DMA 2

DMA 3

DMA 4

DMA 5

Instruction Memory

Instruction Register File

Figure 8: Mapping When Size of IRF is 4

cmp

+ load

load and

load xor

loadshift

xor

store

load

store

not

S1, S7

S2

S3

S4

S5

S6

S0

S8

S9

S10

S10

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10 nop

DMA 1

Instruction Memory

Instruction Register File

Figure 9: Mapping When Size of IRF is 4

tinuously in every cycle. The order of instructions in memory is
reorganized compared to original PLA to number of copying pro-
cedure. We assume that 4 sequential instructions from instruction
memory are copied to IRF initially. After S0 is executed, either
S1 or S7 can be executed. Therefore, storing S7 in IRF with S1 at
same time we can reduce total number of copying, unless S7 is in
IRF we need to copy S7 into IRF.

Next states are corresponding to the address of IRF because whole
instructions are stored in IRF before execution. The mapping ad-
dress in IRF is shown in Table 1. DMA control in detail is also
described in Table 2. Note that DMA0 is initially called before
executing S0. Figure 9 shows that how mapping is done and how
memory is organized when IRF size when 8. In this case, we can
store all instruction from for loop since number of states in loop is 7
so that we can save much more energy overhead by reducing num-
ber of copy procedures during the loop. In contrast to the scenario
where size of IRF was 4 and copying operations were performed
many times, copying procedure is done only 11 times in the case
of size of IRF is 8. The mapping of states into addresses in IRF is
shown in Table 1, and control signals for each DMA operation is
shown in Table 2.

Due to space limits, here only explanations based on examples
are shown. Details of the algorithms discussed above can be found
in [10].

4. EXPERIMENTAL RESULTS

4.1 Experimental Setups
In this section, we would like to evaluate how energy various in

Programmable Loop Accelerator with different sizes of IRF, com-

RASDAT 2011 Page 22

crc[j] = 0xFFFFFFFF;
for(i = 0; i < 1024; i++)
 crc[j] = (crc[j] >> 8) ^ tab[(Data[i]) ^ (crc[j] & 0xFF)];
crc[j] = ~crc[j];

(a) CRC32 Code in C

(b) Scheduled Control Data Flow Graph

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

cmp

+ load

load

load

load

load

load

store

store

xor

xor

and

not

shift S0

S1

S2

S3
S4

S6

S9

S8

S7

S5

S10

(c) State Transition Diagram

cmp

+ load

load and

load xor

loadshift

xor

store

load

store

not

S1, S7

S2

S3

S4

S5

S6

S0

S8

S9

S10

S10

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10 nop

(d) Instructions stored in Memory

Figure 7: Example of CRC32

Table 1: Mapping Address in IRF
State Mapping Address

Size of IRF = 4 Size of IRF = 8
S0 0 0
S1 1 1
S2 3 3
S3 3 4
S4 3 5
S5 3 6
S6 3 7
S7 2 2
S8 0 5
S9 1 6

S10 2 7

Table 2: DMA Control
DMA Size of IRF = 4 Size of IRF = 8
DMA0 0 0 4 0 0 8
DMA1 4 3 1 4 3 3
DMA2 5 3 1
DMA3 6 3 1
DMA4 7 3 1
DMA5 3 3 1
DMA6 8 0 3

pared to original PLA. The row function from IDCT example and
other 3 examples are used as benchmarks. This is done by first
building a Verilog file starting from C code as we illustrated in
the previous section. First, we generate a Verilog code of each
benchmark application which contains both controller and data-
path. Next, multiple Verilog codes are generated from the Ver-
ilog file for different implementations. They are corresponding to
original PLA and PLA with IRF architecture proposed in Section
4. With various sizes of IRF, multiple number of Verilog files of
benchmarks are used at experiments. Also, in order to observe vari-
ation with Instruction Memory size, several different size of mem-
ories are used. All Verilog files are synthesized in same manner
which contains the same constraints. Note that datapath is same

Table 3: Resource Constraints, Scheduling Length, Size of In-
structions, and Number of Registers Used for Benchmark

Benchmarks IDCTrow CRC32 FIR Bubble Sort
Total Cycles 217 7172 188 30199
Instructions 28 11 8 15

Copies with IRF 4 204 5127 159 1287
Copies with IRF 8 176 11 8 799
Copies with IRF 16 120 11 N/A 15
Copies with IRF 32 28 N/A N/A N/A

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120

E
n

e
rg

y

words of Instruction Memory

IDCT

No IRF
IRF 4
IRF 8

IRF 16
IRF 32

Figure 10: Power consumption with different memory size

among all Verilog files. Only structure of controller are differ-
ent whether IRF exists or not and what size of memory and IRF
are used. Instructions stored at Instruction Memory on controller
are generated in order to simulate each verilog file. To evaluate
power consumptions of Verilog files, we used our power model
described in previous section. Table 3 summarizes the scheduled
benchmark’s characteristics used for both the original PLA and
PLA with IRF.

4.2 Power Reduction Results

RASDAT 2011 Page 23

 0

 50000

 100000

 150000

 200000

 250000

 20 40 60 80 100 120

E
n

e
rg

y

words of Instruction Memory

CRC32

No IRF
IRF 8

IRF 16
IRF 32

Figure 11: Power consumption with different memory size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 40 60 80 100 120

E
n

e
rg

y

words of Instruction Memory

FIR

No IRF
IRF 8

IRF 16

Figure 12: Power consumption with different memory size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 20 40 60 80 100 120

E
n

e
rg

y

words of Instruction Memory

SORT

No IRF
IRF 4
IRF 8

IRF 16

Figure 13: Power consumption with different memory size

In Figure 10, 11, 12, 13 the result is shown in graph with vari-
ous memory height from 32 to 128 for both original Programmable
Loop Accelerator and PLA with IRF size as 8, 16, and 32 respec-
tively. Y axis in graph presents the energy consumption in number
of accesses for IM size is 4 calculated from our power model. X
axis resents the different memory size from 32 to 128. Four differ-
ent lines from the top are represented original PLA and PLA with
IRF 8, IRF 16, and IRF 32 respectively. From 10, firstly we can
observe that bigger IRF consume smaller power in overall as each

slope of line resents. If IRF has enough size that can include every
instruction in loop, energy consumption will be widely decreased.
Secondly, in the case of bigger memory size, energy reduction rate
is very high compared to no-IRF architecture. IRF 32 consumes
only 40% of energy compared to original PLA. Lastly, when using
bigger size of IRF, energy consumption between small size of mem-
ory and larger size of memory is very similar. Using big-enough
IRF size can prevent high increments of power consumption de-
pending memory size. That is to say IRF can save the significant
amount of energy consumption in Microcoded Programmable Con-
troller which uses larger size of memory. Another observation of
the case of IRF 32 with memory size of 32, it consumes a little
more power compared to original PLA because IRF size is same
as Instruction Memory and we also need to copy instructions from
Instruction Memory to IRF. Also, another important observation of
this experimental result is that IRF size is not proportional to energy
reduction because power is dependent on number of loop iterations
and number of copy.

5. CONCLUSION
When size of memory is larger, more power can be saved with

IRF architecture. We can reduce number of times accessing the
memory of larger size and substitute to accessing relatively small
IRF. The difference of energy consumption between no IRF and
IRF 32 is bigger in larger size of instruction memory. We can save
more power if reasonable size of IRF is provided, especially when
size of instruction memory is large. Therefore, we can conclude
that utilizing memory hierarchy is effective for reducing power in
PLA.

6. REFERENCES
[1] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the Compu-

tation Gap Between Programmable Processors and Hardwired Accel-
erators In Proc. of 15th Intl. Symposium on High-Performance Com-
puter Architecture, pages 313-322, Feburary 2009.

[2] B. Gorjiara, M. Reshadi, and D. Gajski. Merged Dictionary Code
Compression for FPGA Implementation of Custom Microcoded PEs,
In ACM Transactions on Reconfigurable Technology and Systems
(TRETS), pages 1-21, June 2008.

[3] B. Gorjiara, and D. Gajski. FPGA-friendly Code Compression for
Horizontal Microcoded Custom IPs, In International Symposium on
Field-Programmable Gate Arrays (FPGA), February 2007.

[4] K. Fan, H.l Park, M. Kudlur, and S Mahlke. Modulo scheduling for
highly customized datapaths to increase hardware reusability. In Proc.
of the 2008 International Symposium on Code Generation and Opti-
mization, pages 124-133, April 2008.

[5] D. A. Patterson and J. L. Hennessy. Large and Fast: Exploiting
Memory Hierarchy, in Computer Organization & Design The Hard-
ware/Software Interface: Morgan Kaufmann, 1994.

[6] A. Janapsatya, S. Parameswaran, and A. Ignjatovic. Hard-
ware/software managed scratchpad memory for embedded system. In
Proc.of the 2004 IEEE/ACM International conference on Computer-
aided design, pages 370-377, November 2004.

[7] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel.
Scratchpad memory: design alternative for cache on-chip memory in
embedded systems. In Proc. of the tenth international symposium on
Hardware/software codesign, May 2002.

[8] P. Ranjan Panda, N. D. Dutt, and A. Nicolau. Efficient Utilization of
Scratch-Pad Memory in Embedded Processor Applications. In Proc.
of the European conference on Design and Test, page 7, March 1997.

[9] J. Kin, M. Gupta, and W. H. Mangione-Smith. The Filter Cache: An
Energy Efficient Memory Structure. In IEEE Micro, December 1997.

[10] Jaeho Lee. Power Reduction Technique of Microcoded Pro-
grammable Controller. Master Thesis, Department of Electrical En-
gineering, University of Tokyo, 2010.

RASDAT 2011 Page 24

Dynamic Scan Clock Control in BIST Circuits
Priyadharshini Shanmugasundaram and Vishwani D. Agrawal

Auburn University
Auburn, Alabama 36849

pzs0012@auburn.edu, vagrawal@eng.auburn.edu

Abstract—We dynamically monitor per cycle scan activity
to speed up the scan clock for low activity cycles without
exceeding the specified peak power budget. The activity monitor
is implemented as on-chip hardware. Two models, one for test
sets with peak activity factor of 1 and the other for test sets
with peak activity factor lower than 1 have been proposed. In
test sets with peak activity factors of 1, the test time reduction
accomplished depends upon an average activity factor ofαin. For
low αin, about 50% test time reduction is analytically shown.
With moderate activity, αin = 0.5, simulated test data gives
about 25% test time reduction for ITC02 benchmarks. BIST
with dynamic clock showed about 19% test time reduction for the
largest ISCAS89 circuits in which the hardware activity monitor
and scan clock control required about 2-3% hardware overhead.
In test sets with peak activity factors lower than 1, the test time
reduction depends on an input activity factor of αin and an
output activity factor of αout. For low αin and high αout, a
test time reduction of about 50% is analytically shown.

Index Terms—Scan test, test time reduction, test power, on-
chip activity monitor, adaptive test clock, activity factor, BIST

I. I NTRODUCTION

Scan testing [1] spends a large fraction of the test time
for loading (scan-in) and unloading (scan-out) test data in
flip-flops that are chained as shift registers. During this pro-
cess, random combinational logic activity can produce large
unintentional power consumption resulting in power supply
noise and heating. If this consumption is higher than that
of the normal functional operation for which the circuit is
designed the test can cause yield loss [2]. Therefore, scan
testing uses a slower speed than the normal operation. The
scan clock frequency is determined based on the maximum
power consumption the circuit under test can withstand. The
powerP dissipated at a node is given by [2]:

P =
1

2
CV 2αf (1)

whereC is the capacitance of the node,V is supply voltage,
f is clock frequency andα is a node activity factor.

α = Number of transitions per clock cycle (2)

The activity factorα for a clock signal is 2 because there
are two (rising and falling) transitions per cycle. For a com-
binational node,α ranges between 0 (no transition) and 1 (a
toggle every clock cycle). In the worst case, the frequency of
the scan clock can be based on the maximum activity, i.e.,
α = 1, so that the test power can never exceed the power
limit. Therefore,

Pbudget =
1

2
CV 2ftest (3)

where ftest is the scan clock frequency andPbudget is the
maximum power dissipation the circuit can withstand without
malfunctioning. Thus,

ftest =
2Pbudget

CV 2
(4)

In general, the worst case assumption(α = 1.0) can be
modified for any value. Although all vectors are scanned in

and scanned out at this frequency, many may not cause the
maximum activity. It is possible to scan in these vectors at
higher clock frequencies without exceeding the power budget.
When the number of transitions in the circuit reduces to a1

i
of the maximum,

P =
1

2
CV 2 1

i
ftest (5)

From (3) and (5),
P

Pbudget

=
1

i
(6)

The capacitance and the voltage are constant for a node and
so the power is proportional to the product of activity and
frequency. Since the circuit can withstand a powerPbudget, the
frequency can be multiplied by i, and the power dissipated in
every cycle can still be kept within the allowed limit. Girard [2]
defines peak power as the highest energy consumed during
one clock period divided by the clock period and the average
power as the total energy consumed during test divided by
the test time. Since the power must never exceedPbudget in
any clock cycle, both peak power and average power will
be belowPbudget in spite of the increased shift frequency.
Also, instantaneous peak power [2] is consumed right after
the application of the clock edge. This power depends on the
vectors scanned in and is unaffected by changes in the scan
clock frequency. Hence, it can be reduced only by changing the
test vectors. In this work we assume that the vectors conform
to the instantaneous peak power requirement.

During scan tests, gates are either driven by outputs of the
scan flip-flops or by primary inputs. Primary inputs do not
change during scan in and scan out. Thus, scan chain activity
is a direct measure of the test power and bymonitoring and
controlling this activity, we can speed up the test as well as
limit the test power. That is the idea presented in this paper.

Section II discusses previous work on test time optimization.
Section III discusses implementations of the proposed
technique. Section IV gives a mathematical analysis of the
scheme. Section V explains the experimental results obtained.
Section VI discusses the conclusion of this work.

II. PREVIOUS WORK

Many test time reduction methods for scan circuits use
compression. In a simple compression technique, the number
of scan chains is increased reducing the number of flip-flops
per chain. This reduces the time for shifting the input vector
bits through scan flip-flops resulting in an overall reduction in
test time. However, compression techniques require alterations
in the design and may also suffer from linear dependencies.

One compression technique keeps the functionality of the
ATE intact by moving the decompression task to the circuit
under test [3]. Another technique [4] uses a dynamically
reconfigurable scan tree that applies a part of the test sequence
in scan tree mode and the other part in single scan mode.
Reference [5] describes a decompression hardware scheme
for test pattern compression. References [5] and [6] use com-
pression algorithms with concurrent application of compaction

RASDAT 2011 Page 25

Fig. 1. Test-per-scan built-in self-test (BIST).

and compression. Reference [7] implements a compression
technique with embedded deterministic test logic on chip to
provide vectors for the internal scan chains. Reference [8]
employs alternating run-length codes [9] for test data com-
pression.

Reference [10] employs a two phase testing strategy where
the first phase is a scan-less phase for easy-to-detect faults
and the second phase is a scan phase for hard to detect faults.
Scan is performed only until all effective test bits are shifted
to the right position and until all fault-affected responsebits
are shifted out. Reference [11] uses genetic algorithms to
obtain compact test sets, which limit the scan operations.
References [12] and [13] reduce test application time by
generating a test for a sequential circuit using combinational
test generation and sequential test generation adaptively. Ref-
erence [14] proposes a strategy to identify flip-flops to be
removed from scan chains to increase the observability of
the circuit so that faults activated during scan cycles can be
observed at a primary output. The technique proposed in this
paper can be applied to any scan circuitry, and can be used in
addition to many of the methods mentioned above.

III. I MPLEMENTATION

A. BIST circuit with a single scan chain
We add flip-flops at primary inputs and outputs as shown

in Figure 1 and connect all flip-flops into a single scan chain.
A linear feedback shift register (LFSR), a signature analysis
register (SAR) and a BIST controller are added to the circuit
to implement the test per scan BIST architecture [14]. BIST
vectors are scanned in and combinational outputs are cap-
tured through scan flip-flops. Application of a vector includes
scanning in LFSR bits into flip-flops, normal mode capture
and scan out (overlapped with next scan in) into SAR. The
proposed dynamic frequency control is shown in Figure 2. The
shaded parts of the circuit are not used for this implementation.
As test vectors are scanned in, the activity (or inactivity)
in the scan chain is monitored at the first flip-flop of the
chain. The entering transitions ripple through other flip-flops
in subsequent cycles. This activity does not change if there
are inversions in the chain. When a transition passes through
an inverting flip-flop, a rising transition becomes a falling
transition and vice-versa, leaving the number of transitions
unchanged.

An XNOR gate between the input and output of the first
flip-flop monitors the activity. The output of the XNOR gate
is 0 when a transition enters the scan chain and is 1 when a
non-transition enters. The XNOR output is fed to a counter,
which counts up for each 1, i.e., a non-transition. The counter
is set to 0 at the start of every scan in sequence. According

Fig. 2. Schematic of proposed dynamic frequency control.

to (6), the scan frequency can be raised as the number
of non-transitions entering the scan chain increases. Thisis
accomplished through frequency control and frequency divider
blocks in Figure 2. We assume that the response captured
from the combinational circuit for the previous vector has
a transition density of 1, i.e., the scan chain is filled with
alternating 1s and 0s before scan-in begins. This pessimistic
worst-case assumption guarantees that the power budget shall
not be exceeded. Correspondingly, the scan in of each vector
begins with the slowest frequency,ftest, permitted by the
power budget forα = 1. The ftest clock is the lowest
frequency generated by the frequency divider that divides
the frequency of an externally supplied fast tester clock. The
frequency control circuit monitors the state of the counter. As
the count goes up it lowers the frequency division ratio of the
clock divider in several steps.

The counter states at which the clock is sped up can be
found by simulation, which establishes correlation between the
circuit activity and scan chain activity. If each transition in the
scan chain causes a large number of transitions in the circuit,
power consumption reaches large values for low scan chain
transition numbers. Thus, a large number of scan chain non-
transitions should be counted before the scan clock frequency
is stepped up. Similarly, if a transition in the scan chain has
a small effect on the circuit activity, then only a few non-
transitions in the scan chain are sufficient to increase the scan
clock frequency.

The reset generator in Figure 2 applies a reset signal to the
counter, frequency control block and frequency divider at the
positive edge of the scan enable signal, i.e., at the start ofscan-
in for every combinational vector. Since the frequency divider
cannot generate a f/1 (divide by 1) clock, a multiplexer selects
either the frequency divider output or the fastest clock.

Let us consider a circuit with 1000 flip-flops. If the slowest
scan clock period based on the power budget is 80ns and we
raise the frequency in 8 steps, then a modulo 125 (1000/8)
counter will be implemented.Assuming the worst-case activity
by the captured states, every scan-in is started with the 80ns
clock and counter set to 0. The count goes up by 1 at every
clock in which a non-transition enters the scan chain. When
the count reaches 125, the counter is reset and the frequency
divider generates a 70ns clock to scan-in the subsequent bits.
The counter may again count up to 125 and the clock period
would be reduced to 60ns. This process repeats until all 1000
bits are scanned in. Thus, if the input were a series of 1000
1s, the first 125 bits are scanned in at a clock of period 80ns,
the second 125 bits at 70ns, until the last 125 bits are scanned
in using a clock period 10ns. If the scan-in bits were a series
of alternating 0s and 1s, the counter would never count up
since there are no non-transitions entering the scan chain and

RASDAT 2011 Page 26

hence the entire scan-in will use the 80ns clock. Notice that
due to theworst-case assumption we start each scan-in with
slowest clock and so the activity monitor only raises the clock
rate without ever having to lower it during the same scan-in.

Clearly, a bit stream with fewer transitions will be scanned
in faster than one with many transitions. Don‘t cares in deter-
ministic ATPG patterns can be filled in such that the number
of transitions is minimum [15]. Also, techniques to generate
BIST patterns with low transition densities [16] may be useful.
This technique would perform well for such patterns.

B. BIST circuit with multiple scan chains
When the circuit has multiple scan chains, the activity of

all chains must be monitored. XNOR gates are added across
the input and output of the first flip-flop in every scan chain.
Outputs of XNOR gates are supplied to a parallel counter [17]
that counts up by the number of 1s at its input. The rest of the
circuitry remains unaltered and still resembles the unshaded
part of Figure 2. When the count reaches a certain threshold
value, the frequency is stepped up and the counter is reset.
Except for the use of the parallel counter the control scheme
is similar to that in the unshaded portion of Figure 2.

C. BIST circuit with single scan chain and αpeak < 1

The proposed implementation works well for circuits with
test vectors having peak activity factors of 1. It does not
require simulation of test vectors in order to estimate the peak
activity factor and has low area overhead. However, it is not
suitable when the scan clock frequency is computed based on
a peak activity factor (αpeak) lower than 1. In such cases, it
becomes necessary to modify the proposed model.

The slowest scan clock frequency is chosen using Eq. 1
using values ofαpeak and peak power limit. The number of
transitions in the scan chain is continuously monitored at the
input and output of the scan chain.

Figure 2 shows the implementation of the technique for
BIST circuits with single scan chain and peak activity factors
lesser than 1. The activity monitor comprises of an xnor gate
connected between the input and output of the first flip-flop,
and an xnor gate connected between the input and output of
the last flip-flop. The former monitors the number of non-
transitions entering the scan chain and the latter monitors
the number of non-transitions leaving the scan chain. An up-
down counter keeps track of the number of non-transitions
in the scan chain. Thus, the former xnor drives the countup
signal and the latter drives the countdown signal of the up-
down counter. The number of non-transitions in the scan chain
during any cycle is the difference between that entering the
scan chain and that leaving the scan chain.

Since power is proportional to the activity in the scan chain,
test power is lower when the number of transitions in the scan
chain is lower or, in other words, when the number of non-
transitions in the scan chain is higher. As discussed earlier,
from (6), the scan frequency can be increased when the number
of non-transitions in the scan chain increases.

The up-down counter is reset to 0 at the start of scan-
in. When a non-transition enters the scan chain, the counter
counts up and when a non-transition leaves the scan chain,
the counter counts down. When the counter counts up to a
certain threshold value, it signals the frequency control block
to increase the frequency of scan clock and the counter is
reset to 0. Similarly, when the counter counts down to 0, the
frequency control block is signaled to lower the frequency of
scan clock and is reset to the threshold value. Thus, whenever
the number of non-transitions in the scan chain increases,
the frequency is increased and when the number reduces, the

frequency is decreased. The rest of the circuitry functionsthe
same as described earlier.

At the start of scan-in of a vector, the frequency control
block is reset such that the frequency of scan clock is the
slowest possible. This is based on the assumption that the
activity factor of the vector captured in the scan chain before
the start of scan-in equalsαpeak. The scan clock frequency
is never increased beyond the highest or decreased below the
lowest possible frequency regardless of the signal from the
counter.

It can be observed that this implementation can be easily
modified for circuits with activity factors equal to 1, by
removing the flip-flop at the end of the scan chain and tying
the countdown signal of the up-down counter to 0.

D. BIST circuit with multiple scan chains and αpeak < 1

When the circuit has multiple scan chains, the activity of all
chains must be monitored. XNOR gates are added across the
input and output of the first flip-flop and across the input and
output of the last flip-flop in every scan chain. The outputs of
the XNOR gates at the inputs of the scan chains are fed to
the countup inputs of a parallel counter [17] which counts
up by the number of 1s at its countup inputs. Similarly, the
outputs of the XNOR gates at the end of the scan chains are
fed to the countdown inputs of the parallel counter [17] which
counts down by the number of 1s at its countdown inputs.
The rest of the circuitry remains unaltered and still resembles
Figure 2. When the count reaches a certain threshold value,
the frequency is stepped up and the counter is reset. Except
for the use of the parallel counter the control scheme is similar
to that in Figure 2.

IV. A NALYSIS

Let N be the number of flip-flops, k be the peak activity
factor of the test vectors (k =αpeak), αin be the activity factor
of the scan-in vector,αout be the activity factor of the vector
captured in the scan chain prior to scan-in,A be the number
of non-transitions that enter the scan chain per cycle,v be the
number of frequencies andT be the time period corresponding
to the fastest clock.

The period of the fastest scan clock isv times shorter than
the slowest clock. Therefore, the period of the slowest clock
is given byvT . If the vectors were scanned in at the slowest
clock, the total scan-in time per vector would beNvT .

If the scan-in vector has a uniform activity factor that
is higher than that of the captured vector, the number of
non-transitions entering the scan chain will be lower than
that leaving it and hence there will be no change in scan
clock frequency. However, if the scan-in vector has a uniform
activity factor that is lower than that of the captured vector, the
number of non-transitions entering the scan chain exceeds that
leaving the scan chain. Therefore, the scan clock frequencyis
continuously increased. The scan-in of test vectors is started
at the slowest possible clock period which equalsvT and then
continuously increased.

The number of transitions in the scan chain can range from
0 to kN . Therefore the number of non-transitions in the scan
chain can range fromN − kN to N − 0 i.e., fromN(1− k)
to N . In order to simplify the values,N(1− k) is subtracted
from both limits. Thus, the number of non-transitions can be
monitored betweenN(1− k)−N(1− k) andN −N(1− k)
i.e. between 0 andkN .

Since the maximum number of non-transitions encountered
by the activity monitor iskN , a scan clock frequency is
specified for everykN

v
non-transitions, in order to enable

frequency control for all ranges of non-transitions. The scan

RASDAT 2011 Page 27

frequency is therefore increased every time the counter counts
up to kN

v
. SinceA is the rate at which non-transitions enter the

scan chain,A non-transitions enter the scan chain in 1 cycle.
Because 1 non-transition enters the scan chain in1

A
cycles,x

non-transitions will enter the chain inx
A

cycles.
The first bit in the scan-in vector is shifted at the lowest pos-

sible frequency (first frequency employed) which corresponds
to a time period ofvT . The frequency is not increased until
kN
v

non-transitions enter the scan chain as discussed earlier.
Since a non-transition enters the scan chain every1

A
cycles,

kN
v

non-transitions are encountered inkN
Av

cycles. Thus, the
frequency is not increased until aboutkN

Av
cycles. The counter

is then reset and the frequency is increased to the next step
which corresponds to a time period of(v−1)T . The frequency
is not increased any further until the counter counts up to
kN
v

, i.e., until the number of non-transitions in the scan chain
increases by2kN

v
. This occurs after about2kN

Av
cycles (since

a non-transition enters every1
A

cycles). Thus, the scan clock
frequency (second frequency employed) whose clock period is
(v − 1)T is used between the cycleskN

Av
and 2kN

Av
. The clock

period can reach a maximum ofT (vth frequency employed).
This frequency is used when the number of non-transitions
in the scan chain increases by a value in the range between
(v−1)kN

v
and kN or in other words, this frequency is used

between clock cycles(v−1)kN
Av

and kN
A

. Thus, by observation,
the ith frequency corresponds to a clock period of(v−i+1)T

when the scan chain has between(i−1)kN
v

and ikN
v

increase
in number of non-transitions. Theith frequency is employed
between clock cycles(i−1)kN

Av
and ikN

Av
.

The scan clock initially has a clock period ofvT in cycle 1.
The scan clock period is decreased in steps until theN th

cycle. Thus, the clock cycle corresponding to the last scan
clock frequency isN . If the maximum number of speeds the
scan clock will reach, for any vector is given byi, then

ikN

Av
= N (7)

i =
Av

k
(8)

The total scan-in time per combinational vector is the sum of
all clock periods used. The test time at each frequency is given
by the product of the number of cycles run at that frequency
and the clock period. Total time per vector is given by

Av

k∑

i=1

{{⌈
ikN

Av
⌉ − ⌈

(i− 1)kN

Av
⌉}(v − i+ 1)T} (9)

where v is usually chosen as a power of 2 because we can
design a divide by2n frequency divider withn flip-flops. Time
per vector if a single speed is used isNvT , and hence, the
reduction in test time is given by

NTv −

Av

k∑
i=1

{{⌈ ikN
Av

⌉ − ⌈ (i−1)kN
Av

⌉}(v − i+ 1)T}

NTv
(10)

If N andv were chosen as powers of 2, Eq. 9 reduces to

Total time per vector =

Av

k∑

i=1

{(
kN

Av
)(v − i+ 1)T}

TABLE I
SCAN-IN TIME REDUCTION VS. NUMBER OF SCAN CLOCK SPEEDS FOR

ACTIVITY FACTOR αin = 0.5.
Number of scan Test time reduction (%)

clock speeds Simulation Eq. (10) Eq. (14)
1 0.00 0.00 0.00
2 0.34 0.00 0.00
4 12.64 12.50 12.50
8 18.78 18.75 18.75
16 22.03 21.90 21.88
32 23.56 23.48 23.44
64 25.17 24.26 24.22
128 27.41 24.66 24.61

TABLE II
SCAN-IN TIME REDUCTION VS. ACTIVITY FACTOR αin FOR 8 SCAN-IN

CLOCK SPEEDS.
Activity Test time reduction (%)

factor,αin Simulation Eq. (10) Eq. (14)
0 43.75 43.75 43.75

0.1 38.63 38.85 38.75
0.2 34.00 33.95 33.75
0.3 28.97 28.99 28.75
0.4 23.51 23.94 23.75
0.5 18.78 18.75 18.75
0.6 14.92 14.04 13.75
0.7 9.60 9.36 8.75
0.8 4.79 4.68 3.75
0.9 0.00 0.00 0.00
1 0.00 0.00 0.00

= (
kN

Av
)(v.

Av

k
−

Av
k
(Av

k
+ 1)

2
+

Av

k
)T (11)

Time per vector if a single speed is used isNvT , and

Reduction in test time =
{NTv −NT (v − Av

2k + 1
2)}

NTv

=
A

2k
−

1

2v
(12)

The number of non-transitions in the scan chain in any cycle
equals the difference between the number of non-transitions
entering and leaving the scan chain. Non-transitions enterthe
scan chain at a rate of(1 − αin) and leave at the rate of
(1−αout). The non-transition density,A is therefore given by
A = αout − αin. Thus, the reduction in test time is given by

(αout − αin)

2k
−

1

2v
(13)

wherek = 1 for the model where the peak activity factor is
assumed to be 1. In this model, the scan chain is assumed to
be filled with transitions prior to scan-in and hence, the scan-in
vector is assumed to be the sole contributor of non-transitions
in the scan chain is . Thus, non-transitions enter the scan chain
at a rate of(1−αin) and hence,A = 1−αin. The reduction
in test time for this model is given by

(1− αin)

2
−

1

2v
(14)

A C program was written to generate random vectors for a
circuit with 1000 flip-flops. The test time reduction for these
vectors was estimated, and compared with the values obtained
from the formula. Table I shows the test time reduction versus
number of frequencies for an activity factor of 0.5. Table II
shows the variation of test time reduction with activity factor
when the number of frequencies is 8. Both tables compare the
test times estimated for random vectors (column 2), with those
obtained from the accurate formula (9) (column 3) and from
the approximate formula (14) (column 4).

Tables I and II show that for a chosen number of frequen-
cies, vectors with lower activity achieve higher reductionin
test time. The test time reduction increases when the number

RASDAT 2011 Page 28

TABLE III
REDUCTION IN TEST TIME FORISCAS89CIRCUITS - TEST PER SCAN

BIST WITH SINGLE SCAN CHAIN.
Circuit Number of scan Number of Reduction Increase in

flip-flops frequencies in time (%) area (%)
s27 8 2 7.49 14.72
s298 23 4 14.57 16.25
s420 35 4 13.81 13.02
s838 67 4 13.51 11.73
s1423 96 4 13.60 8.77
s5378 263 4 13.03 6.65
s9234 286 4 14.01 5.82
s13207 852 8 19.00 3.98
s15850 761 8 18.97 3.23
s35932 2083 8 18.74 2.55
s38417 1770 8 18.83 3.14
s38584 1768 8 18.91 2.13

of frequencies increases. The test time initially reduces rapidly
for 8 frequencies and after that the reduction is gradual.

V. EXPERIMENTAL RESULTS

A. Circuits with αpeak = 1

In verilog netlists of the ISCAS89 benchmark circuits flip-
flops were added at all primary inputs and primary outputs. All
flip-flops were converted to scan types and chained together.
Thus, the number of flip-flops in the circuit would be the sum
of the number of primary inputs, number of primary outputs
and number of D-type flip-flops. A 23-bit linear feedback shift
register (LFSR), a 23-bit signature analysis register (SAR), and
a test-per-scan BIST controller were implemented [18], [19].
A single bit output of the LFSR supplied the scan input and
the scan output was fed into the SAR. A suitable number for
random patterns to achieve sufficient fault coverage for each
circuit [20] was incorporated into the BIST controller. The
sequential circuit along with the BIST circuitry was treated as
the core circuit for test time and area analysis. The counter,
frequency control circuitry, and frequency divider circuitry for
dynamic frequency control were implemented as shown in the
unshaded portions of Figure 2. The number of frequencies for
each circuit was chosen according to the size of the circuit or
the number of scan flip-flops.

ModelSim from MentorGraphics was used to simulate the
circuits with and without the dynamic frequency control cir-
cuitry. The time required for test application was recordedin
each case. DesignCompiler, a synthesis tool from Synopsys,
was used to analyze the area of the circuits with and without
the dynamic frequency control circuitry.

Since the LFSR generates pseudo random patterns, the
activity factor is about 0.5. From (8),x = 0.5v, and hence,
the number of frequencies the circuit will run at, is half the
chosen number of frequencies. This corresponds to a clock
period of (0.5v + 1)T . However, during power analysis, the
next higher frequency is taken into consideration, in orderto
obtain pessimistic data. Thus, power analysis is done for a
clock period of0.5vT , i.e., for a clock having twice the lowest
frequency. Therefore, the power dissipated by the circuit for
an activity factor 0.5 at every node and operating at twice
the lowest frequency, was estimated for every circuit. The
dynamic frequency control circuitry was included in this anal-
ysis. Table III shows the results. The number of frequencies
chosen for each circuit is shown in column 3. The percentage
reduction in test time with respect to the test time for the
core circuit is shown in column 4 and the percentage increase
in area with respect to the area of the core circuit is shown
in column 5. At any node, the capacitance and the voltage
are constant. From (1), the power dissipated at any node is
proportional to the product of activity and frequency. Thus, the
activity per unit time is a direct measure of power dissipated in
the circuit. Therefore, an analysis to find activity per unittime

Fig. 3. Activity vs. number of clock cycle for s386 circuit.
TABLE IV

REDUCTION IN TEST TIME FORITC02 CIRCUITS.
Circuit Scan Number of Test time reduction (%)

flip-flops frequencies αin ≈ 0 αin = 0.5 αin ≈ 1

u226 1416 8 46.68 18.75 0
d281 3813 16 46.74 21.81 0
d695 8229 32 48.28 23.36 0
f2126 15593 64 49.15 24.18 0

q12710 26158 128 49.45 24.53 0
p93791 96916 512 49.72 24.81 0
a586710 41411 256 49.73 24.77 0

was performed on the s386 benchmark circuit. The Synopsys
power analysis tool, PrimeTime PX, was used. The activity
per unit time in every cycle was found for the circuit for
a scan vector with an activity factor of 1. The peak among
these values was set as the limit for activity per unit time.
The values of activity per unit time of the circuit in every
cycle were found for a vector with an activity factor of 0.25
using uniform clock and dynamic clock methods. The results
are shown in Figure 3. Notably, the activity per unit time in
every cycle is closer to the peak limit when dynamic clock
method is used. Also, the peak limit is never exceeded in
both methods. A reduction of 11.25% was observed when the
dynamic clock method was used.

The results for multiple scan chain implementation would
be very similar to that obtained for single scan chain. The test
time will not vary much since the activity of the circuit willbe
very similar in both single and multiple chain implementations.
However, there would be a marginal increase in area due to
the additional XNOR gates at the first flip-flop of every scan
chain and also due to the use of a parallel counter as opposed
to the simple counter used for the single scan chain.

These results for reduction in test time conform to the
theoretical results given in Tables I and II. Two trends are
clearly observed in Table III. As circuit size increases, the
area overhead drops and test time reduction improves. These
circuits are not very large from today’s standard and we can
expect better results as predicted by the analysis.

To estimate the test time reduction for larger circuits, an
accurate mathematical analysis was applied to ITC02 circuits.
Test time reduction was computed for best (αin ≈ 0),
moderate (αin = 0.5) and worst (αin ≈ 1) cases of scan chain
activity factors. The test-per-scan BIST was assumed. Table IV
shows the results. The number of scan flip-flops in column
2 is the sum of number of inputs, number of outputs and
number of flip-flops. The number of frequencies for circuits
are shown in column 3. The test time reductions achieved for
best, moderate and worst case activity factors are shown in
Columns 4, 5 and 6, respectively. Evidently, more test time
reduction can be achieved in larger circuits. The reduction
in test time varies from 0% for patterns causing very high
activity to 50% for patterns with almost no activity. When
external tests are used and an ATPG tool generates them, the
vectors may have very few care bits. The don’t care bits can
be filled in using heuristics [21] to minimize scan transitions.
Then, a dynamic control of scan clock will provide a large
reduction in test time. This is illustrated using the ISCAS89
benchmark s38584. The Synopsys ATPG tool TetraMAX was
used to generate two sets of vectors, a set of 961 vectors

RASDAT 2011 Page 29

TABLE V
REDUCTION IN TEST TIME IN T512505CIRCUIT.

αout

αin 0 0.1 0.2 0.3 0.4 0.5 0.6 0.65
0 0 7.59 15.29 22.98 30.67 38.36 46.06 49.9

0.1 0 0 7.59 15.29 22.98 30.67 38.36 42.21
0.2 0 0 0 7.59 15.29 22.98 30.67 34.52
0.3 0 0 0 0 7.59 15.29 22.98 26.83
0.4 0 0 0 0 0 7.59 15.29 19.13
0.5 0 0 0 0 0 0 7.59 11.44
0.6 0 0 0 0 0 0 0 3.75
0.65 0 0 0 0 0 0 0 0

with no don’t care bits and another set of 14,196 vectors with
don’t care bits. The vector set without don’t cares was found
to have an activity factor around 0.5 and the vector set with
don’t care bits was found to have a low activity factor around
0.01. The don’t care bits in the second set were filled using a
minimum transition heuristic [21]. Reductions of 43.14% and
18.8% were achieved for the test vector sets with and without
don’t care bits.

In another typical scenario, a test set may initially contain
few (say, 10%) high activity(αin = 0.5) vectors. These
resemble fully-specified random vectors and achieve about 70-
75% fault coverage. The latter 90% vectors then detect about
20-25% hard-to-detect faults and contain many don’t cares,
which may be filled in for reduced(αin ≤ 0.05) activity. The
adoptive test will be potentially beneficial in such cases.

B. Circuits with αpeak < 1

In order to estimate the reduction in scan-in time achieved
with the model proposed for dynamic scan clock frequency
control in circuits with peak activity factors lower than 1,the
t512505 ITC02 benchmark circuit was chosen. This circuit is
large enough to employ 512 different scan clock frequencies
because it has 76714 scan flip-flops.

The pattern sets of various large benchmark circuits were
studied to analyze trends in peak activity factors. The mean
value of peak activity factor (αpeak) in these pattern sets
was found to be around 0.57 and the standard deviation (σ)
was around 0.025. The value of mean + 3σ was found to
be around 0.65. This indicates that the probability that the
peak activity factor of the test patterns of a circuit would lie
below 0.65 is 99.7%. Therefore, the peak activity factor forthe
t512505 circuit was set at 0.65. The pattern sets generated by
TetraMAX ATPG for large benchmark circuits were analyzed
and it was found that the peak activity factor in these test
vectors never exceeded 0.65.

It is important to note that the value of 0.65 for peak activity
factor can be used only for large circuits having flip-flop
numbers in the range of a few hundreds. For smaller circuits
with flip-flop numbers in the order of a few tens, the peak
activity factor was found to be 1.

Mathematical analysis was used to estimate the reduction
in scan-in time achieved in the t512505 circuit whenαpeak =
0.65 and 512 steps of frequencies were chosen. The results are
listed in Table V. It can be seen from Table V that when the
activity factor of the scan-out vector (αin) is greater than or
equal to the activity factor of the captured vector (αout), there
is no reduction in scan-in time. The frequency is increased
only when the number of non-transitions in the scan chain
increases. However, whenαin > αout the number of non-
transitions (as counted by the counter) never increases and
hence the scan-in is carried out at the starting frequency which
is the frequency employed when dynamic scan clock frequency
control is not implemented. Thus, the reduction in scan-in time
is 0% in such cases.

Table V shows the variation of scan-in time reduction
with variation inαin andαout. It indicates that scan-in time

reduction is higher for lower values ofαin and for higher
values ofαout. This can be explained from the perspective of
number of non-transitions in the scan chain. Ifαin is low, the
number of non-transitions entering the scan chain is high and
if αout is high, the number of non-transitions leaving the scan
chain is low. Thus, the net number of non-transitions in the
scan chain is high giving a higher reduction in scan-in time.

VI. CONCLUSION

Reduction of test application time in power-constrained
testing by adoptively adjusting the scan frequency to the
circuit activity is demonstrated. On-chip hardware, whose
overhead reduces as the circuit becomes large, provides the
adoptive control. The technique is particularly beneficial
when the peak circuit activity during test is very high but the
average activity is quite low.

Acknowledgment – This research was supported in part by
the National Science Foundation Grant CNS-0708962.

REFERENCES

[1] M. L. Bushnell and V. D. Agrawal,Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Springer, 2000.

[2] P. Girard, “Survey of Low-Power Testing of VLSI Circuits,” IEEE
Design and Test of Computers, vol. 19, pp. 80–90, May–June 2002.

[3] I. Bayraktaroglu and A. Orailoglu, “Test Volume and Application Time
Reduction through Scan Chain Concealment,” inProc. Des. Automation
Conf., pp. 151–155, 2001.

[4] Y. Bonhomme, T. Yoneda, H. Fujiwara, and P. Girard, “An Efficient
Scan Tree Design for Test Time Reduction,” inProc. IEEE European
Test Symposium, pp. 174–179, 2004.

[5] I. Bayraktaroglu and A. Orailoglu, “Decompression Hardware Deter-
mination for Test Volume and Time Reduction through Unified Test
Pattern Compaction and Compression,” inProc. 21st IEEE VLSI Test
Symp., pp. 113–118, 2003.

[6] I. Bayraktaroglu and A. Orailoglu, “Concurrent Application of Com-
paction and Compression for Test Time and Data Volume Reductionin
Scan Designs,”IEEE Trans. Computers, vol. 52, pp. 1480–1489, Nov.
2000.

[7] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R. Thompson, H. Tsai,
A. Hertwig, N. Tamarapalli, G. Mrugalski, G. Eide, and J. Qian,
“Embedded Deterministic Test for Low Cost Manufacturing Test,” in
Proc. Int. Test Conf., pp. 301–310, 2002.

[8] A. Chandra and K. Chakrabarty, “Reduction of SoC Test Data Volume,
Scan Power and Testing Time Using Alternating Run-Length Codes,”
in Proc. Int. Conf. Computer Aided Design, pp. 673–678, 2002.

[9] A. Chandra and K. Chakrabarty, “Frequency-Directed Run-Length
(FDR) Codes With Applicatin to System-on-A-Chip Test Data Com-
pression,” inProc. 19th IEEE VLSI Test Symposium, pp. 42–47, 2001.

[10] W. J. Lai, C. P. Kung, and C. S. Lin, “Test Time Reduction inScan
Designed Circuits,” inProc. European Des. Automation Conf., pp. 489–
493, 1993.

[11] E. M. Rudnick and J. H. Patel, “A Genetic Approach to TestApplication
Time Reduction for Full Scan and Partial Scan Circuits,” inProc. Int.
Conf. on VLSI Design, pp. 288–293, Jan. 1995.

[12] S. Y. Lee and K. K. Saluja, “Test Application Time Reduction for
Sequential Circuits with Scan,”IEEE Trans. CAD, pp. 1128–1140, Sept.
1995.

[13] S. Y. Lee and K. K. Saluja, “An Algorithm to Reduce Test Application
Time in Full Scan Designs,” inProc. Int. Conf. CAD, pp. 17–20, 1992.

[14] H. C. Tsai, S. Bhawmik, and K. T. Cheng, “An Almost FullscanBIST
Solution - Higher Fault Coverage and Shorter Test Application Time,”
in Proc. Int. Test Conf., pp. 1065–1073, Oct. 1998.

[15] R. Sankaralingam, R. R. Oruganti, and N. A. Touba, “Static Compaction
Techniques to Control Scan Vector Power Dissipation,” inProc. IEEE
VLSI Test Symp., pp. 35–40, April-May 2000.

[16] S. Wang and S. K. Gupta, “LT-RTPG: A New Test-Per-Scan BIST TPG
for Low Heat Dissipation,” inProc. Int. Test Conf., pp. 85–94, 1999.

[17] E. E. Swartzlander, Jr., “A Review of Large Parallel Counter Designs,”
in Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 89–98,
Feb. 2004.

[18] V. D. Agrawal, C. R. Kime, and K. K. Saluja, “A Tutorial on Built-
In Self-Test, Part 1: Principles,”IEEE Design and Test of Computers,
vol. 10, pp. 73–82, Mar. 1993.

[19] C. Stroud,A Designer’s Guide to Built-In Self-Test. Springer, 2002.
[20] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of Se-

quential Benchmark Circuits,” inProc. Int. Symp. Circuits and Systems,
pp. 1929–1934, May 1989.

[21] N. Badereddine, P. Girard, S. Pravossoudovitch, C. Landrault, and
A. Virazel, “Minimizing Peak Power Consumption during Scan Testing:
Test Pattern Modification with X Filling Heuristics,” inProc. Int. Conf.
on Design and Test of Integrated Systems in Nanoscale Technology,
pp. 359–364, Sept. 2006.

RASDAT 2011 Page 30

A Pattern Partitioning Algorithm for Field Test

Senling Wang, Seiji Kajihara, Yasuo Sato
Dept. of Computer Science and Electronics

Kyushu Institute of Technology

Xiaoxin Fan, Sudhakar M Reddy

Dept. of Electrical and Computer Engineering
University of Iowa

ABSTRACT

A BIST-based test in field has been used as one of

methods to guarantee high reliability of VLSIs. But it is not an

easy task for field test to achieve high test quality due to the

limitation of short test application time. Test partitioning and

rotating test is an effective way to satisfy such a constraint.

This paper proposes an algorithm to partition a test set into

subsets so as to maximize average fault coverage of the subsets.

The subsets of test patterns with high fault coverage can

provide high test quality in rotating test. Experimental results

show the effectiveness of the proposed partitioning algorithm.

Keywords

On-line test, field test, test partitioning, reliability, BIST, ATPG

1. INTRODUCTION
Reliability is one of the major concerns for deep-

submicron VLSIs. There are some aging phenomena, which

are HCI, NBTI and TDDB for nanoscale transistors [1-3],

electro migration and stress migration for wires including via.

Such aging phenomena cause the delay degradation, increase

of leakage current or open/short faults. Conventionally, the

reliability of the circuits has been guaranteed by burn-in test or

voltage stress test. And enough timing margin has been added

to the circuit at the design phase to prevent the circuit from

causing the aging-induced delay faults [3]. However the

excessive burn-in test or voltage stress test would deteriorate

the good chips and result in their short lifetime [4]. Even the

timing margin is difficult to be determined by predicting its

aging speed in actual use. If a circuit is used more frequently

or in higher temperature, then an aging occurs earlier. In

addition, the environment where the circuit operates often

relates to its aging speed. For example, NBTI-induced delay

degradation is significantly accelerated in high temperature.

Therefore, the timing margin, which is derived from the worst

case estimation, may results in performance degradation.

Concurrent test to check the circuit during system

operation is an effective method to detect aging-induced faults

or soft errors, because it has an advantage of detecting errors

as soon as they appear [6-9]. On the other hand, concurrent

testing requires large overhead or performance degradation due

to special circuit architecture or inserted redundancy in terms

of hardware, time, or information. Therefore, such methods

might not be accepted for general designs widely.

Recently on-line and off-line system test in field, which

relies on BIST, began to be used for some systems that need

high reliability such as automotive, communication, medical ,

etc. [10-12]. For example, power-on test is executed in field

just before the start of system operation, it can detect a fault

caused by aging with less impact on system performance than

concurrent test. Also, because test infrastructure such as scan

chains can be shared with manufacturing test, the impact on

area overhead is relatively small. In [13], architecture for field

test was proposed which has a BIST-based architecture. Even

for non-stop systems, which do not often restart, the systems

can run at test mode periodically in field. Thus field test like

power-on test would be a promising method to detect aging-

induced faults. However test quality of the field test has not

been considered enough because the target fault model was not

well-defined. In addition, there is a strong requirement for the

field test that do not go for manufacturing test; that is very

short test time, e.g. 10 msec.

Test partitioning with rotating test is an effective way to

satisfy constraints on test application time and fault coverage

[14]. A given test set for a chip is partitioned into a number of

subsets, and apply only one subset to the chip at one field test.

Through multiple opportunities of field test, all test patterns of

the given test set are applied to the chip, and the subset applied

once will be used repeatedly at future test in a rotating manner.

In [14], the relation of the number of partitions and coverage

was discussed but how to partition a test set was not discussed.

Even if the number of partitions that corresponds to test

sessions is fixed, fault coverage of partitioned test subsets

depends on test vectors in the subsets.

In this paper, we propose an algorithm of test pattern

partitioning for the rotating test. When the number of partitions

is given, the number of test vectors in each subset is

determined. The algorithm partitions the given test set so as to

maximize the average fault coverage of subsets obtained by

partitioning. Experimental results show that the rotating test is

effective for high quality power-on test.

This paper is organized as follows: Section 2 revisits test

methods related to this work. Section 3 describes the rotating

test to satisfy the requirement of short test time for power-on

test. Section 4 formulates a problem for test partitioning and

proposes an algorithm to partition a test set into subsets.

Section 5 shows some experimental results and Section 6

concludes this paper.

2. PRELIMINARY

2.1 Related works
There are two typical approaches of the field test to test

aging-induced faults in a logic circuit. One is concurrent test

RASDAT 2011 Page 31

that checks the circuit behavior during system operation. For

example, self-checking and signature monitoring are well-

known techniques [6]. Several techniques were recently

proposed, which try to detect unstable signal transition caused

by aging-induced faults at flip-flops [7-9]. A disadvantage of

these methods based on on-line test is large area overhead

and/or performance degradation. In general on-line test relies

on a special circuit architecture or redundancies in terms of

hardware, time, or information [6]. In [7, 8] the size of the flip-

flop with the special structure becomes approximately three

times larger than the normal one.

Another approach to test aging-induced faults utilizes

BIST-based techniques that are executed at test mode in field

[10-16]. Power-on test is a kind of this approach. The methods

in [10-12] were developed for chips in automotive,

communication, and a processor for servers. In the recently

proposed methods, there are ones that an operating system

(OS) controls test mode [15, 16]. For example, the method in

[15], which is applied for a multi-core processor, tests a core

when it is in idle time. However, these dedicated methods that

rely on OS are not applicable to SoCs or ASICs.

2.2 Field test
A test architecture for power-on test was proposed in [13]

that are available for SoCs with low test cost. Since the field

test including power-on test typically takes a BIST-based

approach, its limitations are similar to those of BIST for the

manufacturing test. For example, limitations and requests on

area overhead and test data volume exist for the field test as

well as the manufacturing test. Regarding test quality, the

content of the requests may be slightly different because the

fault model or the location of faults that should be detected is

not the same.

The major differences between the field test and the

manufacturing test exist in the limitation of test application

time and the test opportunity. Due to the requirement of the

systems, test application time of the field test is very short, e.g.

10 msec. Therefore, if the number of test patterns is large, it

may be impossible to apply all the patterns to the circuit within

the required test time. On the other hand, since the BIST-based

manufacturing test does not have any technological

requirements on test time, its limitation for test application

time is less than the field test apart from an economical reason.

Regarding the test opportunity, the power-on test has a

peculiar feature. Usually the opportunity of the production test

is once just after manufacturing the chip. But since the power-

on test is executed every time the system is starting up, its

opportunities are more than once. This can be an advantage of

the field test as described in the following section.

3. ROTATING TEST

3.1 Concept
If a given test set is too large to apply in one test session,

we need to reduce the number of test patterns. It would cause

fault coverage loss because of the missing test patterns.

However, the test patterns that were not applied at the test

session can be applied at the next or later test session, because

the field test is executed repeatedly every time the system runs

at test mode. Therefore, we partition the original test set into

some test subsets as illustrated in Figure 1, and applying one

subset for the circuit at one test session. The original test set is

partitioned so that the number of test patterns of each subset

never exceeds the pattern limit derived from the upper bound

of test time, and the number of subsets is as small as possible.

Therefore, the number of test patterns of each subset should be

Norg/Nset or Norg/Nset, where Norg and Nset are the number of

test patterns of the original test set and the number of the

subsets obtained by partitioning, respectively.

All the test patterns of the original test set can be applied

through Nset opportunities of the tests. Each subset of test

patterns is rotated and applied again at future test sessions, as

shown in Figure 2. We call it “rotating test”. In the example of

Figure 2, sub test set T1 is applied not only at the first power-

on test but also at the (iNset+1)-th power-on test, where i = 1,

2, 3, …

3.2 Quality of test partition for rotating test
Assume that all the subsets obtained by partitioning have

the same size as Nsub. Then there are (Norg-1)!/(Nsub!)
Nset

combinations of partitions. Even though the original test set is

the same, test quality of the rotating test could be generally

different depending on partitions. We show an example below.

original test set

Torg

test set T1

test set T2

test set TNset

Figure 1. Test partitioning

test set T1

test set T2

test set TNset

Figure 2. Rotating test

test sessions

1, Nset+1, 2Nset+1 …

test sessions

2, Nset+2, 2Nset+2 …

test sessions

Nset, 2Nset , 3Nset …

RASDAT 2011 Page 32

Suppose that we partition a test set Torg = {t1, t2, t3, t4, t5,

t6} which are generated for nine faults f1 to f9 into three subset,

i.e., Norg =6, Nset=3. Hence every subset size is 2 calculated

from Norg/Nset. Each test pattern detects faults as shown in

Table 1; for example, t1 detects three faults f1, f2 and f5. We

consider a test partition P1 as shown in Table 2(a). The subsets

T1, T2 and T3 consist of {t1, t2}, {t3, t4} and {t5, t6}. Individual

fault coverages of subsets are 44% (= 4/9) for T1 and T2, and

33% for T3, hence the average fault coverage of P1 is 40.3%.

Note that the sum of individual fault coverage for all subsets is

more than 100% because faults f5 and f8 are detected in two

subsets.

 Next we consider an alternative test partition P2 for Torg

as shown in Table 2(b). In this case, individual fault coverage

of subsets are 55%, 55%, 44% for T1, T2 and T3, respectively,

and the average fault coverage of partition P2 is 51.3%, which

is larger than that of P1. It means that P2 has higher test quality

than P1 because the field test aims at detecting aging-induced

faults unlike the manufacturing test. Even if a fault has not

occurred yet in a test session, the fault may occur before the

next test session. Although a system failure is not caused

necessarily as soon as a fault excites, high test quality would

be derived if each fault can be detected by more test sessions

frequently. Therefore, it is important for the rotating test to

find a test partition so that the average fault coverage of

individual subsets is as high as possible.

4. TEST PATTERN PARTITIONING

4.1 Problem formulation
From the above observations on test quality in test

partitioning, we formulate the following problem:

[Test Pattern Partitioning Problem] Given a test set Torg

consisting of Norg patterns and the number of sub test sets Nset,

find a partition such that

(1) the number of test patterns of each sub test set is Norg/Nset

or Norg/Nset, and

(2) the average fault coverage of individual sub test sets is

maximized.

It is easy to satisfy condition (1) because the number of

patterns of each subset is uniquely calculated from Norg and Nset.

Therefore our discussion focuses on condition (2) below.

4.2 Upper bound of fault coverage
It is necessary to find an upper bound of the total number of

detected faults TD so that we can know how far our results are

from the possible maximum total detection. Given Nset test

sessions, a fault can be detected by no more than Nset test

sessions. Let ND(f) represents the number of sessions that

detect the fault f. The maximum possible TD for a given test

set Torg, Nset test sessions and NF faults can be computed as:

(1) Pick a test pattern ti from test set T, and perform fault

simulation without fault dropping.

(2) For every fault fj, if fault fj is detected by test pattern

ti, increase ND(fj) by 1 if ND(fj) is less than NS.

(3) Remove ti from T, and go to (1) if T is not empty.

(4) Compute TD as: .

The maximal possible average fault coverage also can be

obtained. Let Max_TD denotes the upper bound of total

detection as computed above, and Max_Avg_FC represents

the upper bound of average fault coverage for test sessions.

Then Max_Avg_FC = Max_TD / Nset.

4.3 Algorithm
In this section we explain a test pattern partitioning

algorithm developed in this work. We first define a

terminology. Given test set T, for a couple of test patterns ti

and tj, if they can detect more the same faults, ti and tj are more

similar, the number of these faults is defined as the similarity

between ti and tj. For example of test patterns and faults in

Table 1, f2 is a detected fault of t1, it also be detected by t2. The

similarity between t1 and t2 is 1. The same as t1 and t2, the

similarity between t2 and t3 is 0.

In order to maximize average fault coverage of subsets,

we need to partition the test set into subsets so that the test

patterns in the same subset do not detect the same faults and

the different subsets can detect more the same faults as far as

possible. The definition of similarity shows that: the smaller

similarity of a couple of test patterns, the more different faults

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9

t 1 o o o

t 2 o o

t 3 o o o

t 4 o o o

t 5 o o

t 6 o o

Table 1. Test pattern and detetcted fault

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 Flt. cov.

T 1(t 1, t 2) o o o o 44%

T 2(t 3, t 4) o o o o 44%

T 3(t 5, t 6) o o o 33%

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 Flt. cov.

T 1(t 1, t 5) o o o o o 55%

T 2(t 2, t 4) o o o o o 55%

T 3(t 3, t 6) o o o o 44%

(a) test partition P 1

(b) Alternative test partition P 2

Table 2. Examples of test partitions

RASDAT 2011 Page 33

can be detected. During the partition, we need to comply with

a rule: while distributing a pattern to a subset, the similarity

between the new pattern and the patterns which already exist in

the subset must be the smallest, in the meantime, the similarity

between subsets must be the biggest. If we create a complete

table as Table 1 shown with respect to test patterns and

detected faults, we would have enough information to

calculate the similarity. However, it is not efficient on both

time and memory usage because it requires fault simulation

without fault dropping and a table whose size is O(Norg Nflt)

where Nflt is the number of faults of the circuit.

In order to calculate the similarity of test patterns, we

employ fault simulation with fault dropping after a fault is

detected N-times where N can be set arbitrarily. We consider

that for Nset pattern partition, Nset - times fault dropping

simulation can get enough information. Below is the outline of

the test partitioning algorithm for given test set T and the

number of subsets Nset:

Step 1) For T, perform fault simulation with fault dropping

after N-times detection in an arbitrary order of test patterns,

and for each fault record the ID of the first N patterns which

detect the fault.

Step 2) For every pair of test patterns ti and tj (i j), count the

number of faults which are detected by the two test patterns

simultaneously, and then create a two-dimensional table, as

table 2.

Step 3) According with the two-dimensional table of similarity,

distribute a test pattern into a subset by the following two

criteria:

1) The similarity between subsets is large.

For Nset pattern partitions, find out Nset test patterns

which with the largest similarity between them from

the two-dimensional table of similarity, and

distribute each of them to different subsets. If M (M

> Nset) test patterns exist, calculate the sum of

similarity for ti (i  Nset) and each tjT (j≠i),

respectively. Then, find out Nset test patterns which

with the smaller sum of similarity value, and

distribute one of them to a subset.

2) The similarity between test patterns in each subset

is small.

While distributing a test pattern to a subset, from

the two-dimensional table of similarity, seek one

pattern which with the smallest similarity between

this pattern and the patterns which already exist in

the subset. If more than one pattern is qualified,

calculate the sum of similarity for the pending

pattern and the patterns already exist in the other

subsets. Distribute the pattern which with the

biggest sum value of similarity to the subset.

Step 4) According to the two criteria shown in Step 3, perform

the partition procedure until all given test patterns are

distributed.

In the fault simulation at Step 1, a fault is dropped from the

target fault list when the N-times detection pattern for the fault

was found. By fault dropping simulation, a detected fault list

for every test pattern can be created. We give an example for

test patterns in Table 1. By comparing the fault list of each pair

of test patterns, we create a two-dimensional table to record the

similarity of every couple of patterns at Step 2. Table 2 is

obtained by Step 2. At Step 3, pattern partition must meet the

two formulas simultaneously.

t 1 t 2 t 3 t 4 t 5 t 6

t 1 - 1 1 1 0 0

t 2 1 - 0 0 0 0

t 3 1 0 - 2 1 1

t 4 1 0 2 - 1 1

t 5 0 0 1 1 - 1

t 6 0 0 1 1 1 -

Table 3. Similarity of test vector pairs.

5. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the proposed test

partition algorithm, we implemented it using C language and

performed experiments for ISCA’89 and ITC’99 circuits on a

PC with Core
(TM)

2 Duo 2.66GHz, 1.99GB RAM. In these

experiments, we used test patterns generated for single stuck-at

faults by an in-house ATPG program.

In the first experiment, we partitioned the given

compacted test set into eight subsets. Results are given in

Figure 3 in which we draw the curve of average coverage for

some circuits to compare our method with random partitioning.

Y axis shows the average fault coverage, X axis shows the

different partitions. Different curves show the result for

different circuits. The origin of each curve shows the average

fault coverage of subsets partitioned randomly, the other points

show the average fault coverage of subsets partitioned by

proposed method. We set the detection time of dropping

simulation from 2 to 10. From the curves, we can see that for

proposed partition method, with the detection time for

dropping simulation increase, the average coverage increased.

After 4 times dropping simulation the curves become gently,

while the detection time for dropping simulation is set to 10,

for most circuits, the proposed partition method found the best

partition. Table 4 gives the result of proposed method using 10

times fault dropping simulation. The first two columns of the

table shows circuit names and the numbers of the given test

patterns. The third and forth columns shows the average fault

coverage of eight subsets for our partitioning and random

partitioning, respectively, and the fifth column gives the

difference between two methods. These results show that it is

RASDAT 2011 Page 34

meaningful for high quality power-on test to find better

partition for the rotating test. The last column of the table gives

the computing time in second. Since the algorithm is based on

fault dropping simulation, test size, circuit size and detection

time for dropping simulation dominate the computing time.

Table 5 gives the application time of proposed partition while

setting the detection time of dropping simulation from 2 to 10.

The first column shows the circuit names. From the second

column we show the application time while setting the

detection time of fault dropping simulation from 2 to 10

respectively. We can see that comparing with 2-times fault

dropping simulation, proposed partition by 10-times dropping

simulation cost almost 1.5 times application time. Because

more accurate similarity table requires more faults information,

and more computing time is consumed.

6. CONCLUSIONS
In this paper, we proposed a test partitioning algorithm to

provide high test quality, to meet the limitation of short test

time in field test. For the rotating test, the algorithm partitioned

a given test set into some subsets, and applied only one subset

at each test. Each subset is rotated and is applied at future test

again. The proposed algorithm aimed at maximizing fault

coverage of each subset obtained by partitioning. Experimental

results showed that test partitioning for the rotating test is

effective for high quality power-on test. As a future work, we

are improving the algorithm for test partitioning, because the

proposed algorithm in this paper is our first trial and it would

not be efficient enough.

Circuit #pattern Random (%) Proposed (%) Diff(%) Time(s)

s5378 100 72.983 75.057 2.074 1.592

s9234 111 55.427 57.361 1.933 2.177

s13207 235 66.333 68.216 1.883 6.526

s15850 97 64.314 65.867 1.553 5.847

s38417 87 69.534 70.586 1.052 37.570

b17s 1250 73.336 75.334 1.999 359.459

b20s 989 63.514 65.546 2.032 65.367

Average - - - 1.789 -

Table 4. Experimental result for random partition and the proposed partition with Nset = 8.

Figure 3. Experimental result for Nset = 8.

55

58

60

63

65

68

70

73

75

78

random 2times 4times 6times 8times 10times 12times

s5378

s9234

s13207

s15850

s38417

b17s

b20s

RASDAT 2011 Page 35

REFERENCES
[1] W. Wang, et al., “Compact Modeling and Simulation of

Circuit Reliability for 65-nm CMOS Technology,” IEEE

Trans. Device and Materials Reliability, vol.7, no.4, pp.509-

517, Dec. 2007.

[2] V. Reddy et al. “Impact of Negative Bias Temperature

Instability on Product Parametric Drift,” International Test

Conf., pp146-155, 2004

[3] S. Bhardwaj, et al., “Predictive Modeling of the NBTI Effect

for Reliable Design,” Custom Integrated Circuits Conference,

pp. 189-192, 2006.

[4] V.Chandra, “Early Life Failures and Burn-in Testing,” IEEE

Workshop on Design for Reliability and Variability, Panel,

pp.1-10, 2008.

[5] A. H. Baba, S. Mitra, “Testing for Transistor Aging,” VLSI

Test Symposium, pp.215-220, 2009.

[6] M. Nicolaidis, Y. Zorian, “On-line testing for VLSI – A

Compendium of Approaches,” Journal of Electronic Testing:

Theory and Applications, vol.12, pp. 7-20, 1998.

[7] T. Nakura, K. Nose, and M. Mizuno, “Fine Grain Redundant

Logic Using Defect-Prediction Flip-Flops”, International

Solid-State Circuits Conference, pp. 402-403, 2007.

[8] M. Agarwal, V. Balakrisinan, A. Bhuyan, K. Kim, B. C. Paul,

W. Wang, B. Yang, Y. Cao, and S. Mitra, “Optimized Circuit

Failure Prediction for Aging: Practicality and Promise,” Int’l

Test Conf, pp.1-10, 2008.

[9] T. Sakata, T. Hirotsu, H. Yamada, T. Kataoka, “A Cost-

Effective Dependable Microcontroller Architecture with

Instruction-Level Rollback for Soft Error Recovery,”

International Conference on Dependable Systems and

Networks, pp. 256-265, 2007.

[10] E. Bohl, Th. Lindenkreuz, R. Stephan, “The Fail-stop

Controller AE11,” Int’l Test Conf, pp.1567-1578, 1997.

[11] S. Dikic, L.-J Fritz, D.Dell’Aquia, “BIST and Fault Insertion

Re-use in Telecom Systems,” Int’l Test Conf, pp.1011-1016,

2001.

[12] J. Braden, Q. Lin, B. Smith, “Use of BIST in FIRETM

Servers,” Int’l Test Conf, pp.1017-1022, 2001.

[13] Y. Sato, et al., “A Circuit Failure Prediction Mechanism

(DART) for High Field Reliability,” 8th IEEE Int’l Conf. on

ASIC, pp. 581-584, Oct.20-23, 2009.

[14] J. P. Robinson, “Segmented Testing,” IEEE Trans.

Computers, Vol. C-34, No. 5, pp. 467-471, May 1985.

[15] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent

Autonomous Chip Self-Test Using Stored Test Patterns,”

Design Automation and Test in Europe, pp. 885-890, 2008.

[16] O. Khan, and S. Kundu, “A Self-Adaptive System

Architecture to Address transistor Aging”, Design

Automation and Test in Europe, pp. 81-86, 2009.

[17] J. –S. Chang and C. –S. Lin, “Test Set Compaction for

Combinational Circuits,” IEEE Trans. on Computer-Aided

Design of ICs & Systems.,vol. 14, no. 11, pp. 1370-1378,

1995.

Circuit
Runtime (sec)

2times 4times 6times 8times 10times 12times

s5378 0.75 0.92 1.08 1.33 1.59 1.81

s9234 1.18 1.37 1.61 1.92 2.18 2.39

s13207 3.90 4.39 4.91 5.74 6.53 7.41

s15850 2.32 2.89 3.74 4.73 5.85 7.13

s38417 8.70 13.86 20.37 28.53 37.57 50.20

b17s 216.64 235.83 266.09 307.63 359.46 411.81

b20s 56.53 55.42 57.60 63.73 65.37 70.35

Table 5. Computing time.

Circuit
Runtime (sec)

2times 4times 6times 8times 10times 12times
s5378 0.75 0.92 1.08 1.33 1.59 1.81
s9234 1.18 1.37 1.61 1.92 2.18 2.39

s13207 3.90 4.39 4.91 5.74 6.53 7.41
s15850 2.32 2.89 3.74 4.73 5.85 7.13
s38417 8.70 13.86 20.37 28.53 37.57 50.20
b17s 216.64 235.83 266.09 307.63 359.46 411.81
b20s 56.53 55.42 57.60 63.73 65.37 70.35

 Table 4. Computing time.

RASDAT 2011 Page 36

Optimal Universal Test Set for Bridging Faults Detection in Reversible Circuit Using
Unitary Matrix

Pradyut Sarkar

Department of Research & Development of VLSI Technology
 Simplex Infrastructures Limited, Kolkata, W.B, India (e-mail : pradyut_sarkar77@yahoo.com).

Bikromadittya Mondal
Dept. of Computer Sc. & Engg.

B. P. Poddar Institute of Management and Technology, Kolkata, W.B., India, bikmondal@gmail.com
Susanta Chakraborty

Dept. of Computer Sc. & Technology & School of VLSI Technology,
Bengal Engg. & Science University, Sibpur, W.B ,India

Communicating Author and Supervisor(e-mail: susanta_chak@yahoo.co.in)

Abstract— Detection of bridging fault in reversible circuit
has received considerable interest in quantum computation.
The single and multiple inputs bridging fault model of a
reversible circuit is considered here. This paper presents a
novel universal test set generation method of a reversible
logic circuit based on the shift operation on unitary matrix.
Unitary matrix is mapped to the identity matrix by that shift
operations. It is shown that proposed ⎡ ⎤2/n (n is the
number of inputs) numbers of universal test vectors are
sufficient for detection of all single and multiple input
bridging faults of a n-input and n-output reversible circuit.
A polynomial time algorithm is proposed for generating the
universal test vectors to detect the all single and multiple
input bridging faults of the reversible circuits. The
experimental results on reversible benchmark circuits show
that the number of universal test vectors are significantly
reduced compared to the earlier works.

Keywords- Reversible circuit, Single and multiple input
bridging faults, Unitary matrix, Identity matrix, Universal
test set.

1. Introduction
Reversible circuits can be focused as a special case of
quantum circuits because quantum computations are
inherently reversible in nature [8], [6]. Reversible logic has
a vital role in low power design, quantum computing,
nanotechnology and cryptography. Quantum circuit is
represented by a qubit. The unit of quantum information is
called a qubit. A qubit can be in a zero or a one state
represented by |0> and |1> respectively. A single qubit can
also be a superposition of these states i.e α0|0> +α1|1>,
where α0 and α1 are complex numbers called amplitude. An
n-input, m-output Boolean function F is said to be reversible
if and only if m = n, and F is bijective. A reversible
combinational circuit must be fan-out free, acyclic, and
should consist of only reversible gates. Various physical
realizations of quantum gates are based on trapped ion
technology [14], which uses certain spin and vibrational
modes of electrically charged atoms as a qubit and nuclear
magnetic resonance (NMR). Quantum computation can
solve exponentially hard problems in polynomial time [8].
Most gates used in classical digital design are not reversible.
Reversible gates can be used to design a reversible circuit

for example the controlled –NOT (CNOT) gate proposed by
Feynman [3], Toffoli gates [9], and Fredkin [4] gates.
Syntheses of reversible logic circuits have studied in [17-
19]. Universal testability of reversible logic circuit for
detecting single and multiple stuck-at faults model have
been investigated [12][13]. Recently several researchers
have studied the different fault models. Polian et al has
presented [14] single missing gate, multiple missing gate,
partial missing gate and repeated missing gate faults models.
In this paper, we have assumed that fault model may be
classical AND/OR-bridging fault model. A simple
polynomial time algorithm is described here for generating a
minimal universal test set for detecting all single and
multiple input bridging faults in a n-input reversible circuit.
The paper addresses that, only ⎡ ⎤2/n numbers of universal
test vectors are sufficient for detection of all single and
multiple input bridging faults in an n-input reversible circuit
as compared to earlier methods [20]. Although actual
implementation of the bridging fault model is yet to be
established but the results may be applicable to the future
emerging technologies of reversible logic circuit.

2.Preliminaries
Reversible gate: A gate is reversible, if the (boolean)
function it computes is bijective. A necessary condition is
that the gate has the same number of inputs and outputs and
every distinct input gives a distinct output.
Unitary Matrix: A unitary matrix is a square matrix U
whose entries are complex numbers and whose inverse is
equal to its conjugate transpose U*. This means that U*U =
UU* = I, where U* is the conjugate-transpose of U and I is
the identity matrix. A unitary matrix in which all entries are
real is the same thing as an orthogonal matrix. Just as an
orthogonal matrix G preserves the (real) inner product of
two real vectors, thus <Gx, Gy> = <x, y>, so also a unitary
matrix U satisfies <Ux, Uy> = <x, y> for all complex
vectors x and y, where <.,.> stands now for the standard
inner product on Cn.
Reversible logic gates are represented by unitary matrices as
shown below. The most common reversible gates operate on
spaces of one or two qubits, just like the common classical
logic gates operate on one or two bits. This means that as
matrices, reversible gates can be described by 2 × 2 or 4 × 4
unitary matrices. The NOT (Fig 1) is a one input one output
gate. It inverts the input. The CNOT gate (Fig 2) is a 2x2

RASDAT 2011 Page 37

gate. The value at the first input is left unchanged, and the
value on the second input is inverted if and only if the value
at the first input is 1, else remains unchanged. The Toffoli
gate (2-CNOT) (Fig 3) is a 3x3 gate. It passes the first two
inputs through and inverts third if the first two are both 1,
else remain unchanged and a Fredkin gate(Fig 4) is a 3x3
reversible gate. It is a controlled-SWAP gate. It passes the
first input through. If the first input is 0, passes the second
and third inputs through, otherwise swap the second and
third inputs.

Fig 1: NOT gate representation (a) Symbol, (b) Truth
table, (c) Unitary matrix

Fig 2: CNOT gate representation (a) Symbol (b) Truth
table (c) Unitary matrix

Fig 3: 2-C-NOT gate representation (a) Symbol, (b) Truth
table, (c) Unitary matrix

Fig 4: Fredkin gate representation (a) Symbol, (b) Truth
table, (c) Unitary matrix

 2.1 Reversible Circuit represented by Unitary Matrix

Unitary matrix of a reversible circuit (Fig 5a) is shown in
Fig 5b. The Unitary matrix of a reversible circuit is obtained
from the output function of the circuit or multiplying the
unitary matrices of the reversible logic gates present in the
circuit.

Fig 5: (a) A 3-qbit reversible benchmark circuit (b) Unitary

matrix of the reversible circuit.

3. Bridging Fault Model in Reversible Circuit
 A test generation problem of a reversible circuit is simpler
than that of classical circuit due to inherent ease of
controllability and observability and always yields an unique
vector at the input. Bridging faults are caused by shorts
between two (or more) lines. All the lines are involved in a
bridging fault may be classical AND-OR type. A bridging
fault is activated by input vector t, if the two lines are
assigned opposite logic values (‘01’ or ‘10’) then the error
can be propagated to the output of the reversible circuit.

Input x Output
x/

0 1
1 0

Input Output
x y x y
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

 Output

In
pu

t

 00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0

Input Output
x y z x y z
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

 OUTPUT

In
pu

t

 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 0 1
111 0 0 0 0 0 0 1 0

 Input Output
x y z x y z
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

 Output

In
pu

t 0 1
0 0 1
1 1 0

OUTPUT

In
pu

t

 000 001 010 011 100 101 110 111
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 0 1 0
110 0 0 0 0 0 1 0 0
111 0 0 0 0 0 0 0 1

 Output

In
pu

t

000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 1
001 1 0 0 0 0 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 1 0 0 0 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 1 0 0

(b)

(a)

x/ x

x x

x ⊕ y y

x x

y y

z ⊕ xyz

(a)

(a)

(b)

(c)

(a)

(c)

(b)

(c)

(a)

(b)

(b)

(c)

RASDAT 2011 Page 38

Since a reversible circuit is bijective, fault free output is
different from faulty output of a reversible circuit. A single
input bridging fault (SIBF) is a bridging fault, involving two
input lines of a circuit. A multiple input-bridging fault
(MIBF) is a bridging fault involving more than two input
lines of a circuit.

3.1. Universal test set for bridging fault

A fault set F, generates a set of test vectors T that can be
used to detect all faults (set of all possible single and
multiple input bridging faults) of the reversible circuit. Such
a test set is said to be complete test set. A universal test is a
complete test set cover the set of all possible single and
multiple input bridging faults of all reversible circuit.

4. Proposed Test Set Generation Method

We propose a technique to generate a universal test set
based on the shift operation of unitary matrix that represents
a reversible circuit. Consider an 2n x 2n fault free unitary
matrix(UM) of a n qbit reversible circuit. The unitary matrix
can be converted into an identity matrix by right circular
shifting of ‘1’ in each row of the unitary matrix. Count the
number of right circular shifting of ‘1’ in each row of the
unitary matrix and stored these shifting into a matrix which
is the fault free shift matrix(SM). Now consider all the
combinations of the single input bridging faults for a given
circuit. For each bridging fault, find the faulty unitary
matrix(UMf) and covert it into identity matrix by right
circular shifting of ‘1’ ‘in each row. Count the number of
right circular shifting of ‘1’ in each row of the faulty
unitary matrix for each bridging fault and represent those
shifting as a faulty column matrix which is termed as faulty
shift matrix(SMf). A test vector ’01’ or ‘10’ can detect the
bridging fault between ‘x& y’, which has different row
shifting as compared to fault free shift matrix, whereas rest
of the rows will have the same shifting values. The test
vectors for each bridging fault can be obtained by
comparing the faulty shift matrix with the fault free shift
matrix.

4.1 Proposed Test Pattern Generation Algorithm

Step1 : Consider a fault free unitary matrix

UM[2n] [2n] of order (2n*2n) of a n-qbits
reversible circuit as an input.

Step2 : for i = 1 to 2n -1
 For j= i to 2n -1
 {
 Right circular shifting (rcs) 0;
 Right circular shifting(rcs)) right

circular shifting + 1 (Until the unitary
matrix UM[i] [j] is converted to
identity matrix by right circular shifting of
‘1’ in each row)

 fault free shift matrix SM[0][i]= rcs;
 }
 Step3: Consider all the combinations of bridging

faults.
Step 4: For each bridging fault consider a faulty

unitary matrix UMf[2n] [2n] of order
(2n*2n) of a n-qbits reversible circuit

 Step5 : for i = 1 to 2n –1
 for j= i to 2n -1
{

 Right circular shifting (rcsf) 0;
 Right circular shifting(rcsf) right

circular shifting + 1(until the unitary
matrix UMf[i] [j] is converted to
identity matrix by right circular shifting
of ‘1’ in each row).

 faulty shift matrix SMf[0][i] = rcsf;
 }
Step7: If SM [0][i] ≠ SMf[0][i] then the ith test

vector can detect the bridging fault.
 Count the # of bridging faults can be

detected by each test vector.
Step8: Find the first test vector from the top that

can detect more than half of all possible
bridging faults.
This test vector will be the initial test
vector T(0).

Step 9 : do
 T(i+1) = T(i) << 1.
 Return T(i).
 While(the bit next to MSB is 0).

Example: Consider a three inputs benchmark reversible
circuit shown in fig 6

Fig 6:(a)3_17tc_tfc benchmark circuit, (b)The Output
Unitary Matrix (UM) (c) The Identity Matrix (UI)

Consider the 1st row of the output Unitary Matrix of the
above circuit and is represented by a row matrix(UM1).

One bit right circular shifting is required here to convert it
into the first row of the Identity Matrix (UI1). So the value in

 Output

In
pu

t

000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 0 1
001 1 0 0 0 0 0 0 0
010 0 1 0 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 1 0 0 0 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

(b)

(a)

(c)

UM1=

RASDAT 2011 Page 39

the first row of the Shifting Matrix(SM1) is 1. Tree
representation of the proposed method shown in Fig 7.

Fig 7: (a) Tree Representation (b) First row of the Input
Identity Matrix (UI) of the above circuit (c) First row of the
shift Matrix. (d) Fault free Shift Matrix(SM)

Similar shifting method has been applied for the rest of the
rows of the Unitary Matrix (UM) and obtained input
identity matrix (UI). The number of shifting needed store
into a shift matrix (SM) as shown in fig 7(d). Now consider
all the combinations of bridging faults.

Case 1: ‘ab’ bridging fault

For ‘ab’ bridging fault find the faulty unitary matrix. Now
convert it into the identity matrix by right circular shifting
of ‘1’ in each row. Store these numbers of shifting into a
shift matrix, which is the faulty shift matrix of ‘ab’ bridging
fault as shown in Fig 8.

Fig 8. (a)The Output Unitary Matrix of faulty circuit (b)
Faulty Shift Matrix for ‘ab’ bridging fault.

Case 2: ‘bc’ bridging fault

For ‘bc’ bridging fault find the faulty unitary matrix. Now
convert it into the identity matrix by right circular shifting
of ‘1’ in each row. Store these numbers of shifting into a
shift matrix, which is the faulty shift matrix of ‘bc’ bridging
fault as shown in Fig.9.

Fig 9. (a)The Output Unitary Matrix of faulty circuit (b)
Faulty Shift Matrix for ‘bc’ bridging fault.

Case 3: ‘ac’ bridging fault

Similarly for ‘ac’bridging fault, the Output Unitary Matrix
of the faulty circuit and the corresponding Shift Matrix is
shown in Fig.10 .

Fig 10. (a)The Output Unitary Matrix of faulty circuit (b)

Faulty Shift Matrix for ‘ac’ bridging fault.

Now we compare the number of shifting of the fault free
matrix (Fig 7d) with each of the faulty matrix (fig 8b, fig 9b,
fig 10b) to find the number of bridging faults detected by
each test vectors as shown in Table 1.

Table 1: Number of shifting of the fault free and the faulty

matrix

We find that the input test vector (T0= 001) can detect more
than half of all possible bridging faults, which is the initial
test vector. The next test vector (T1) is obtained by one bit
left shifting of the initial test vector until the bit next to
MSB is 0 that is (010 001). These two test vectors
(001,010) cover all the input bridging faults (four) of the
above circuits as shown in Table 2. Hence the universal test
set is, TU={T(0),T(1)} = {001,010}.

0 0 0 0 0 0 0 1

 0 0 0 0 0 0 0

 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1
1
1
0
0
3
0
2

1

1
1
3
3
5
5
0
2

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

1
2
3
0
0
1
2
2

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0

1
2
1
2
5
3
5
2

Input
 abc

#Shifting
in the

fault free
matrix

#shifing
for ab

bridging
fault

#shifting
for ac

bridging
fault

#Shifting
for bc

bridging
fault

fault

s
dete
cted

000 1 1 1 1 0
001 1 1 2 2 2
010 1 3 1 3 2
011 0 3 2 0 2
100 0 5 5 0 2
101 3 5 3 1 2
110 0 0 5 2 2
111 2 2 2 2 0

(d)

(a)

(b)

(c)

SM=

1

1

(a)

SMf=ab = UM f =ab =

UM f =bc =

UM f =ac =

SMf=bc =

SMf=ac =

SM1 =

UI1 =

(b)

(b) (a)

(a) (b)

RASDAT 2011 Page 40

Table 2: Detection of Bridging fault of 3_17tc_tfc
benchmark circuit

Theorem 1: Only ⎡ ⎤2/n numbers of universal test
vectors are sufficient for detecting all single and multiple
input bridging faults of a n-input reversible circuit.
Proof : Let us consider the test patterns are
T(0),T(1)…T(⎡ ⎤2/n) where first test vector T(0) =
0…0(⎡ ⎤2/n times)1…1((n- ⎡ ⎤2/n)times), contains ⎡ ⎤2/n
number of 0s and (n- ⎡ ⎤2/n) number of 1s, which can
detect bridging faults between the first ⎡ ⎤2/n number of
inputs and the rest of the inputs. Second test vector T(1) =
0…0((⎡ ⎤2/n -1)times)1…1((n- ⎡ ⎤2/n)times) 0, contains
(⎡ ⎤2/n -1) number of 0s, followed by (n- ⎡ ⎤2/n) number of
1s, followed by single zero, which can detect bridging faults
between the first (⎡ ⎤2/n -1)number of inputs, last input and
the other inputs. Similarly the ⎡ ⎤2/n th test vector
T(⎡ ⎤2/n) = 01…1((n- ⎡ ⎤2/n)times) 0…0((⎡ ⎤2/n -1)times)
, which can detect bridging faults between the first input,
last input and the other remaining inputs. All of the above
test vectors are also sufficient to detect all multiple input
bridging faults. We conclude that O(⎡ ⎤2/n) numbers of
generated test vectors are sufficient for detecting all single
and multiple input bridging faults of the reversible circuit.

5. Experimental Results

Proposed algorithm has been applied to reversible
benchmark circuits (6sym, 9sym, hwb6, hwb7, hwb8, rd73,
rd84, ham7, ham15, Mod1024adder, Mod1048576adder).
Column 1,2,3 and 4 of Table 3, represent circuit’s name,
input / output, number of stuck-at faults and bridging faults
(Single, Multiple) respectively. Column 5 represents
number of universal test vectors of the earlier methods [20],
Column 6 and 7 represents the number of universal test
vectors as per our method and % of reduction of the test
vectors. Experimental results show that the proposed
method reduces approximately 95% of test vectors as
compared to the earlier methods [20].

6. Conclusions

This paper introduces a new novel method of generating the
minimum universal test vectors for detecting all single and
multiple input bridging faults. The proposed method reduces

the number of test vectors significantly as compared to the
earlier methods. The Results on benchmark circuits show

that only ⎡ ⎤2/n numbers of universal test vectors are

sufficient to detect all single and multiple input bridging
faults. Detection of faults in reversible circuits using
Genetic algorithm may be the future research of interest.

References

 [1] H. Bahrman, J. Tromp and P. Vitanyi, “Time and
Space Bounds for Reversible Simulation”, Journal
of Physics A: Mathematical and General, vol.-34,
pp. 6821-6830, September 2001.

[2] M. Li, J. Tromp, and P. Vitanyi, “Reversible
Simulation of Irreversible Computation”, Physica
D, pp. 168-176, September 1998.

[3] B. Desoete and A. De Vos, “A Reversible Carry-
Look Ahead Adder Using Control Gates”,
Integration, The VLSI Journal, vol.-33, pp. 89-104,
2002.

[4] M. A. Nielsen and I. L. Chuang, “Quantum
Computation and Quantum Information”,
Cambridge University Press, 2000.

[5] A. De Vos, “Towards reversible digital
computers”, Proceedings of European Conference
on Circuit Theory and Design, Budapest, pp.923-
931, 1997.

[6] B. Desoete, A. De Vos, M. Sibinski and T.
Widerski, “Feynman’s reversible logic gates
implemented in silicon”, Proceedings of 6th
International Conference MIXDES, pp.496-502,
1999.

[7] P. Picton, “Optoelectronic, multi-valued,
conservative logic”, International Journal of
Optical Computing, 2, pp.19-29, 1991.

[8] P. Picton, “A universal architecture for
multiplevalued reversible logic”, MVL Journal,
pp.27-37, 2000.

[9] J. A. Smolin, and D. P. DiVincenzo, “Five two-bit
quantum gates are sufficient to implement the
quantum Fredkin gate”, Physical Review A, 53,
pp.2855-2856, 1996.

[10] A. Peres, “Reversible Logic and quantum
Computers”, Physical Review A, 32, pp.3266-3276,
1985.

[11] R. C. Markle, “Two types of mechanical reversible
logic”, Nanotechnology, 4, pp.114-131, 1993.

[12] Patel K.N., Hayes J.P., and Markov I.L., “Fault
testing for reversible circuits”, VLSI test
Symposium. pp. 410-416, 2003.

[13] Hayes J.P., Polian I., and Becker B., “Testing for
missing-gate faults in reversible circuits” Asian
Test Symposium, pp. 100-105, 2004.

[14] Polian I., Hayes J.P., Fiehn T., Becker B., “A
Family of Logical Fault Models for Reversible
Circuits”, Asian Test Symposium, pp. 422-427,
December 2005.

Bridging
Between

Test set
applied

Desired
output

Output in
case of

OR-
bridging

Output in
case of

AND

bridging

a b c a b c a b c a b c

a b 1 0 1 0 1 0 1 0 1 0 0 0

a c 1 1 0 1 1 0 1 0 1 0 0 1

b c 1 1 0 1 1 0 1 0 1 1 0 0

a b c 1 1 0 1 1 0 1 0 1 1 1 1

RASDAT 2011 Page 41

[15] J. Zhong, J.C. Muzio, “ Analyzing fault models for
reversible logic circuits”, IEEE congress on Evol.
Computation, pp. 2422-2427, 2006.

[16] M. P. Frank, “Introduction to Reversible
Computing: Motivation, Progress and Challenges”,
Computing Frontiers, pp.285-390, 2005.

[17] V. V. Shende, A. K. Prasad, I. L. Markov, and J.
P. Hayes, “ Synthesis of Reversible Logic circuits”,
TCAD, Vol. 22(6), pp.710-722, 2003.

[18] M. Saeedi, M. Saheb Zamani, M. Sedigh, “On the
Behavior of Substitution – Based Reversible

Circuits Synthesis Algorithms: Investigating and
Improvement”, ISVLSI, 2007.

[19] M. Saeedi, M. Sedighi, M. Saheb Zamani, “ A
Novel Synthesis Algorithm for Reversible
Circuits”, ACM International Conference on CAD,
2007.

[20] H. Rahaman, D.K. Kole, D.K. Das, B.B.
Bhattacharya, “Optimum Test Set for Bridging
Fault Detection in Reversible Circuits”, 16th
Asian Test Symposium , pp. 125-128, 2007.

Table 3 : Detection of Single and Multiple Bridging Faults

Benchmark
Circuits

Input/
Output

 Total Faults

Test
Vectors

as[20] for
Reversible

Circuits

Proposed
universal

test
vectors

% of
reduction

 #
Stuck-

 at
Faults

Bridging

Faults(Single,
Multiple)

Test

Vectors

Test

Vectors

6sym 6/1 12 90 60 3 95%
9sym 9/1 18 352 87 5 94.24%
hwb7 7/7 14 152 375 4 98.93%
hwb8 8/8 16 238 NA 4 NA
hwb6 6/6 12 90 375 3 99.2
rd73 7/3 14 152 63 4 93.7
rd84 8/4 16 238 84 4 95.29
ham7 7/7 14 152 89 4 95.51
ham15 15/15 30 1848 524 8 98.48
mod1024
adder

20/20 40 4598 252 10 96.1

mod
10485
76 adder

40/40 80 21222 NA 20 NA

RASDAT 2011 Page 42

On The Design of Self-Recovering Systems
Yang Lin and Mark Zwolinski

School of Electronics and Computer Science
University of Southampton

Southampton SO17 1BJ, UK
Email:{yl5g09,mz}@ecs.soton.ac.uk

Abstract—Conventional fault tolerance techniques require at
least 100% hardware overhead. We propose a self-recovery
method that checks the status flags from datapath registers. We
demonstrate its effectiveness by simulating a number of errors
in a modified processor architecture. The hardware overhead is
significantly reduced, but there is still a performance overhead.

Index Terms—Fault tolerance, on-line test, self-checking, self-
repair.

I. INTRODUCTION

With shrinking feature sizes and increasing levels of integra-
tion, the reliability of CMOS integrated circuits is becoming
a cause for concern. In traditional safety-critical systems,
techniques such as Triple Modular Redundancy (TMR) have
been employed, but the overhead is far too great for con-
sumer electronics. Very regular structures, such as memory,
can include error detection and correction with much lower
overheads, but such methods are not applicable to general
logic.

The motivation for this work is to find methods for error
detection and correction that impose a relatively low over-
head (perhaps 10%) in terms of area and performance. We
are interested in general-purpose digital systems that can be
characterised as having two parts – a datapath, that does the
processing; and a controller that ensures that operations in the
datapath happen in the correct sequence. We assume that the
datapath is significantly larger than the controller. Hence, we
also assume that an error in the controller needs to be detected
and corrected immediately, but that an error in the datapath
may not need immediate action. In other words, detecting an
error some time after it occurs may be sufficient and may
require a smaller hardware overhead.

This paper is organised as follows. The next section de-
scribes the background to this work. In section III, we describe
the error correction and correction technique. In section IV,
we show how the method can verified by simulating a number
of faults. Finally, we conclude the paper in section V.

II. BACKGROUND AND PREVIOUS WORK

The work described here is an extension to that published
in 2006 [1]. For convenience, we summarize that work here.
A general model of a digital system is given in Fig. 1. The
controller is a state machine that generates control signals
to enable functional units within the datapath. In turn, the
datapath generates condition signals that drive the next state
logic of the controller.

st
a

te
re

gi
st

e
r

next state logic

…
…

.

….

d
ec

o
de

r

….

A B

O1 O2

O3

O4

N

N+1

N+2

…
…

…
.

…
…

.
…

…

…
.conditional signals

Fig. 1. Controller/Datapath Interaction.

In previous research concerning self-checking controllers,
the state signals were encoded according to some error-
detecting and/or correcting scheme, such as parity, single-
error correcting Hamming code, constant Hamming distance,
or even physical duplication. All self-checking takes place at
the state register outputs (point “A” of Fig. 1). Any possible
faults in the decoder are not considered, and would therefore
corrupt the decoded control signals. Consequently, if robust
reliability properties are to be maintained, it is highly desirable
that controller testing take place after the decoding operation,
that is on the raw control signals (at point “B” of Fig. 1).

To enable self-checking in the datapath, there needs to be
redundancy. One method, proposed in other work of ours [2],
is to duplicate operations on different instances of hardware.
Ideally the duplication would occur in different clock cycles,
using hardware that would otherwise be idle. Thus, if there
is sufficient hardware capacity, the cost of duplication would
be zero, although there remains the cost of the comparators
and checkers. In practice, there is usually insufficient spare
resource in the system for the cost to be that low.

We proposed a number of different schemes for making
the controller self-checking. Not all of these were totally self-
checking. A typical result is shown in Table I. The original
design needs nearly 4000 gates and runs at nearly 40MHz.
Adding temporal duplication and self-checking to the datapath
incurs an overhead of 67% in terms of area. While the clock
speed remains the same, the number of cycles needed to
complete one operation increases by nearly 40%. Adding a

RASDAT 2011 Page 43

12 | P a g e

implies that a very conservative supply voltage will always be chosen because worst-case

combination of visibilities occurs rarely [7]. The Razor can help to allow more aggressive power

reduction in DVS application, it is realised by turning the supply voltage according the error rate

during circuit operation [7]. As a result, the idea of detecting the circuit errors (timing errors)

dynamically is a key feature of Razor, and will be introduced below.

 The basic concept of the timing error detection and correction technique, which is implemented

on pipeline based processors, can be illustrated in Fig 7. Fig 7 (a) shows the structure of the Razor

flip-flop which double-samples pipeline stage values by two flip-flops, a main flip and a shadow flip-

flop [7]. The shadow flip-flop is controlled by a delay clock to ensure that it can latch the correct

value generated by Logic stage L1 in worst-case delay when the main flip-flop fails. The timing error

in the logic stage L1 can be tested by comparing the values in main flip-flop and shadow flip-flop.

The correct values in the shadow flip-flop are utilised to recover the main flip-flop and hence the

system when error occurs.

Main Flip-Flop

Shadow Flip-
Flop

Logic Stage
L1 Logic Stage

L2

Comparator

D
1

Error

Error_L

Clock_del

Clock

Razor FF

 Fig 7(a) The structure of the Razor flip-flop [7]

Fig. 2. Razor Flip-Flop Structure.

Totally Self-Checking (TSC) controller slows the clock speed
down a little, but the marginal increase in the area overhead
is only 4.4% (164 gates). While this example may be small,
it does suggest that focussing on the controller is likely to be
more beneficial than a more general approach.

Hence, the basic idea here is to extend the concept of a
TSC controller to also consider the status of the condition
signals fed back from the datapath to the controller. As it is
not possible to determine the error status of a signal from a
single bit, the condition signals need to be dual-rail encoded.
Thus, for example, 01 and 10 might be valid states for one
condition flag, while 00 and 11 would indicate an error.

To allow dual-rail encoding of selected condition registers,
we have adapted the shadow flip-flop model of Razor [3], Fig.
2. In Razor, a copy of a signal is stored in the shadow flip-
flop, but the copy is made some time after the primary value
is stored – perhaps by using the succeeding “inactive” clock
edge. This protects both against timing delays and against
errors in the main flip-flop (or indeed, in the shadow flip-
flop). The values in the main and shadow flip-flop now form
a two-bit code word that can be fed back into the controller.

III. SELF-RECOVERING PROCESSOR

In order to determine whether extending a TSC controller
to include self-checking on the condition signals is sufficient
to give us a self-recovering design, we have used the SAYEH
processor [4] as a test exemplar. To illustrate the technique,
we have chosen two flag signals generated by the datapath: the
z flag generated by the ALU to indicate a zero-valued result;
and the c flag, generated by the CPU to indicate a carry. The
function of the two flags is slightly different – both are used to
indicate a status to the controller, but the c flag is additionally
used in subsequent calculations.

The Verilog code in the SAYEH processor is modified to
include shadow registers for the z flag and the c flag, both
of which are triggered by the negative edge of the clock. We
also include a backup register for the c flag, which will be
explained below.

Because we require the system to be self-correcting, it must
be able to recover when an error is detected. As stated above,
we assume that it is sufficient to detect an error eventually,
but not necessarily as soon as it occurs. Hence the effect of

an error (in the form of inconsistent values for the z flag or
the c flag) may be observed several cycles later and hence the
results of a computation may be incorrect. Thus, to recover
from an error, it is necessary to back track to a known good
state and to repeat the computation. (Of course, if the error
is permanent, this may be futile, but for the purposes of this
study, we assume that any error is transient.)

We therefore need to make further modifications to the
system. First, data registers need to be backed up. For the
purposes of this study, we are only considering two status
flags, thus it is sufficient to back up the register files associated
with the ALU and, as noted, the c flag because it is used in
subsequent computations. Second, the controller functionality
needs to be modified to act on errors in the z flag and the
c flag. An example of this is shown in Fig. 3. Additional
states are added to force a re-execution in the event of a
mismatch in values in a status flag. In this example, the
behaviour of different instructions may be classified into three
types, depending on the effect on different registers. Thus,
three different forms of this modification are needed, although
it is possible to optimise the resulting state machines and to
reduce the number of extra states. Finally, the controller itself
needs to be made TSC, as described in [1]. For the purposes
of this exercise, we limited these modifications to the control
signals from the controller to the datapath. 48 control signals
had 6 parity bits added to make them self-correcting.

Notice that, although we use the Razor flip-flop structure,
this technique works at a different level to Razor. Within
a Razor-enabled processor, faults are detected and corrected
within the datapath (in particular within the pipeline of a
processor). The controller is not aware of any fault detection
or correction. Here, the controller is responsible for fault
detection and correction. Hence, the two methods are not
directly comparable and may indeed be complementary. This
is a topic for further research.

IV. VERIFICATION

The self-recovery features of the modified design were
verified by simulating an RTL model. In addition to the
modifications described above, fault injection mechanisms
were included. Three different types of fault were modelled:

• Transient faults in the datapath, leading to errors in the
flags.

• Timing errors in the datapath, such that a value is delayed
by more than one clock cycle.

• Transient faults in the control signals.
Some examples are given here. Fig. 4 shows the effect of a

transient fault in the datapath while executing an scf (set carry
flag) instruction. The error is injected at 440ns for one clock
cycle. This leads to an error in the c flag on the next rising
clock edge, causing the instruction to be fetched and executed
again.

Fig. 5 shows a timing fault injected during the execution of
a sub instruction. At 5700ns, the data misses the rising clock
edge and is not latched. The system goes into recovery mode.

RASDAT 2011 Page 44

TABLE I
DIFFEQ BENCHMARK SYNTHESIS RESULTS (ALCATEL CMOS 0.35 VLSI)

data path control path area speed maximum hardware speed
testing testing (gates) (cycles) frequency overhead penalty

(MHz) (gates %) (cycles %)
- - 3679 16 39.6 N/A N/A

present - 6143 22 39.6 67.0 37.5
present method 6 6307 22 37.6 71.4 37.5

33 | P a g e

czf instruction. Finally, the wrong value of z_flag will be overwritten by a correct value after re-

executing the instruction. To this end, only a certain destination register and C_flag need to be

backed up before doing an instruction so two back up registers are needed to add to the system.

 Like it shows in Fig 25, the potential fault instructions can be divided into three types. The

instructions in type one may contain shadow instruction and do not need back up and recovery

scheme because none of the registers that these instructions change act as an operand for the

instruction. Fig 26 shows the modification part of the ASM chart for the instructions of type 1 in

order to enclose the self-test and self-recovery capability. State s1 is an extra state used for loading the

shadow flip-flops after the main flip-flop finished loading in state exec1. Flag are checked in this state

and if either of the flags has an error value, the state machine forwards to fetch state while

maintaining the PC value to redo the current instruction. If no error is detected, the system carries on

with normal operation. Similarly, when this type of instruction is executed in shadow execution phase,

flags will also be checked after in state of s1_s. However, rather than re-fetching the whole

instruction, the state machine will only repeat the exec2 state to re-execute the shadow instruction

only when error is detected. Notice an extra state is added before the to back up

registers for instruction type2.

Instruction
Execution

exec1

Instruction Shadow SR _i
Shadow SR _i

s1

szf, czf, scf, ccf, cmp

Z_flag
C_flag

Shadow

error = 0

Databus

fetch
0

error = 1

(PC +1)

(PC)

1

Shadow
Instruction
Execution

exec2

Instruction
szf, czf, scf, ccf, cmp Shadow = 1

Shadow SR _i
Shadow SR _i

s1_s

Z_flag
C_flag

error = 0

error = 1

(PC +1)

Databus

fetch

M
ain Exection

Shadow Exection

Shadow = 1
R_d [Laddr]

R_c _f

back_up_s

 Fig 26 The modification part of the ASM chart for the instructions of type 1
Fig. 3. Modified Controller.

42 | P a g e

 Fig 35 Normal operation of instruction scf

 Fig 36 shows the operation of scf when error_c, which represents a transient fault in datapath is

injected. Fig 37 shows the operation of scf when timing fault error_time and error_time1 are injected.

Focus on Fig 36, error_c signal is injected leading to error values (11 and 10) for Cflag in the period

shows in the red circle. The state machine detects this error and forwards to the original state

after state to re-fetch and re-execute scf instruction by remaining the current address.

The error is corrected in the second operation cycle in state 3, the state machine then moves on

fetching the next instruction by increasing the address. Note that this kind of error injection is to

pretend transient fault and does not really corrupts the values of C_flag in the real registers. So it can

be observed that the all the values in all registers are correct after the first operation and does not need

to be corrected in second operation.

 Fig 36 Operation of instruction scf with transient fault

 Focus on Fig 37, timing fault is injected in state so that Cout_temp latches correct result of

the combinational block over one clock later after state while the Cout_s still finishes

Fig. 4. Operation of instruction scf with transient fault.

RASDAT 2011 Page 45

47 | P a g e

 Fig 43 Operation of sub with transient fault

 Fig 44 Operation of sub with timing fault

!"#$%&#'()*+,)$#+#$-+.(/#,)$*0%'*,()1#
 Fig 45 shows the operation of sub which contains shadow instruction with transient fault. The

operation is . The C_flag does not change so it is not

shown in the waveform this time. Notice that Z_flag is assigned to 10 because the result of ALU is 0.

Fig. 5. Operation of sub with timing fault.

52 | P a g e

 Fig 51 Operation of mil instruction with timing fault

!"#$#%&'(#)*#+,-.('#/0#1)0(2)..&2#
 Fig 52 shows the system operation when faults in controller occurs. In this case, only an

 error signal is injected to corrupt the outputs of the controller. Notice that decimal 64

represents the seventh bit of error_ctrl is 1, which means that it will corrupt the seventh bit of the

control signal before it inputs to the parity checker. The parity checker then detects bit 7 is wrong,

which is indicated by the signal !"#$%&'%()!*+!,-$!,. is the control signal in bit 7. Notice

that the correct generated by the controller is 0 during the period, it is corrupted to 1 when is

error injected by the xor gate. Signal !"#$%&'%()!*+!.,!-%/0/, which is the that inputs to

the datapath is finally corrected by the parity checker & corrector. The lathes in after the

correction do not affect the system operation.

Fig 52 System operation with faults in controller

Fig. 6. System operation with faults in controller.

Five clock cycles later, at 5900ns, the correct value is latched
and the system carries on.

Finally, Fig. 6 shows an error in the control signals. Because
this is simply a case of parity correction, the error is easily
detected and corrected.

The hardware overhead for the datapath – two shadow
registers, two temp registers, two back-up registers, two com-
parators and a parity checker and corrector – is much less than
required in conventional duplication (or triplication). There
is also a small overhead caused by the dual-rail encoding
of status flags. The modification to the controller also adds

speed penalties to the system. It can be observed in the
simulation waveforms that one extra clock cycle is needed
for the back up state. Moreover, the modification means the
main flip-flop catches the result one clock cycle later than
normal, but this does not affect the system operation. The
SAYEH processor also includes the capability for so-called
shadow instructions – in other words for limited pipelining.
We have implemented fault recovery mechanisms for these
shadow instructions, which are as effective as those for the
main instructions, but with a speed penalty of three clock
cycles.

RASDAT 2011 Page 46

V. CONCLUSIONS

We have shown that limiting redundancy to the status flags
of a datapath is sufficient to detect a number of transient
and timing errors within that datapath, when combined with a
totally self-checking controller. By including back up states,
the system can repeat its operation in the presence of transient
and timing faults. The hardware overhead is significantly less
than for conventional duplication.

The technique is largely complementary to Razor. Thus,
future work will investigate how voltage scaling and the Razor
methodology might be combined with the proposed technique.
The example used here is relatively simple; we will investigate
the application of the technique to a processor with much
greater pipelining.

REFERENCES

[1] P. Oikonomakos and M. Zwolinski, “On the design of self-checking
controllers with datapath interactions,” Computers, IEEE Transactions on,
vol. 55, no. 11, pp. 1423 –1434, nov. 2006.

[2] ——, “An integrated high-level on-line test synthesis tool,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 25, no. 11, pp. 2479 –2491, nov. 2006.

[3] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-
power pipeline based on circuit-level timing speculation,” in MICRO 36:
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2003, p. 7.

[4] “SAYEH processor,” www.opencores.org.

RASDAT 2011 Page 47

 1

Approximate and Bottleneck High Performance Routing for Self-healing VLSI Circuits

 Achira Pal
1
, Tarak N. Mandal

2
, Alak K. Datta

3
, Rajat K. Pal

4
, and Atal Chaudhuri

5

1Harinavi Subhasini Balika Sikshalaya, PO: Harinavi, 24 Parganas (South) – 743 359, West Bengal, India

2 PMI Service Center Europe Sp. z o.o., al. Jana Pawla II 196, 31-982 Krakow, Poland
3Department of Computer and System Sciences, Visva-Bharati, Santiniketan, Birbhum – 731 235, West Bengal, India

4Department of Information Technology, School of Technology, Assam University, Silchar, Cachar – 788 011, Assam, India
5Department of Computer Science and Engineering, Jadavpur University, Kolkata – 700 032, West Bengal, India

AbstractCrosstalk minimization is one of the most important aspects

in interconnecting VLSI circuits. With the advancement of fabrication

technology, devices and interconnecting wires are placed in closer

proximity and circuits operate at higher frequencies. This results in

crosstalk between wire segments. In this paper, we show that the

crosstalk minimization problem in the reserved two-layer Manhattan

routing model is NP-complete, even if channels are free from any

vertical constraint. In addition, we introduce the problems of

minimizing bottleneck crosstalk and approximating crosstalk

minimization, and prove that these problems are also NP-complete. We

further show that all these results hold even if doglegging is allowed.

 Keywords- channel routing; NP-hardness; crosstalk minimization;

high performance routing; bottleneck crosstalk; approximation

algorithm; doglegging; green computing.

I. INTRODUCTION

 In VLSI layout design it is required to realize a specified

interconnection of a set of terminals present in different modules,

primarily using minimum possible area. This is known as the routing

problem. There exist several routing strategies for efficient

interconnection among different modules. One of the most important

types of routing strategies is channel routing [9, 16].

 A channel is a rectangular routing region that has two open ends,

the left and right sides of the rectangle. The other two sides, viz., the

upper and lower side of the rectangle have two rows of fixed points,

called terminals. The terminals are aligned vertically in columns that

are usually equispaced along the length of the channel. A set of

terminals that need to be electrically connected together is called a net.

In Figure 1, two columns having the same number (other than zero)

uniquely define a two-terminal net.

 A vertical wire segment is a wire that lies in a column whereas a

horizontal wire segment is a wire that lies in a track. Tracks are

horizontal lines that are usually equispaced along the height of the

channel, parallel to the two rows of (fixed) terminals.

 A route for a net is a collection of horizontal and vertical wire

segments spread across different layers connecting all the terminals of

the net. A legal wiring of a channel is a set of routes that satisfy all the

prespecified conditions where, no two wire segments used to connect

different nets overlap on the same conducting layer. A legal wiring is

also called a feasible routing solution.

 The channel routing problem (CRP) is specified by two m element

vectors TOP and BOTTOM, and a number t; objective is to find a

feasible routing solution for the channel using no more than t tracks, if

it exists. An instance of the CRP is shown in Figure 1, where we have

an assignment of intervals of the nets present in this channel to four

tracks only. Let Li (Ri) be the leftmost (rightmost) column position of

net ni, then Ii = (Li,Ri) is known as the interval (or span) of the net.

 3 8 0 0 4 0 0 1 3 0 6 7 0 0 5 0 0 5

 I3 I6 I5

 I8 I7

 I4 I1

 I2

 0 0 4 2 0 2 0 0 0 8 0 0 6 7 0 0 1 0

Figure 1: An example channel of eight nets. Intervals of the nets are placed in

four different tracks. Terminals are vertically aligned along the columns of the

channel. The length of the channel (i.e., the number of columns) is 18. Arrows
indicate that the terminals to be connected, either on the top or at the bottom, to

complete the required interconnection of all nets present in the channel.

 As fabrication technology advances and feature size reduces,

devices are placed in closer to each other and interconnecting wire

segments are assigned with narrower pitch, whereas the circuits’

operations are realized at higher frequencies. As a result, electrical

hazards, viz., crosstalk between wire segments are evolved. Crosstalk

between wire segments is proportional to the coupling capacitance,

which is in turn proportional to the coupling length; the total length of

overlap between wire segments of two different nets. Crosstalk is also

proportional to the frequency of operation and inversely proportional to

the separating distance between wires.

 More crosstalk means more signal delay and reduced circuit

performance. Therefore, it is desirable to develop channel routing

algorithms that not only reduce the number of tracks (i.e., channel area)

but also crosstalk. Work on routing channels with reduced crosstalk is

very important from high performance requirement point of view [3, 9].

 We define that the amount of crosstalk between the horizontal wire

segments (i.e., intervals) of two different nets assigned to two adjacent

tracks in a given routing solution is proportional to the amount of

overlap of their horizontal spans. If two intervals do not overlap, there

is no horizontal constraint between the nets. That is, if there is an

overlap of the horizontal wire segments of a pair of nets, there is a

possibility of having accountable crosstalk (other than negligible or no

crosstalk) between them.

 We measure crosstalk in terms of number of units of overlap

between a pair of nets on adjacent tracks in a feasible routing solution.

We assume that the crosstalk between wire segments of two different

nets (that may or may not overlap) assigned to two nonadjacent tracks is

negligibly small (in comparison to the amount of crosstalk between

overlapping wire segments of two different nets on adjacent tracks), and

hence can be ignored. In fact technology is indeed responsible to make

the amount of this crosstalk within a permissible range of noise margin.

 We assume that the amount of crosstalk between vertical wire

segments of two different nets placed in two adjacent columns to be

very small, and hence can be neglected. It is a matter of technology to

RASDAT 2011 Page 48

 2

keep safe separation between two adjacent columns of a channel so that

crosstalk evolved due to vertical wire segments is always within some

limit of tolerance even if longest possible adjacency of vertical wire

segments of two different nets, along the length of the channel.

II. PROBLEMS OF CROSSTALK MINIMIZATION IN CHANNEL ROUTING

 In computing a routing solution, our prime intention is to compute a

solution that uses minimum channel area. In addition to computing a

routing solution with reduced area, in high performance routing our

interest is also to obtain a routing solution with less electrical hazards

(i.e., crosstalk), less signal propagation delay, less power consumption,

less or no hot spot formation, and so and so forth.

 The CRP of area minimization is polynomial time computable if the

instances are free from any vertical constraint, and there are algorithms

for computing exactly density, dmax-track routing solutions for such

instances [6, 9]. Since the problem of minimizing area for instances of

routing channel with only horizontal constraints is polynomial time

solvable (using exactly dmax tracks), we define such instances as the

simple instances of channel routing. (We define a channel specification

as general, if both the constraints are present in it.) Though a routing

solution of only dmax tracks is guaranteed for the simple instances of

channel specifications (in the stated routing model), it may not be a

good routing solution from the resulting crosstalk point of view (see

Figure 1).

 b

  c

 a
(a)

 b

a
  c

 (b)

Figure 2: Crosstalk minimization problem in two-layer VH channel routing, in
the absence of vertical constraints. (a) A feasible three-track routing solution

with three intervals of three different nets a, b, and c that are overlapping to each

other. Nets b and c share 11 units of horizontal span in the channel (as they are
assigned to two adjacent tracks), and nets c and a share 2 units, amounting a total

of 13 units’ cross coupling length. (b) Another feasible three-track routing

solution for the same channel instance, with a total net sharing of 4 units of
horizontal span; hence a minimized crosstalk routing solution is obtained just by

reassigning the nets to tracks.

 Now let us consider a smaller simple channel instance of only

three nets and illustrate the presence of crosstalk between nets (or

intervals), when these are assigned to tracks in a two-layer VH channel

routing (see Figure 2). Since all the three nets a, b, and c overlap, we

are compelled to assign them to three different tracks on the same

horizontal layer in any feasible routing solution. Interestingly, the fact

to be noticed that just by reassigning the nets to tracks, the amount of

crosstalk in Figure 2(b) is reduced to 30.77% to that of in Figure 2(a).

Hence we have the following observation.

Observation 1: The amount of crosstalk is mostly reduced if a net (or

interval) of smaller span is sandwiched by two nets (or intervals) of

larger spans.

 Now we pose the decision version of the problem VHP.

 Problem: VHP (Crosstalk minimization in two-terminal no-dogleg

two-layer VH channel routing, given a~priori partition of nets.)

 Instance: A simple channel specification of two-terminal nets, a

partition P of nets into classes of non-overlapping intervals, and a

positive integer K.

 Question: Does there exist a minimum area (i.e., |P|-track) no-

dogleg two-layer VH routing solution of the given channel specification

so that (i) all the nets of the same class in the given partition P are

assigned to the same track, and (ii) the total crosstalk is K or less?

 In Section III, we prove that this problem is NP-complete. Now we

formally pose the problems of crosstalk minimization, VHS for simple

instances, and VHG for general instances of channel specifications in

the absence of any partition P of nets, as follows.

 Problem: VHS (Crosstalk minimization in two-terminal no-dogleg

two-layer VH channel routing for simple instances of channel

specification.)

 Instance: A simple channel specification of two-terminal nets with

density dmax, and a positive integer K.

 Question: Does there exist a dmax-track no-dogleg two-layer VH

routing solution of the given channel specification so that the total

crosstalk is K or less?

 In posing VHG, we consider general instances of channel

specification, and here dmax is replaced by an integer t as the number of

tracks required in computing a no-dogleg two-layer VH routing

solution.

 In Section IV, we prove that these problems are NP-complete. Now

we pose the bottleneck crosstalk minimization problem as follows.

 Problem: BVHP (Bottleneck crosstalk minimization in two-

terminal no-dogleg two-layer VH channel routing, given a~priori

partition of nets.)

 Instance: A simple channel specification with two-terminal nets, a

partition P of nets into classes of non-overlapping intervals, and a

positive integer B.

 Question: Does there exist a minimum area (i.e., |P|-track) no-

dogleg two-layer VH routing solution of the given channel specification

so that (i) all the nets of the same class in the given partition P are

assigned to the same track, and (ii) the amount of crosstalk between

wire segments of two different nets on adjacent tracks is B or less?

 In Section VI, we have proved that this problem is also NP-

complete.

III. HARDNESS OF CROSSTALK MINIMIZATION IN THE ABSENCE OF

VERTICAL CONSTRAINTS

 In this section we show that VHP is NP-complete by reducing a

variant of the Hamiltonian path (HP) problem to VHP. The problem

HP is the following [1, 4, 12].

 Instance: An undirected graph G  (V,E).

 Question: Does G contain a Hamiltonian path?

 Before showing that VHP is NP-complete, we need to show that the

following variant HP* of problem HP is also NP-complete.

 Problem: HP* (Weighted Hamiltonian path)

 Instance: An undirected weighted complete graph G*  (V,E*),

with weight w(e)  1 or 2 for each edge e  E*.

 Question: Does G contain a Hamiltonian path of weight n1, where

n  |V|?

RASDAT 2011 Page 49

 3

 We show that the problem HP* is NP-hard by reducing the problem

HP to it. We know that the problem HP is identified to be NP-complete

[1, 4, 12]. We first show that HP* belongs to NP. Given an instance of

the problem, we use as a certificate the sequence of n  |V| distinct

vertices in the path. The verification algorithm checks that this

sequence contains each vertex exactly once, sums up the edge weights,

and checks whether the sum is exactly n1. This algorithm can certainly

be performed in polynomial time. Therefore, HP*  NP.

 To prove that HP* is NP-hard, we show that HP P HP*. Let G 

(V,E) be any instance of HP. We construct a corresponding instance of

HP* as follows. We compute a complete graph G*  (V,E*), where E*

 {(vi,vj) | vi, vj  V}, and we assign weight w(e)  1, if (vi,vj)  E;

otherwise, we assign weight w(e)  2, if (vi,vj)  E. The instance of

HP* is then obtained in polynomial time. The construction has been

explained in Figure 3.

 We now show that graph G has a Hamiltonian path if and only if

graph G* has a weighted Hamiltonian path HPP* of weight n1, where

n  |V|. Suppose that graph G has a Hamiltonian path HPP. Each edge in

HPP belongs to E and thus HPP* has weight n1 in G*. Thus if HPP is a

Hamiltonian path in G, then HPP* is a weighted Hamiltonian path in G*

with weight n1.

 Conversely, suppose that graph G* has a path HPP* of weight n1.

Since the weights of the edges in E* are either 1 or 2, the weight of the

path HPP* is n1 indicates that the path HPP* contains only edges in E.

We conclude that HPP is a Hamiltonian path in graph G. This completes

the proof.

 v1 v1
 v2 v2
v6 v6

 v5 v3 v5 v3

 v4 G  (V,E) v4 G*  (V,E*)

 (a) (b)

Figure 3: (a) A graph instance G  (V,E) of problem HP. (b) The graph G* 

(V,E*) of the corresponding instance of problem HP*, that is computed from G

in (a), with weight w(e)  1, if e  {(vi,vj)  E | vi, vj  V}; otherwise, w(e)  2.

 We summarize this result in the following theorem.

Theorem 1: HP* is NP-complete.

 Now we show that VHP is NP-complete by reducing an instance I

of problem HP* to it. We show that VHP  NP. Given a feasible |P|-

track no-dogleg two-layer VH routing solution for any instance I of

VHP, we can verify in polynomial time whether (i) all the nets of the

same class in the given partition P are assigned to the same track, and

(ii) the total crosstalk is K or less. Therefore, VHP  NP.

 To show that VHP is NP-complete, we consider the following

transformation from problem HP* to VHP. We construct an instance

(I,P,K) of problem VHP from any instance I of problem HP* by a

polynomial time transformation as follows.

 Let the number of vertices of the graph in I be n. For every vertex vi

 V, 1  i  n, we introduce n1 two-terminal nets ni1, ni2, , ni(n1);

one for each edge (vi,vj), j  i, where vj is a vertex adjacent to vi in G*

(as G* is a complete graph). We place the two terminals of net nij at

positions 5((2ni)(i1)2(ji1))1 and 5((2ni)(i1)2(ji1))5 of

the top row of terminals of the channel specification in I, if i  j. On the

other hand, if i  j, we place the two terminals of net nij at positions

5((2nj)(j1)2(ij1))2 and 5((2nj)(j1)2(ij1))2w(vi,vj) of

the bottom row of terminals of the channel specification in I. We

further consider a partition P of the set of nets produced into n ( |P|)

subsets {P1, P2, , Pn}, where Pi is a class of nets nij, 1  j  n such

that j  i. All the remaining terminals of the constructed channel

instance I are vacant terminals (i.e., the terminals that are not to be

connected). Hence, the construction of the channel instance I is

completed that contains 2e = n(n1) nets and the length of the channel

in I is 5e. The construction of such a channel instance in I from a

graph instance in I has been explained in Figure 4.

 v1 2 v2

 1 1

 1

 2 v3

 v4 1 G*  (V,E*)

(a)

n12 0 0 0 n12 n13 0 0 0 n13 n14 0 0 0 n14 n23 0 0 0 n23 n24 0 0 0 n24 n34 0 0 0 n34

0 n21 0 n21 0 0 n31 n31 0 0 0 n41 n41 0 0 0 n32 n32 0 0 0 n42 0 n42 0 0 n43 n43 0 0

(b)

Figure 4: (a) A complete graph G*  (V,E*) of instance I of problem HP*, with

weight 1 or 2 on the edges of the graph. (b) The corresponding channel instance

I of the crosstalk minimization problem VHP, where nets nij, 1  i, j  n but j  i,

are introduced into the channel corresponding to vertex vi in G*, and forming

class[i] of non-overlapping nets in P. In addition, intervals Iij and Iji, of nets nij

and nji, respectively, 1  i, j  n, j  i, of the constructed channel instance I

overlap of an amount 1 (2) unit(s), if w(e)  1 (2), where e  {(vi,vj)  E* | vi, vj

 V}. Incidentally, for I, n  |V|  |P|.

 Following the construction of I, we observe that the density of the

channel is 2, as stated in the following lemma.

Lemma 1: The channel density dmax of the constructed channel instance

I is 2.

 To complete the proof that VHP is NP-complete, we now establish

the following lemma.

Lemma 2: I has a weighted Hamiltonian path HPP* of weight n1, if

and only if I has a feasible n-track no-dogleg two-layer VH routing

solution with (i) all the nets in the same class in the given partition P,

where |P|  n, are assigned to the same track, and (ii) the total crosstalk

is n1.

Proof: Suppose that there is a weighted Hamiltonian path HPP* = v1,

v2, , vn in I of weight n1. We show that there is a feasible |P|-track

no-dogleg two-layer VH routing solution S for I with (i) all the nets of

the same class in the given partition P are assigned to the same track,

and (ii) the total crosstalk is n1. Observe that all the n1 nets nij, 1  j

 n such that j  i, corresponding to vertex vi in HPP* are in a single

class. We assign all these nets to the ith track from the top of the

channel. In addition, no two different sets of nets are assignable to the

same track as at least two intervals belonging to two different classes of

nets overlap each other. So, the only nets nij corresponding to vertex vi

in HPP* are assigned to the ith track of the channel.

RASDAT 2011 Page 50

 4

 Now, since the weight of the path HPP* in I is n1 and HPP* is a

path of exactly n vertices, weight of each edge in the path is 1.

Corresponding to this path HPP* of G* in I, we obtain a no-dogleg two-

layer VH routing solution S, as stated earlier, where in the topmost

track we assign the class of nets n1j. For two successive vertices vi and

vi1 in HPP*, 1  i  n1, we assign the corresponding classes of nets to

the ith and (i1)th track in S from top to bottom, where only two nets of

these two classes amount to overlap only 1 unit of horizontal span (as

w(vi,vi1)  1), following the construction of I. So we have a |P|-track

no-dogleg two-layer VH routing solution S in I with (i) all the nets of

the same class in the given partition P are assigned to the same track,

and (ii) the total crosstalk is n1.

 Now suppose there is a |P|-track no-dogleg two-layer VH routing

solution S in I with (i) all the nets of the same class in the given

partition P are assigned to the same track, and (ii) the total crosstalk is

n1. We show that there is a weighted Hamiltonian path HPP* in I

whose weight is n1. According to the constructed channel instance I
and the solution S of n tracks (as |P| = n), note the following: (i) In each

track i, 1  i  n, we have a set of n1 non-overlapping intervals Iij

corresponding to the nets nij, 1  j  n such that j  i, in a class of P,

and (ii) exactly one pair of nets belonging to any two classes of

partition P of nets in I, overlap amounting at most of 2 units.

 Observe that no two classes of nets assigned to two adjacent tracks

in S overlap 2 units of horizontal span; otherwise, the amount of total

crosstalk is more than n1. In other words, the amount of total crosstalk

is n1 indicates that each pair of classes of nets assigned to two

adjacent tracks in S overlap 1 unit of horizontal span only. Therefore,

we construct a sequence of vertices for the path HPP* in I, where vi is

at the ith position, 1  i  n ( |V|), if the non-overlapping intervals Iij

corresponding to the nets nij, 1  j  n such that j  i, in a class of P are

assigned to the ith track from top in S. So, for sets of nets nij and n(i1)j

assigned to two adjacent tracks i and i1, respectively, we have two

successive vertices vi and vi1 in HPP*, 1  i  n1, so that w(vi,vi1) 

1 in G*. Hence we have a weighted Hamiltonian path HPP* in I whose

weight is n1. 

 We summarize the result in the following theorem.

Theorem 2: VHP is NP-complete.

 The result of crosstalk minimization problem with partition of nets

established in this section equally holds for the general instances of

channel specifications (where partition is provided in such a way that

no cyclic vertical constraint is formed). This is because the set of simple

instances of channel specifications is a proper subset of the set of

general instances of channel specifications considering both the

constraints present in it.

IV. HARDNESS OF OTHER CROSSTALK MINIMIZATION PROBLEMS

 In this section, we consider the problems VHS and VHG, separately,

as defined in Section II, of crosstalk minimization in two-layer channel

routing of minimum area, without any restriction on partition of nets to

tracks. In other words, we want to compute a minimum area no-dogleg

two-layer VH routing solution, without any partition of nets (so that the

restriction on a set of nets to be assigned to the same track is no longer

stated), in which crosstalk is also minimized. In that case a natural

question is: What is the minimum amount of sum crosstalk that a fixed

area no-dogleg two-layer VH routing solution may have?

 Let us first consider the problem VHS. There are polynomial time

algorithms for computing dmax-track routing solutions and these are the

minimum area routing solutions for the simple instances of channel

specifications [6, 9, 10], as stated above. So, if we could compute all

possible dmax-track routing solutions of such an instance, we may

compute a minimum crosstalk routing solution among them. This may

take exponential amount of time.

 Nevertheless, for any such combination of dmax sets of non-

overlapping intervals, we have the nets in the form of classes of a

partition of nets. We may assume that the size of this partition P is same

as dmax in order to compute a minimum area feasible routing solution for

the given channel instance. Now we could reassign the intervals

trackwise, so that this reassignment of tracks may provide a dmax-track

minimum crosstalk routing solution. This requirement for an instance

with partition P, where |P| = dmax of crosstalk minimization problem

VHS and the objective for a similar instance of crosstalk minimization

problem VHP are exactly identical. Hence we can conclude that these

two problems are having the same computational complexity. We

formally state the result in the following theorem.

Theorem 3: VHS is NP-complete.

 Now let us consider the problem VHG. In this problem, we want to

compute a no-dogleg two-layer VH routing solution of total crosstalk K

or less, if there exists such a solution of t tracks for the given (general)

channel specification. Since the set of simple instances of channel

specifications is completely contained in the domain of general

instances of channel specifications, so in order to prove VHG NP-

complete, we restrict the instances of this problem by the instances of

VHS. In addition, we set t  dmax. Hence, as a result we conclude the

following.

Theorem 4: VHG is NP-complete.

V. HARDNESS OF APPROXIMATING CROSSTALK MINIMIZATION

 In previous two sections, we have shown that the problem of two-

layer crosstalk minimization is NP-complete for simple as well as

general instances of channel specifications. A natural question arises:

Whether there is any polynomial time approximation algorithm with

guaranteed error bound for these problems. In this section, we prove

that the problem of developing such approximation scheme is

impossible.

 In fact, we will show that it is impossible to design an

approximation algorithm with ratio error bound 2, unless P  NP,

even for the simple instances of the problem when a partition is given,

so that the nets in a class of the partition are to be assigned to the same

track.

 To establish this result we formulate crosstalk minimization problem

with partition as a general traveling salesman problem (TSP). The

formulation is based on constructing a weighted undirected complete

graph G, as described below.

 For every set i of nets (i.e., the nets in class[i]), 1  i  t, of the

crosstalk minimization problem with partition P, where |P|  t, we

introduce a vertex vi into graph G. For a pair of tracks we introduce an

edge between the corresponding vertices in the graph with weight same

as the total amount of overlapping between the nets in these two tracks.

So, we assign weight w to the edge joining vertex pair vp and vq, if and

only if the total amount of overlapping of nets belonging to tracks p and

q (obeying classes in P) is w. We now introduce one more vertex v0 and

t edges {v0,vi} into the graph, where 1  i  t. So, now G is a complete

graph of order t1. For each of these newly introduced edges to v0, we

assign weight zero. The construction has been illustrated in Figure 5.

RASDAT 2011 Page 51

 5

5 0 5 2 0 0 2 0 1 0 6 0 7 0 0 0 4 0 0

0 3 0 0 6 5 0 3 0 2 0 8 0 1 8 0 4 7 4

Partition P  {C1, C2, C3, C4},

where C1  {5, 7}, C2  {3, 1, 4}, C3  {2}, and C4  {6, 8}.

(a)

 v1 6 v2

 2 0

 3 7 5 0
 0 v0

 v4 0

 5 v3 G

A tour T  v0, v4, v2, v1, v3, v0

(b)

5 0 5 2 0 0 2 0 1 0 6 0 7 0 0 0 4 0 0

0 3 0 0 6 5 0 3 0 2 0 8 0 1 8 0 4 7 4

(c)

Figure 5: (a) A channel specification, and a partition P with four classes of nets

C1 through C4 so that the nets in a class are non-overlapping to each other and to
be assigned to the same track. Note that this is only an input to the problem, not

a routing solution. (b) The corresponding constructed graph instance G for the
TSP problem, where each of the weights assigned to edges is same as the amount

of overlapping between the nets belong to the associated classes in P. A tour T

for the TSP problem is assumed as v0, v4, v2, v1, v3, v0. Cost of the tour is 15

units. Cost of the path v4, v2, v1, v3 is also 15 units, as the weights of the edges

incident to v0 are all zero. (c) The assignment of nets, following the path of the
tour (ignoring v0), from top to bottom along the height of the channel, as the nets

are there in different classes in P. This assignment of nets results a routing

solution with exactly 15 units of total crosstalk.

 In this example, we have considered a channel instance and a

partition P of nets, as shown in Figure 5(a). The corresponding graph G

for the TSP problem is shown in Figure 5(b). A tour T is also assumed

there, and the cost of the tour c(T) is 15 units. Following the tour

(ignoring v0) of the TSP problem, we assign the nets in different classes

in P of the channel instance to tracks along the height of the channel, as

shown in Figure 5(c). The total amount of crosstalk of this assignment

of nets as a routing solution is 15 units, which is same as the cost of the

tour.

 Now it is interesting to note the following lemma.

Lemma 3: For every tour, starting with v0, of the traveling salesman

problem there is a unique |P|-track no-dogleg two-layer VH routing

solution, and the amount of crosstalk in this routing solution is same as

the cost of the tour.

Proof: Let T  v0, v1, v2, …, vt, v0 be a tour for an instance of the

traveling salesman problem (TSP) obtained with cost c(T). From tour T,

if we delete vertex v0 and its adjacent edges then the cost of the path

from v1 through vt remains same as c(T). This is because, from the

construction of graph G for a TSP instance, the weights of the edges

(v0,v1) and (vt,v0) are zero. Accordingly, we could assign the sets of

nets from top to bottom along the height of the channel, obeying t

classes of partition P, so that the nets in a class are to be assigned to the

same track. In this assignment, nets corresponding to vi are assigned to

track i, 1  i  t, from the top of the channel. So, the nets corresponding

to vt are assigned to the bottommost track, where t  |P|. Hence, a |P|-

track no-dogleg two-layer VH routing solution is obtained.

1 0 0 4 0 4 0 0 0 1 3 0 5 3 0 5 0 2 0

0 4 0 0 1 0 0 3 4 0 0 2 0 2 0 0 5 0 2

Partition P  {C1, C2, C3},

where C1  {1, 5}, C2  {4, 2}, and C3  {3}.

(a)

 v1 11 v2
 0

 3 3 0
 v3 0 v0 G

A tour T  v0, v2, v3, v1, v0

(b)

1 0 0 4 0 4 0 0 0 1 3 0 5 3 0 5 0 2 0

0 4 0 0 1 0 0 3 4 0 0 2 0 2 0 0 5 0 2

(c)

Figure 6: (a) A channel specification, and a partition P with three classes of nets

C1, C2, C3, similar to the channel instance in Figure 5(a). (b) The associated
graph instance G for the general TSP problem, where the triangle inequality is

not maintained. This is because the cost of edge (v2,v3) (i.e., 3 units) plus the cost
of edge (v3,v1) (i.e., 3 units) is less than the cost of edge (v1,v2) (i.e., 11 units). So,

if a tour T for the general TSP problem is assumed as v0, v2, v3, v1, v0, then the

cost of the tour becomes 6 units only, which is same as the cost of the path v2,

v3, v1. (c) In fact, there is an assignment of nets, following the path of the tour

(ignoring v0), from top to bottom of the channel, maintaining the classes of nets

in P, and this assignment results a routing solution with exactly 6 units of total
crosstalk.

 Now we prove that whether the amount of crosstalk of this routing

solution is same as c(T). Here we have just stated how the nets are

assigned to tracks following their classes in P, along the height of the

channel. So, for two consecutive vertices vi and vi1 in T (ignoring v0),

1  i  t1, the corresponding sets of nets are assigned to two

successive tracks i and i1, respectively, from the top of the channel.

According to the construction of the graph, the weight of edge (vi,vi1)

is same as the total amount of overlapping between the nets in the

corresponding classes in P. Hence, the sum crosstalk of the routing

solution is same as the cost of the path consisting vertices v1 through

vt, which is same as c(T), as the weights of the edges (v0,v1) and (vt,v0)

are zero. 

 It turns out from the above lemma that the crosstalk minimization

problem can be formulated as a general TSP problem. Observe that an

instance of the TSP problem thus obtained may not satisfy the triangle

inequality, as explained in Figure 6. Also we know that there is no

approximation algorithm for the general TSP problem, with ratio error

2, unless P  NP [1, 4, 12]. We, therefore, claim the following

theorem.

Theorem 5: Unless P  NP, it is impossible to design an approximation

algorithm for no-dogleg two-layer VH channel routing problem of

crosstalk minimization with partition of nets for simple instances of

channel specifications, with ratio error 2.

 As the problem of crosstalk minimization with partition in two-layer

channel routing for simple instances of channel specifications is a

RASDAT 2011 Page 52

 6

special case of the general two-layer channel routing problem of

crosstalk minimization, we claim the following theorem.

Theorem 6: Unless P  NP, it is impossible to design an approximation

algorithm for no-dogleg two-layer VH channel routing problem of

crosstalk minimization without any partition of nets for general

instances of channel specifications, with ratio error 2.

5 6 0 1 4 3 0 1 5 1 0 2

 I1
 I6 I2

 I3
 I4

 I5

3 0 4 6 0 2 0 3 4 0 3 1

 (a)

 v5 v1

 v6
 v4 v3

 v2

 (b)

 5 6 0 1 4 3 0 1 5 1 0 2

 3 0 4 6 0 2 0 3 4 0 3 1

(c)

Figure 7: (a) A channel instance. (b) The VCG of the channel instance that

contains a cycle. (c) A restricted dogleg routing solution for the channel instance
in (a), where net 1 is doglegged and its horizontal subsegments are assigned to

the first track and the fifth track of the channel, from top to bottom. Via holes are

also shown in this figure, where two orthogonal wire segments of the same net
intersect; these are used for changing layers of interconnect.

VI. HARDNESS OF BOTTLENECK CROSSTALK MINIMIZATION

 Bottleneck crosstalk minimization is especially important when we

are interested in computing a routing solution with every (individual)

crosstalk between a pair of nets, due to overlapping of nets assigned to

two adjacent tracks. This is interesting as a problem of combinatorial

optimization, and equally important from high performance routing

requirement point of view. The sum crosstalk minimization problem is

important but lacks this point. As a result, the performance of an overall

optimized crosstalk routing solution may not be good enough in

propagating all the necessary signals in synchronization.

 Now we prove that the bottleneck crosstalk minimization problem

BVHP is NP-complete, following the proof of the crosstalk

minimization problem VHP. We show that the problem BVHP is NP-

complete for channels with routing having as low as an upper bound of

two units of overlapping of the nets on adjacent tracks. This is

straightway obtained by following the construction and the proof

technique used to establish the problem VHP as NP-complete. In that

construction, the net groupings among the classes of the partition have

entirely defined. The amount of overlapping between a pair of nets, if

they in fact overlap, in two different classes of nets is either 1 unit or 2

units only. So, we fix the value of B  2, and the result is summarized in

the following theorem.

Theorem 7: BVHP is NP-complete.

 Now it is needless to mention that the bottleneck crosstalk

minimization problem is NP-complete with and without any partition of

nets (whether the sets of non-overlapping intervals are to be defined in

classes of the partition for their assignment to tracks), for both simple as

well as general instances of channel specifications.

 So far in this paper, we have considered several crosstalk

minimization problems in computing a routing solution for two-layer

VH channel routing, using the shape of no-dogleg routes only. No-

dogleg routing is simple but each instance of the CRP may not have a

feasible routing solution using only the shapes of no-dogleg routes. As

for example, consider the channel instance in Figure 7(a). The VCG of

this channel contains a cycle (see Figure 7(b)). Hence, we consider

channel routing with restricted doglegging [2, 9] for the instances with

multi-terminal nets (see Figure 7(c)), and extend the NP-completeness

results proved so far to this model by considering no-dogleg routing of

instances restricted to have only two-terminal nets.

VII. CONCLUSION

 In this paper we have considered the crosstalk minimization

problem in two-terminal no-dogleg two-layer VH channel routing, and

proved that the problem is NP-complete for simple as well as general

instances of channel specifications. In addition, we consider the

problem of existence of polynomial time approximation scheme to

solve the stated CRP and proved that it is unattainable to design such an

approximation scheme. The bottleneck crosstalk minimization problem

has also been considered, and proved its NP-completeness. In addition,

all these problems are proved NP-hard, even if restricted doglegging is

allowed.

REFERENCES

[1] Cormen T. H., C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,
Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.

[2] Deutsch D. N., A Dogleg Channel Router, Proc. of 13th ACM/IEEE Design

Automation Conf., pp. 425-433, 1976.

[3] Gao T. and C. L. Liu, Minimum Crosstalk Channel Routing, Proc. of IEEE Int.

Conf. on Computer-Aided Design, pp. 692-696, 1993.

[4] Garey M. R. and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, New York, 1979.

[5] Golumbic M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

[6] Hashimoto A. and J. Stevens, Wire Routing by Optimizing Channel Assignment

within Large Apertures, Proc. of 8
th

 ACM Design Automation Workshop, pp.

155-169, 1971.

[7] Ho T.-T., S. S. Iyengar and S.-Q. Zheng, A General Greedy Channel Routing

Algorithm, IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 10, pp.

204-211, 1991.
[8] LaPaugh A. S., Algorithms for Integrated Circuit Layout: An Analytic Approach,

Ph.D. thesis, Lab. for Computer Sc., MIT, Cambridge, 1980.

[9] Pal R. K., Multi-Layer Channel Routing: Complexity and Algorithms, Narosa

Publishing House, New Delhi (Also published from CRC Press, Boca Raton,

USA and Alpha Science International Ltd., UK), 2000.

[10] Pal R. K., A. K. Datta, S. P. Pal and A. Pal, Resolving Horizontal Constraints and

Minimizing Net Wire Length for Multi-Layer Channel Routing, Proc. of IEEE
Region 10’s 8

th
 Annual Int. Conf. on Computer, Communication, Control and

Engineering, vol. 1, pp. 569-573, 1993.

[11] Pal R. K., A. K. Datta, S. P. Pal, M. M. Das and A. Pal, A General Graph

Theoretic Framework for Multi-Layer Channel Routing, Proc. of Eighth

VSI/IEEE International Conference on VLSI Design, New Delhi, India, pp. 202-

207, Jan. 4-7, 1995.

[12] Papadimitriou C. H., Computational Complexity, Addison-Wesley Publishing

Co., Reading, Massachusetts, 1995.
[13] Rivest R. L. and C. M. Fiduccia, A ‘Greedy’ Channel Router, Proc. of 19

th

ACM/IEEE Design Automation Conf., pp. 418-424, 1982.

[14] Schaper G. A., Multi-Layer Channel Routing, Ph.D. thesis, Dept. of Computer

Sc., Univ. of Central Florida, Orlando, 1989.

[15] Szymanski T. G., Dogleg Channel Routing is NP-Complete, IEEE Trans. on

CAD of Integrated Circuits and Systems, vol. 4, pp. 31-41, 1985.

[16] Yoshimura T. and E. S. Kuh, Efficient Algorithms for Channel Routing, IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 1, pp. 25-35, 1982.

RASDAT 2011 Page 53

A Scalable Heuristic for Incremental High-Level Synthesis
and Its Application to Reliable Computing

Shohei Ono1 Hiroaki Yoshida2,3 Masahiro Fujita2,3

1. Dept. of Electrical Engg. & Information Systems, the University of Tokyo
2. VLSI Design and Education Center (VDEC), the University of Tokyo

3. CREST, Japan Science and Technology Agency

Abstract

Due to extremely high non-recurring-engineering costs
in ASIC development, incremental synthesis techniques
have been becoming increasingly important. Although in-
cremental logic synthesis, placement and routing tools have
been available for a while, incremental high-level synthesis
is still a challenging problem. We also show that incremen-
tal synthesis plays an important role in Concurrent Error
Detection & Diagnosis (CEDD) technique, which is known
as an effective technique for reliable computing. In this pa-
per, we propose a practical incremental high-level synthesis
method and present the details of a tool implementation and
a preliminary result.

1 Introduction

With the increase of VLSI complexity, high-level syn-
thesis which can improve the design productivity plays an
important role. High-level synthesis is a technology which
converts a design described in a high-level language such as
C language to a Register Transfer Level (RTL) description.
Since the design and verification are performed in a higher
level of abstraction using this technology, the time required
for the design and verification can be shorten from the con-
ventional design methodology based on RTL descriptions.
Varieties of techniques for more reliable designs, includ-
ing various checker insertion, duplicated computation and
others, can be relatively easily incorporated in high level
designs.

High-level synthesis consists of three phases: allocation,
scheduling and binding. In the allocation phase, the number
and type of functional units are determined. The scheduling
phase determines when and which functional unit executes
each operation. The result of the scheduling phase may vary
dramatically depending on the design constraints provided
by a designer. The binding phase determines the functional

units and the registers used by each operation.
After generating the RTL description, logic synthesis

generates a netlist from the RTL description. A netlist
describes logic circuits and the interconnections of them.
Then, the mask layout is generated by placement and rout-
ing. Generally, these processes take a long time. How-
ever, sometimes a design change is required late in these
processes due to design errors and/or specification changes.
After such a design change, logic synthesis, placement and
routing need to be performed again even though these pro-
cesses take a long time. To reduce the re-spin time, in-
cremental logic synthesis and incremental placement and
routing which update only the changed part are typically
used. When the RTL description is changed, incremental
logic synthesis and incremental placement and routing can
be used, and these processes take shorter time than a general
non-incremental synthesis. However, when the design at the
higher level is changed, a conventional high-level synthesis
results in too large changes on the RTL description. It takes
a long time although we use incremental logic synthesis,
placement and routing. By changing the RTL description
manually to satisfy the design change at the higher level,
the RTL description which is changed little can be made,
but such change of the design on the RTL description needs
a functional verification on the RTL description which also
takes a long time.

Changes of designs and specifications may happen due
to the requirement of reliable computing. For example,
some duplicated computation turns to be too costly in late
design stages such as a logic and layout designs. Then,
other reliable computing method must replace those com-
putations.

The increase of the design cost due to such design
changes has led to a high requirement for incremental high-
level synthesis which can generates the RTL description
very close to the pre-change RTL description after the de-
sign change at the higher level. When there are small
changes on the high-level description, the incremental high-
level synthesis results in small changes on the RTL descrip-

1

RASDAT 2011 Page 54

ADD1

cs1

cs4

cs5

cs2

cs3

ADD2 ADD3 MUL1 MUL2 MUL3

+1

x1

x2 x3 x4

x5

+2 +3 +4

ADD1

cs1

cs4

cs5

cs2

cs3

ADD2 ADD3 MUL1 MUL2 MUL3

+1

x1

x2 x3 x4

x5 x5 x5

+2 +3

+3 +3

+4

(a) Original scheduling (b) Scheduling after applying CEDD technique

Figure 1. An example of Concurrent Error Detection & Diagnosis (CEDD) technique.

tion and reduce the process time because incremental logic
synthesis, incremental placement and routing can be per-
formed effectively.

Although an incremental high-level synthesis is known
as a key technology to reducing the time of designing a
VLSI, very little work has been performed except a recent
work [1]. This paper proposes a scalable heuristic for incre-
mental high-level synthesis. We also present the details of a
tool implementation and a preliminary result.

Incremental high-level synthesis technique also plays an
essential role in Concurrent Error Detection & Diagnosis
(CEDD) technique. This technique is one of the widely-
used techniques for reliability enhancement. In particular, a
register-transfer-level CEDD technique can be realized as a
high-level synthesis of a duplicated system [2]. We explain
the CEDD technique using an example shown in Figure 1.
Assuming that three adders and three multipliers are ava-
iable, the fastest schedule is given in Figure 1 (a). For ex-
ample, operation +1 is performed on the adder ADD1 while
operation x3 is performed on the multipler MUL2. It is clear
that all functional units such as adders and multiplers are
not being used in every clock cycle. A basic idea of the
CEDD technique is to utilize such spare computation cy-
cles to perform error detection and diagnosis. For example,
suppose that we replicate operation +3 and execute each of
them on a distinct adder, as illustrated by a shaded area in
Figure 1 (b). Three replicated operations are executed on
ADD2 in control step cs2 and ADD1 and ADD3 in control
step cs3. By comparing the outputs of the adders pairwise,
a faulty function unit can be identified. If (ADD1, ADD2)
and (ADD2, ADD3) disagree, ADD2 can be identified as
a fault adder. Thus, error diagnosis can be performed us-
ing spare computation cycles. The latency of diagnosis can
be reduced if there is enough spare capacity. For example,
three replicated operations x5 in 1 (b) are executed in the
same cycle without increasing the latency.

A state-of-the-art RT-level CEDD technique employs an
iterative improvement method [3]. Their ILP formulation
uses a simplified model of hardware costs such as area, de-

lay and power. Such a model-based optimization suffers
from an inaccuracy of estimated costs. Incremental syn-
thesis technique may improve the CEDD synthesis quality
because accurate hardware costs can be obtained by using
the technique.

2 Motivating Example

Figure 2 compares the results of a conventional high-
level synthesis and an incremental high-level synthesis. The
upper part of the figure shows the pre-change design and the
result generated by high-level synthesis. The bottom part of
the figure shows the changed design and the result gener-
ated by conventional high-level synthesis and incremental
high-level synthesis.

The symbol = in the designs means an assignment.
There are four additions in the pre-change design. This
means that these additions are calculated in the order. The
result of scheduling shows which operation is calculated on
which FU at which step. An arrow in the figure shows the
dependency of the data used at the operation. In the pre-
changed example, h + i is calculated on the adder 1 at the
step 1, and j + k is calculated on the adder 2 at the step 1.
The datapath shows the interconnection between the regis-
ters and the functional units. The operations in the design
are calculated on this datapath with the control signal based
on the result of scheduling. The control signal controls the
multiplexers and the FUs in the datapath.

For the changed design, there are the results which are
generated by conventional high-level synthesis and incre-
mental high-level synthesis. a = f + g is inserted before
b = h + i, there are five additions in the changed design.
As a result, the result of scheduling and the datapath are
changed from the result before change. In the result of
scheduling by conventional high-level synthesis, a = f + g
is bound to the adder 1 at the step 1 although b = h + i
was bound to this position in the result before change. This
is because conventional high-level synthesis does not fo-
cus on the difference between the original result and the

2

RASDAT 2011 Page 55

Reg1 Reg2 Reg3 Reg4 Reg5 Reg6

Adder
1

Adder
2

f

j

i

hg

Adder 1 Adder 2

k

Step2

Step1

Step3

Reg1 Reg3 Reg4 Reg5 Reg6

Adder
1

Adder
2

Step1

Step2

h

a

k

ji

Adder 1 Adder 2

Reg1 Reg2 Reg3 Reg4 Reg5 Reg6

Adder
1

Adder
2

Step1

Step2

h ki j

Step3
f g

Adder 1 Adder 2

Result of high-level synthesis before change

Result of high-level synthesis after change

Result of incremental high-level synthesis after change

Result of scheduling Generated datapath

b=h+i;
c=j+k;
d=a+b;
e=b+c;

a=f+g;
b=h+i;
c=j+k;
d=a+b;
e=b+c;

Original C
description

C description
after change

Bold lines show changed parts.

Dash lines show removed parts.

1 multiplexer and 5 connections added
1 multiplexer and 5 connections removed

1 multiplexer and 4 connections added
1 connection removed

Figure 2. An example of incremental high­level synthesis.

result after change. And, the adder and the step which the
other four additions are bound are also changed. The nodes
which are shown by the bold line require the change of hard-
ware. Then, the datapath generated by conventional high-
level synthesis is changed. In the datapath, the five inter-
connections and the one multiplexer are added and the five
interconnections and the one multiplexer are removed. In
the incremental high-level synthesis, a = f + g is bound to
the step 3 which is newly inserted and the other four oper-
ations are bound to the same position with the pre-changed

one. In the result by incremental high-level synthesis, only
the node which is added by the design change require the
change of hardware. Thus, the datapath has only smaller
changes, the four interconnections and the one multiplexer
are added and the one interconnection is removed. Like this,
incremental high-level synthesis make only small changes
on the RTL description. Hence, by using incremental high-
level synthesis, incremental logic synthesis and incremental
placement and routing can perform effectively and can re-
duce the processing time.

3

RASDAT 2011 Page 56

3 Proposed Method

In this section, we explain the proposed scalable heuris-
tic for incremental high-level synthesis.

3.1 Problem Formulation

The input design is represented in a control data flow
graph (CDFG) form. A CDFG is a combination of a control
flow graph (CFG) and a data flow graph (DFG). A CFG is a
directed graph which describes a control flow, and a DFG is
a directed graph which describes dependence relationships
of data used by operations. In this paper, we focus only on
changes in a DFG to simplify the problem.

Given the CDFG of the original design and the changed
design and the result of high-level synthesis for the original
design, the steps and the FUs and the registers for each of
the operations which are changed in the design are deter-
mined. In other words, the result of scheduling and binding
of the changed design is generated. The behavior of this
result must meet the behavior described in the changed de-
sign. In addition, it must satisfy the constraint condition
provided by a designer and makes as small difference be-
tween the result of the original design and the changed de-
sign as possible. The goal is to find the datapath and control
signals which is based on the scheduling and binding result
described above.

3.2 Target Architecture

A template of the target architecture is shown in figure 3.
It consists of functional units, a controller, a local store and
registers. A functional unit (FU) is a computing unit which
executes operations. Typical FU types are an ALU, a shifter
and a multiplier. The input of an FU is connected to the out-
put of the other FU or the register and the output of an FU
is connected to the input of the other FU or the register. The
FU has multiplexers on its input, and it will be controlled
by a controller. A controller (CTRL) send control signals to
all multiplexers and FUs based on the present state to exe-
cute arbitray operations. The controller has an input which
determines the next state. A register (REG) is a memory to
save local variables. The data which is calculated by FUs is
saved to the registers on every step. A local store (LS) is a
memory to save global variables. It is connected to outside,
and it can share the contents of this memory with external
hardware components. The number and type of these FUs,
registers are variable.

3.3 Incremental High­Level Synthesis

Based on the synthesis result of the original design,
the datapath and the control circuit corresponding to the

schedule_and_bind(dfg) {
unbind(removed_nodes(dfg))
dfg = SMS_sort(dfg)
// Process in the determined order.
for node in added_nodes(dfg) {

schedule_and_bind_node(node)
}

}

schedule_and_bind_node(node) {
steps = available_step(node)
for s in steps {

success = FU_bind(node, s)
if (success) break

}
if (!success) {

s = insert_new_step()
FU_bind(node, s)

}
}

Figure 4. A pseudo code of scheduling pro­
cedure.

changed part is generated incrementally. The proposed
method consists of the allocation phase, the scheduling
phase and the binding phase. At first, it enters to the al-
location phase, then it enters alternately to the scheduling
phase and the binding phase.

In the allocation phase, the number and type of the FUs
are determined. These are same with the one which is used
in the pre-change result.

In the scheduling phase, which step to execute the oper-
ations which is added by the design change is determined
based on the synthesis result of the original design. The
pseudo code of the scheduling phase is shown in figure
4. In this phase, we utilize the node ordering algorithm
of the software pipelining approach which generates sched-
ules that are near optimal in terms of an initiation interval,
a register count and a stage count, called Swing Modulo
Scheduling (SMS) [5]. First of all, the binding of the node
which is removed by the design change is cancelled. Next,
the list of available step for the nodes added by the design
change is calculated in the order which is determined by the
SMS. Binding the nodes to the step in the list is tried in the
order. If the binding fails, a new step is inserted and the step
is bound to it.

In binding phase, the nodes are bound to the FUs. The
pseudo code of the binding phase is shown in figure 5. First,
the FUs which is not bound at the target step and capable of
the target operation are found. Next, the FU which has the
least amount of hardware changes when the target operation
is bound to it is calculated. Then, the FU is bound to the
target operation, the inputs and the outputs of the FU are

4

RASDAT 2011 Page 57

ALU CMP MUL

Controller

FUs,MUXs

Local Store

ALU

Register1 Register2

Point-to-Point Interconnections

Figure 3. Our target architecture template.

FU_bind(operation, step) {
FUs = get_available_FU(operation, step)
FU = minimum_cost(FUs)
bind(FU, operation, step)
for input in operation.inputs {

connect_register(input)
}

for output in operation.outputs {
connect_register(output)

}
return true

}

Figure 5. A pseudo code of binding proce­
dure.

connected to the register. If there are no available FUs, the
binding for the target operation fails.

After the scheduling phase and the binding phase, the
registers which the variables use is determined. We use an
optimal register assignment algorithm [4] which guarantees
its optimality if the underlying form is an static single as-
signment (SSA) form to this procedure.

Then, the datapath and the control signals are generated
as a register transfer level description.

The example of incremental high-level synthesis which
is shown in figure 2 has the same result with the proposed
method. In this example, a = f + g is added and no opera-
tion is removed. The proposed method performs the proce-
dure to only a = f + g. It calculates the available step and
tries the FU binding procedure to the step 1 and the step 2,
however, the FU binding procedure fails because there are
no available FUs. Then, the step 3 is inserted before the step
1 and a = f + g is bound to the adder 1 at the step 3.

/* This global variable is stored in a

* local store and used to communicate

* with the external components.

*/
int a[16];

void fibonacci(void) {
int i;
for (i=2; i<16; i++) {

a[i] = a[i-1] + a[i-2];
}

}

Figure 6. The design used to test the imple­
mentation

4 Implementation and A Preliminary Result

We have implemented the proposed method partially in
the SORA synthesis framework which we have developed.
Our implementation can interpret the input design descrip-
tion written in the C language and build a CDFG in SSA
form which is representing the input design description.
We used the LLVM compiler infrastructure [6] which is a
framework of compilers to implement this function. After
a CDFG is created, we apply the proposed method to the
CDFG. And, the result of the proposed method is generated
as a Verilog HDL description. This output description has
all information which is required to synthesize the design.
Thus, we can synthesize this Verilog HDL description eas-
ily by using generic synthesis tools.

We have verified that our implementation synthesizes
properly the input design by synthesizing a small bench-
mark since we have not implemented the function that cal-
culates the difference of the CDFG. Figure 6 shows the
benchmark which we used. The benchmark is written in
the C language, and converted to the CDFG which has the

5

RASDAT 2011 Page 58

27 nodes. The global variables in the C language is to com-
municate with the external and is bound to a local store. We
have generated the Verilog HDL description which has the
1119 lines from the CDFG by using our implementation.
This process have finished in a few seconds. We have sim-
ulated the output Verilog HDL description and verified that
the result of the simulation is correct.

5 Summary and Future Work

In this paper, we proposed a scalable heuristics for in-
cremental high-level synthesis which causes only small
changes on register transfer level description if the design
on high-level language is changed. And, we implemented
this method in our SORA framework, and tested using small
simple designs.

In the future, we plan to demonstrate the advantage of
our proposed method through evaluating the quality of the
synthesized circuit and the runtime. Since the proposed
method is a heuristic, it is not guaranteed that the result gen-
erated by our proposed method is optimal. We will imple-
ment an optimal method which generates an optimal result
and compare our proposed method and the optimal method
in terms of the amount of the changed hardware and the effi-
ciency of the results. Then, we will show that our proposed
method can synthesize practical designs by evaluating the
runtime of our proposed method. Besides, we will demon-
strate that the proposed incremental technique is useful for
the CEDD technique.

References

[1] L. Lavagno, A. Kondratyev, Y. Watanabe, Q. Zhu, M.
Fujii, M. Tatesawa, and N. Nakayama, “Incremental
High-Level Synthesis,” in Proc. Asia and South Pacific
Design Automation Conference (ASP-DAC), Jan. 2010,
pp. 701-706.

[2] R. Karri and B. Iyer, ”Introspection: A register transfer
level technique for cocurrent error detection and diag-
nosis in data dominated designs,” ACM Transactions on
Design Automation of Electronic Systems (TODAES),
vol. 6, no. 4, pp. 501–515, Oct. 2001.

[3] Y. Liu and K. Wu, ”Towards Cool and Reliable Digi-
tal Systems: RT Level CED Techniques with Runtime
Adaptability,” in Proc. IEEE Int. Conf. Computer De-
sign, Oct. 2010.

[4] P. Brisk, F. Dabiri, R. Jafari, and M. Sarrafzadeh, “Opti-
mal Register Sharing for High-Level Synthesis of SSA
Form Programs,” IEEE Trans. Computer-Aided Design,
vol. 25, no. 5, pp. 772-779, May 2006.

[5] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero,
“Swing Modulo Scheduling: A Lifetime-Sensitive Ap-
proach,” in Proc. IEEE Int. Conf. on Parallel Architec-
ture and Compilation Techniques (PACT), Oct. 1996,
pp. 80-87.

[6] C. Lattner and V. Adve, ”LLVM: A compilation frame-
work for lifelong program analysis transformation,” in
Proc. IEEE/ACM Int. Symp. on Code Generation and
Optimization (CGO), May 2004, p. 75.

6

RASDAT 2011 Page 59

1

O-51/R73

A study of failure mechanisms in CMOS & BJT ICs
and their effect on device reliability.

M.G.Rajesh
1
, Gopika Vinod

2
, D.Das

1
, V.Bhatnagar

1
,

C.K.Pithawa
1

1. Electronics Division, BARC 2.Reactor Safety
Division, BARC

Aditya Thaduri
3
, A.K.Verma

3

3. Department of Electrical Engineering, IIT Bombay

Abstract – The reliability of electronic systems, used in nuclear
power plants, is traditionally estimated with empirical databases

such as MIL-HDBK-217, PRISM etc. These methods assign a
constant failure rate to electronic devices, during their useful life.
Currently, electronic reliability prediction is moving towards
applying the Physics of Failure approach which considers
information on process, technology, fabrication techniques,
materials used, etc. The constant failure rate assumption stems
from treating failures as random events. Electronics division of
BARC is engaged in design & fabrication of CMOS and BJT
ASICs for nuclear pulse processing. These new microelectronic

devices often exhibit infant mortality and wear-out phenomena
while in operation. It points to competing degradation
mechanisms-electro migration, hot carrier injection, dielectric
breakdown etc.-that make a device’s useful life different from that
predicted by empirical methods. Understanding the dominant
mechanisms that lead to device failure –Physics of Failure– is a
more realistic approach to reliability prediction. This paper
describes common failure mechanisms- encountered in CMOS
and BJT ICs and the efforts being taken to quantify these effects

in an ASIC -4N36- which forms a part of the isolation in neutron
flux monitoring systems.

Keywords: Reliability; Optocoupler; Failure Mechanism;
Design of experiments; Physics of failure.

I. INTRODUCTION

Industries employ different technologies like CMOS, BJT

and BICMOS for various applications. The possibility of
chance of failure at interdependencies of materials, processes,

and characteristics under operating conditions is the major
concern which affects the performance of the devices. They are

characterized by several failure mechanis ms and hence failure
models of these devices should consider them at various stages

such as wafer level, interconnection, etc. For this, the dominant

failure mechanis ms and stress parameters needs to be
identified.

Design of experiments is an efficient and prominent
methodology for finding the reliability of the item, as the

experiment provides a proof for the hypothesis under
consideration. One of the important techniques involved is

Taugachi method which employs for finding the prominent

failure mechanisms in semiconductor devices. By physics of
failure approach, the factors that are affecting the performance

on both environmental and electrical parameters with stress

levels are identified. By constructing taugachi array with these
parameters where output parameters decides the effect of top

two dominant failure mechanisms and their extent of chance of

failure can be predicted. This analysis helps us in making the
appropriate modifications considering both the failure

mechanis ms for the reliability growth of these devices. This
paper highlights the application of design of experiments for

finding the dominant failure mechanis ms towards using
physics of failure approach in electronic reliability predict ion.

II. FAILURE MECHANISMS

The most prominent failure mechanisms for CMOS and
BJT technology are Hot Carrier Injection (HCI),

Electromigration, Temperature dependence dielectric
breakdown and Negative Bias Temperature Instability

[1],[2],[3] and [4]. Other mechanisms include Stress Migration,
Radiat ion effects, corrosion and thermal fat igue.

A. Electro Migration (EM)

Failure occurs mainly due to the blocking (or voids) of

interconnects due to transport momentum at conductor-metal
interface. Sometimes atoms of one conductor pile up to another

conductor to cause short-circuit (Hillock Failure of whisker

failure). Mostly happens at higher current density (>10
5

A/cm2) and at higher temperatures. Ea = 0.5 – 0.8 eV. Causes

due to Grain boundary diffusion on Al wires and surface
diffusion in Cu wires and Thermal Effects: high power co llide

scattering joule heating. The Black’s Equation is given below.

gE

-n KTMTTF=A(J)e
()

 (1)

Where J is current density in the conductor, K is

Boltzman’s constant, T is temperature in Kelv in. A lumin ium
(Ea = 0.6+/- 0.1eV) has good conductivity, good ohmic

contacts and adherence to substrate. Copper(Pure) is more

robust (Jcu = 5JAl). Ea Increases and mobility increases by
adding 1% pallad ium. EM is proportional to current density &

smaller g rain boundaries. For a Bamoo structure; if, width is
proportional to average grain size then the Electromigration

decreases. For large magnitude currents, slotted wires are used
to meet power requirements. Blech Length: Lower limit of

length of interconnect to allow EM. So lder joints (SnPb,
SnAgCu) occur at lower current densities [4].

RASDAT 2011 Page 60

2

B. Temperature Dependence Die-electric Breakdown

Failure occurred due to continuously applying stress to

Gate oxide film which makes Di-electric falling shorting
Anode and Cathode by increased Electric field. Time to failure

increases with increasing electric field and Temperature. But as
Electric field decreases, activation energy increases and thus

stresses increases. For high fields (<10 MV/cm), field

enhanced thermal bond breakage. Decrease in the activation
energy leads to electron reaction rate [2].

E-Model:
Ea

-βE KTMTTF=Ax10 xe
()

 (2)

An E on oxide film causes injection of holes on anode side

causing traps. As traps increases in oxide, current produces by
SILC (stress induced leakage current) due to tunneling. And

traps between Gate and Silicon substrate, leakage current
increases leads to gate oxide to break down.

1/E Model:
()

()

0 ()
G T

EoxTF T e (3)

1/E Model: For Low Electric fields, current by Fowler
Nordheim conduction. Electrons experience impact ionization

that damages the di-electric, which accelerated. Accelerated

electrons reach anode produces hot holes which tunnel back to
dielectric (hot hole injection mechanis m).

For ultra-thin oxides, Temperature is non-Arrhenius,

BD0 2

a(V) b(V)
MTTF=T (V)e +

T T
() (4)

C. Hot Carrier In jection

Carriers in increased Electric field, accelerated to gain

Energy. Some charges have Hot Energy to overcome Potential

between Gate and Substrate. These carriers injected to Gate
(some are trapped), form a space charge, change in Vt & gm.

Injected carriers which are not trapped as gate current and
others as substrate current [3].

i. Drain Avalanche Hot Carrier DAHC in jection

Electrons from Source lead to impact ionization

because of high electric field at Drain, which generates

electron-hole pairs and which has higher Energy injected
to Gate. Vgs = ½ Vds. The greatest factor is at normal

temperatures.

ii. Channel Hot Electron CHE in jection (Vgs = Vds, lucky

electrons which are not energy dissipation)

iii. Secondary generated hot electron SGHE in jection

iv. Subsrate hot electron SHE in jection

-mt=CxIsub and
-B/Vdst=Axe are the time dependent models.

HCI is prominent at lower temperatures [1]. Thermal
vibrations increases and collisions decreases, means have

higher probability for mean free path of electrons to absorb

more energy. Higher electric field in jects carriers and
probability of inject ing increases. Impact ionization increases

and thus increases the secondary electrons. As Source Voltage
decreases, impact ionization mode has been changing.

Degradation by HCI is nΔP=At , Where P= parameter gm,

Vth, isat.

n- Channel, Eyring Model -N (Ea/KT)

subMTTF=B(I) e (5)

P-channel -M (Eg/KT)

gateMTTF=B(I) e (6)

Substrate current Vs Voltage in p-channel is substrate

doubles for each 0.5V increase in Vsd. Acceleration factor is
defined in Eq. (7)

(B(1/Vdd-1/Vdd,max))
AF=e (7)

D. Negative Bias Temperature Instability (Slow Trap)

Shift in Vt . Holes trapped between Si/SiO2 interfaces,
especially in PMOS. Holes are thermally activated and gain

sufficient Energy to disassociate Si/SiO2 defects near LDD.
Concentration of holes is directly proportional to temperature.

NBTI decreases Idsat, decrease in gm & Ioff increases and Vth
increases. (T = 100-25

o
C, E = 6MV/cm).

(-Ea/KT)

1 2ΔVth=Af (t)f (Vg)e (8)

Silicon dangling bond on interface inactivated by H, Si-H,
stress (High Temperature), increase in bias, holes gives to

electro-thermal reaction frees H. Silicon dangling bond

becomes interface state and H diffuses in oxide film. Some
diffusing H joins with defects to form traps. Increase in

interface state and charge resulting from traps in oxide for
degrading Vth. Recovery by removing stress bias and applying

reverse bias. NBTI is important in circuits in which DC stress
is applied.

III. STUDY, OPERATION AND TESTING OF 4N36

OPTO-COUPLERS

A. Introduction

An Optocoupler (in Fig : 1) o r optoisolator is a cool

litt le device that allows you to completely separate sections of

an electric circu it. An optocoupler or sometimes refer to as
opto-isolator allows two circu its to exchange signals yet

remain electrically isolated. It consists of and LED at the input
and Photo-transistor at the output and the isolation is

implemented by light medium [5].

Due to the degradation of Opto-couplers, Reliability

plays important role.

 Fig: 1 Block Diagram of 4N36

RASDAT 2011 Page 61

3

4N36

4N36

4N36

E1

E2

R1

R2

id

ic

ic

ic

Vd

Vce

4N36

4N36

4N36

E1

R1

id

Vd

Current transfer ratio (CTR) is the main characteristic for
operation of Optocouplers. For fixed Vce, CTR as in Eq. (9)

 Collector

Diode

I
CTR=

I
 (9)

The current transfer ratio (CTR) is the amount of output

current derived from the amount of input current. CTR is
normally expressed as a percent. CTR is affected by a variety

of influences, including LED output power, hFE of the

transistor, temperature, d iode current and device geometry. If
all these factors remain constant, the principle cause of CTR

degradation is the degradation of the input LED. Other
characteristics include Id Vs Vd, transmission speed and

operating temperature range.

B. Optocoupler Input (LED)[8]

The area of greatest concern in optocoupler reliability has

been the infrared LED. The decrease in LED light output
power over current flow affects the performance. Companies

are focused on the infrared LED to improve CTR degradation
and consequently achieved a significant improvement in

coupler reliability. The improvements have included die
geometry to improve coupling efficiency, metallization

techniques to increase die shear strength and to increase yields
while reducing user cost, and junction coating techniques to

protect against mechanical stresses, thus stabilizing long-term

output.

C. Optocoupler Output (Photo-Transistor)

There are varieties of outputs available like bipolar
transistors, MOS, SCR with different ratings to suit particular

applications. The slow change in the electrical parameters over
time when voltage is applied which is termed as electric field.

This is extreme at 100C with high voltage 1KV. This is due to

the release of charge carriers which results in change of gain,
reverse current and reverse voltage where direction of field is

important. To improve characteristics, pn junctions are
protected by transparent ion screen.

D. Experimental Setup

4N36 is 6-p in Dip. The pins on the left side refer to LED

inputs and on the right side refer to phototransistor output.

Ageing Tests: There were using several accelerated wear-out
tests for ageing tests of optocouplers. Many parameters include

LED ageing and ambient temperature on photo-detector is
suspected.

Circuit Diagram for 4N36: Two types of tests are carried out;
temperature and input current in Fig 3. In order to highlight the

ageing tests of optocouplers, first measure their funcional
characteristics after that ageing tests should be implemented.

Optocoupler Parameter Drift: Ageing tests are carried out in

two batchs: LED side and photo-transistor side. Two batches of
20 4N36 ICs with ambient temperature as 30C and junction

temperature as 105C using Fig 2.. By studying the variation of
CTR on the input measurement current on both the batches,

degradation of components stressed in photo-transistor is
insignificant event after 1000 hours. Significant degradation

exists in LED aging where fo r smaller currents it is more rapid

up to 100 hours and after that rate decreases with time.

 Fig 2: Circuit diagram of 4N36

Ageing Parameters: From the studies, LED ageing was
prominent role for degradation. We need to select the stress

parameter which degrades CTR; temperature or input current.
A batch with high LED current under ambient temperature and

another with high temperature value with low LED current.

Results: The effect of response times is negligible on both the
tests. But CTR degradation is prominent with high current

stress test. So input current is ageing parameter in CTR
degradation.

Variation of CTR with current and time:

From the above results, drift in CTR depends on I and t.

Failure is considered as if CTR reaches 50% lesser than

original value.

 CTR(0)-CTR(t)
D(t)=

CTR(0)

 (10)

Modeling of Optocouplers ageing [5]:

Bajenesco proposed a model for optocouplers ageing in

terms of life time as Eq. (11), junction temperature and current

across LED.

a

j

1 E
-
KT

d

A
t =

I e

 (11)

Where t1 is lifet ime, Id is ageing (LED) Current, Ea is

Activation Energy, Ea = 0.15eV, K is Boltzman Constant, Tj is
Junction Temperature and A is Time factor A.s

The main cause for CTR degradation is the reduction in
efficiency of the LED in the optocoupler. Its quantum

Fig 3: (a) Photo detector ageing (b) LED ageing

RASDAT 2011 Page 62

4

efficiency (total photons per electron of input current)
decreases with time at a constant current. The LED current in

Eq (12) consists of two components diffusion current and a
space-charge recombination current.

 qVf/KT qVf/KTIf(Vf)=Ae +Be (12)

For constant current, if recombination current increases due

to B, then diffusion current, the radiative component will
decrease. This reduction is due to both current density and

junction temperature. In general, emitter current density is a
function of current, junction geometry, resistivity of both the

regions of diode. Junction temperature is a function of coupler
packaging, power dissipation and temperature. As with current

density, high Tj will increase rapidly in proportion with
recombination current. From the block diagram of abstract

optocoupler [7] and CTR expression is given as in Eq. (13) ,

 CTR=I0/If(100%)=KRη(If,t)β(Ip,t) (13)

Where K is Transmission factor, R is Resistivity of

photodetector, η is Quantum efficiency with function of input
current and time and β is Gain of output amplifier with

function of photo current and time

Temperature variation affects the efficiency and gain. The

normalized CTR is given as in Eq. (14)

 ΔCTR Δη Δη δlnβ Δβ
= + ()+

CTR η η δlnIp β
 (14)

1st term: Major contribution to normalized CTR. In general, it
is negative over time.

2nd term: Second order effect of shift in Q point of amplifier as
efficiency changes.

3rd term: Neglig ible effect with change in gain over t ime.

Lindquist Model [6]:

Lindquist also suggested a model describing the relative (CTR)

degradation in terms of ageing current and measurement
current as Eq. (15).

 qΔV/KTj(0)-j(t)
D(%)= =1-e

j(0)

 (15)

Since the transistor life is more comparing to LED, the

optocoupler ageing mainly depends on degradation of LED

light output which is flux.

 ΔCTR Δj
=

CTR j
 (16)

Where output flux as in Eq. (17) is a function of efficiency of
opt coupler and diffusion current.

qV/KT

diffj=η.I =η.α.e (17)

By the above model, ΔV increases with decreasing current
means degradation increases as measurement current increases.

For direct band gap emitters, the degradation is due to non-
radiative component at which flux is measured. Current density

J(V) in Eq. 18 is combination of radiation and non-radiation
current densities

 qΔV/KT qΔV/2KTI(V)
J(V)= =αe +γe

A
 (18)

Where α denotes the coefficient of diffusion (Radiation) and γ

denotes the coefficient of recombination current (Non-
radiation). Taking the boundary values into consideration in

current density equation, by solving, change in gamma
coefficient with respect to initial value can be found as Eq.19

 -qΔV/2KT

0

Δγ qΔV
=-2ξ sinh +e -1

γ(0) 2KT

 
 
 

 (19)

Where ξ, the ratio of diffusion current and recombination
current and is given as in Eq. 20

 qV/2KTα
ξ= e

γ
 (20)

Substituting this value in the degradation mechanism, the final

equation is in Eq. 21

2
2

22

0

Δγ
1+

γ(0)D(%) 4ξ0(ξ0+1)
=1- 1+ -1

100 4ξ Δγ
1+

γ(0)

  
  
  
 

  
  
  

 (21)

where:Δγ=γ(t)-γ(0) and ξ, for the values of γ(0) and V(0).

Suppose, change in γ is proportional to current, dγ/dt = b.Is,

then the drift model of CTR is in Eq (22)

2
2

s

m ms m

22

m s

b.I .t
1+

4.C. I (C. I +1)γ(0)ΔCTR(t,I ,I)
=1- 1+ -1

CTR 4.C .I b.I .t
1+

γ(0)

  
  
  
 

  
  
  

 (22)

Where t = time in hours, Is = ageing current in A, Im =
measurement current in A, γ (0) = 10-12(A), C = 80(A-1/2)

and b = constant related to optocoupler

Cause of CTR Degradation:

Total electron flux emitted by LED degrades slightly

over operating time of the device. At higher stress currents,
change of light output increased over time . Main causes

include reduction in emitter efficiency, decrease in
transmission ratio, and reduction in responsiveness of

photodetector or change in gain of amplifier which all are
dependent on time. The critical cause is the result of electrical

and thermal stressing of PN junction. Assuming degradation
mechanis m establishes a resistive shunt parallel to active PN

Junction. At low values of input current, resistance path

exhibits appreciable impact on the performance which offers
low resistance. As current increases further, junction

experiences low resistance which draws more current.

Reliability of optocouplers:

Important area of investigation is the light output test
of LED, assembly area in die attach and wire bond.

Temperature cycle is a more effective screen than stabilization

RASDAT 2011 Page 63

5

bake. Temperature coefficient of expansion and low glass
transition temperature of unfilled, clear plastics is much greater

than that of the other components . To maintain reasonable
device integrity requires temperature range of operation and

stronger mechanical construction; some clear p lastics build up

mechanical stress on the encapsulated parts during curing. This
stress has been likened to rapid, inconsistent degradation of

IRED light output.

Although a filled plastic would stop these phenomena,

the filler also spoils the light transmission properties of the
plastic. The decrease in quantum efficiency of LEDs is the

main reason for CTR degradation of optocouplers. Other less

important causes of CTR degradation are a decrease in the
transmission of the transparent epoxy, a change in sensitivity

of the photodetector and a change in gain of the output
amplifier. It is now known that the rate of CTR degradation is

influenced by the materials and processing parameters used to
manufacture the LED, and the junction temperature o f the LED

in addition to the current density through the LED.

IV. DESIGN OF EXPERIMENTS

From the above study, input current to LED is dominant for

the degradation of CTR for optocouplers which interm is
dominant stress parameter. Temperature is second dominant

parameter for optocoupler which also degrades CTR. Other

stress parameters inculdes radiation effects [9] and humidity
were negligible. Statistically, the effect of both the stress

parameters is not quantified. To define this, the prominent
Design of experiments by Taguachi method is implemented

here which also involves screening of stress parameters . It
gives the statistical measure of amount of S/N generated by

specific parameter at specific level. This also helps in choosing

the design parameter for extented MTTF of the item.

Extended Taguachi Method [10]:

Item: 4N36 (If: 10 mA, 25C, CTR = 100) If: (0, 100mA) and T
(-55, 150C)

Failure Mechanisms: LED ageing Stress Parameters: Input
LED current and Temperature.

Levels: If (H: 70mA; L: 10mA) and T (H: 100C, L: 30C)

Samples: For each run, n = 5 sampels are selected.

Measurement Paremeter: CTR is calculated by measuring

currents on both input and output. Bigger is better (B-Type
Statistics).

Using the above two level parameters, L4 Array is constructed
as in Table 1.

Table 1. L4 Array

Run No: A(If) B (T) AXB

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

The average of CTR is

1 2 3 4 5Y Y Y Y Y
Y

n

   
 (23)

Signal to Noise Rat io is defined as S/N = -10log MSD where

2 2 2 2 21/Y1 +1/Y2 +1/Y3 +1/Y4 +1/Y5
MSD=

n
 (24)

Where YY = Average of YAVG value for that level.

By calculating results table and response table, the effect of the
both the parameters are quantified and will maximize the CTR

for the respective selection of parameters.

V. CONCLUSION

In this paper, the most dominant failure mechanis ms that
are responsible for the degradation of the performance are

illustrated. A detailed study, operation and modelling of an
optocoupler 4N36 is selected and reliability analysis is carried

out. LED aging is responsbile for the degradation of CTR of

optocoupler and mainly due to increase in the input current and
temperature. Statiscal analysis using design of experiments is

implemeted here for the screening of the stress parameter and
also the selection of the design parameter level for increase in

the CTR thus by improving the reliab ility. The dominant
failure mechanis m which affects the performance is found to

be degradation of LED by input.

VI. REFERENCES

[1] Semiconductor Device Reliability Failure Models SemaTech, AMD, 2000

[2] Electronic circuit reliability modeling Joseph, Moshe, Univ of Maryland,
2006, Elsevier, ScienceDirect

[3] Sony Quality and Reliability Handbook.

[4] Renesas Semiconductor Reliability.

[5] Study and modelling of optocouplers Ageing, J.B.H. Slama, H.Helali,
A.Lahyani, K.Louati, P.Venet and G.Rojat, Automation and Systems
Engineering

[6] A New model for light output degradation of direct band gap emitters.
P.F.Lindquist, HP, 1980

[7] Ageing Problem of optocouplers. I.Bajenesco. IEEE 1944

[8] Manufacturing and Reliability of optocouplers, Vishay Semiconductors,
2006.

[9] Radiation Characterization and Test Methodology Study of Optocouplers
Devices for Space Applications, Mangeret, Bonara, 2002

[10] Reliability improvement with design of experiments, 2nd edn, Lloyd W.
Condra

RASDAT 2011 Page 64

 Test Data Compression Technique for IP Core Based
SoC using Artificial Intelligence

Usha S. Mehta*, Kankar S. Dasgupta**, Nirnjan M. Devashrayee*, Harikrishna Parmar***

* Institute of Technology, Nirma University, Ahmedabad ** Space Application Center, ISRO, Ahmedabad
***C. K. Pithawala College of Engineering and Technology, Surat

Abstract: Test power and test time have been the major issues for
current scenario of VLSI testing. The hidden structure of IP cores in
SoC has further exacerbated these problems. The test data
compression is the well known method used to reduce the test time.
The test vector reordering method can be used for effective reduction
in scan power. In this paper, in beginning, the A* algorithm for from
Artificial Intelligence is used to reorder the test vector. The quality
parameter used for reordering is Weighted Transition Matrix
(AWTM) considering both, scan-in and scan-out vectors. The The
experimental results on ISCAS benchmark circuit proves that the
proposed method gives better power reduction.

Index Terms— Scan-in Power, Test Vector reordering, WTM, Artificial
Intelligence.

I. INTRODUCTION
Advancements in semiconductor fabrication technology has

helped the design engineers to accommodate more number of
transistors in a VLSI chip. With the proliferation of mobile
battery-powered devices, reduction of power in the embedded
VLSI chips has become an active area of research. During the
last decade, power reduction techniques have been proposed at
all levels of the design hierarchy - from system to device
levels. For the development of complex, high performance,
low power devices implemented in deep submicron
technology, power management is a critical parameter and it
cannot be ignored even during testing. With the increase in the
density of the chips, the problem of testing has also increased
manifold.

A related problem is to achieve power reduction during the
actual testing of a chip [10]. Power consumption in test mode
is considerably higher than the normal functional mode of a
chip. The reason is that test patterns cause as many nodes
switching as possible, while a power saving system mode only
activates a few modules at a time. Thus, during testing
switching activity in all the internal lines of a chip is often
several times higher than during normal operation. Sometimes
parallel testing is used in SoCs to reduce test application time,
which results in excessive power dissipation. Again,
successive functional input vectors applied to a given circuit
during system mode have a significant correlation, while the
correlation between consecutive test patterns can be very low.
Usually, there is no definite correlation between the successive
test patterns generated by an ATPG (for external testing) or by
an LFSR (for BIST) for testing of a circuit. This can cause
significantly larger switching activity in the circuit during
testing than that during its normal operation. Abnormal power
consumption during testing leads to adverse effects on the chip
and the testing process such as, (a) this may give rise to severe

hazards to the circuit reliability and lead to long or short-term
malfunction, (b) it can cause chip destruction due to excessive
heat in absence of proper heat dissipation mechanism, (c) it
can increase the packaging and cooling costs, (d) it can cause
the chip to falsely fail the test due to noise problems such as,
IR and Ldi/ dt drops, which may be a source of yield loss and
increase in production cost, (e) it may make it difficult to
obtain a carefully tested bare die to be used in multichip
modules (MCM) or what is called the Known Good Die
problem (KGD) and (f) it can dramatically shorten the battery
life when on-line testing is considered. For all these reasons,
various techniques have been proposed to reduce the impact of
high power consumption during test application. Low power
dissipation during test application is becoming an equally
important figure of merit in today’s VLSI circuits design with
BIST and is expected to become one of the major objectives in
the near future.

In this paper an AI-based approach is proposed to reorder
the test vectors such that the switching activity and hence the
power dissipation during testing is reduced. The paper is
organized as follows: preliminaries and prior works for low
power testing techniques and test vector reordering is covered
in Section 2. In Section 3, the motivation of the work and the
problem formulation is described. Section 4 explains the AI-
based approach of test vector reordering in detail. Empirical
results and performance comparison is presented in Section 5
followed by concluding remarks in Section 6.

II. PRELIMINARIES AND PRIOR WORK

A. Power dissipation in CMOS technology
The Power dissipation in CMOS technology [14,15] can be

classified into static and dynamic. Static dissipation is due to
leakage current that has small magnitude in digital CMOS
circuits. Hence, for such circuits, the dynamic dissipation is
the dominant term. Dynamic dissipation occurs at a node
when it switches from one logic level to another logic level.
Dynamic dissipation is divided into two components caused
by short circuit current and charge/discharge current. The
former is caused by a current pulse that flows from power
supply to ground when both n- and p- transistors are
simultaneously ON during small interval of switching period
and is negligible in high speed circuits where n- and p-
transistors are simultaneously ON for very short periods. The
later is caused by switching activity of transistors during 0 1 or
from 1 0 transitions. The charge/discharge current is the
current that charges and discharges the capacitive load on the
output of a gate during 0 1 or from 1 0 transitions and in

RASDAT 2011 Page 65

general, dominates dynamic power dissipation [15,16]. The
dynamic power dissipation (PD) in the circuit is given by (1)

PD= 1/2 Σjn CL(j) s(j)Vdd2 _________ (1)
where CL(j)is the load capacitance at line j of the Circuit
Under Test (CUT), s(j) is the frequency of switching of the
line j, and Vdd is the power Supply voltage. Other quantities
being constant for a given circuit, test vector set generated to
minimize the frequency of switching at circuit lines during test
application will minimize the heat dissipation during testing.

B. Prior work
A survey on low power testing of VLSI circuits has been

given in [5]. There are several techniques for low power
testing of VLSI circuits such as, test vector reordering, scan
chain ordering, power-constrained test scheduling, use of
multiple scan chains, low power test pattern generation, vector
compaction, etc. Test vector reordering is a very well-known
technique to reduce dynamic power dissipation during
combinational circuit testing through switching activity
minimization in the circuit. Test vector reordering is an
essential task in testing VLSI systems because it affects from
two perspectives: power consumption and correlation among
data used for test data compression. The problem of test vector
reordering can be mapped into finding Hamiltonian cycle in a
complete weighted graph, which is known to be NP-hard. So,
there is no polynomial time solvable algorithm for the
problem. Therefore, it is essential to find a good heuristic-
based solution for the problem. Existing approaches have used
several heuristics for solving this problem. In [11], the
problem of test vector reordering has been mapped into
finding the Hamiltonian path in a fully connected weighted
graph which is similar to the traveling salesman problem
(TSP). As there exists no polynomial time algorithm for TSP,
approximation methods of solution have been used. Solutions
for three cases have been given: (i) reordering for maximal or
minimal activity, (ii) reordering of test vectors with a desired
circuit activity across the VLSI chip while achieving a high
coverage for stuck-at faults, and (iii) reordering for localized
switching activities to maximize it in one part and minimize at
other part of the circuit. In another work [6], proposed greedy
algorithm has guaranteed decrease in power consumption
without modifying the initial fault coverage. A second
technique based on Simulated Annealing (SA) has been
proposed in which the greedy solution is used as initial
solution and it shows a considerable average power reduction
during test application Here, only Hamming distance between
test vectors has been used to avoid simulation of the circuit
and providing a solution (an Hamiltonian path of minimum
cost in the Hamming distance graph) in a short computation
time. It has been shown that there is a correlation between the
Hamming distance and the transition activity. But, if signal
transitions in the internal line be considered, then obviously
optimal solution can be found. Another work [4] has also
considered the Hamming distance minimization between
adjacent vectors to reduce the dynamic power dissipation
during testing. In [3], reduction of power dissipation during
test application has been studied both for scan designs and for
combinational circuits tested using built-in self-test (BIST).
They have shown that heuristics with good performance
bounds can be derived for combinational circuits tested using

BIST and a post- ATPG phase has been proposed for reducing
power dissipation during test application in full-scan circuits
and for pure combinational circuits. They have shown that
scan-latch ordering along with test-vector reordering can give
considerable improvement in power dissipation and
considerable savings can be obtained by repeating some of the
test vectors. In [8], an evaluation of different heuristic
approaches has been done in terms of execution time and
quality. Here, it has been shown that the Multi-Fragment
heuristic performs better than Christofides and Lin-Kernighan
heuristics in terms of time. It also outperforms the Christofides
heuristic in terms of quality and achieves performance very
close to Lin-Kernighan. They recommended reordering
algorithms to use the Multi-Fragment heuristic for near
minimal ordered sets of vectors that result in both reduced
power consumption and enhanced data compression ratio.
Recently, some works have formulated test vector reordering
problem as TSP and Genetic Algorithm (GA) has been used to
generate low power test patterns.

Chattapadhyay and Choudhary have shown proposed a GA-
based formulation to solve the problem of generating a test
pattern set such that it has high fault coverage and low power
consumption has been proposed in [2]. They have shown a
method of selecting a subset of test vectors generated by an
ATPG tool to reduce power dissipation by sacrificing a small
amount of fault coverage. In [13], authors have studied two
well known search methods (2-opt heuristic and a GA-based
approach) with reduction in fault coverage. They have also
combined those two methods for power reduction.
 Sudip Roy et.al has proposed a test vector reordering
technique with Artificial Intelligence approach. They have
shown the method only for combinational circuits C17 and
they achieved almost around 22% reduction in switching
activity.[17]

III. MOTIVATION OF THE WORK AND PROBLEM FORMULATION

A. Motivation of the work
Most popular techniques for test power minimization orders

the deterministic test patterns and several approaches have
been followed for test vector reordering such as, finding
minimum cost Hamiltonian path after mapping the problem
into TSP instance, finding optimal solution by applying GA or
SA. Although the dynamic power minimization problem by
test vector reordering during VLSI testing is an old problem,
here new approach is proposed for solving it using Artificial
Intelligence (AI). This problem can again be viewed as finding
optimal path from start to goal node in a search space by
applying informed search methods of AI, where start node is
the node when no test vector is selected and the goal node is
the node when only one test vector is remaining for selection.
A* search algorithm is a very well-known informed search
method used in AI. It takes advantages of both efficiency of
greedy search and optimality of uniform-cost search by simply
summing the two evaluation functions. Thus, it is optimally
efficient algorithm for finding optimal solution in an informed
search space. This has motivated us to apply A* search
technique for test vector reordering problem for dynamic
power reduction during testing.

RASDAT 2011 Page 66

Also Previous work of Sudip Roy et al. motivated us to
implement Artificial Intelligence algorithm for test vector
reordering to sequential circuits in order to reduce scan in scan
out power.[17]

B. Problem formulation
Consider a test set for a combinational circuit is given by T

= {t1,t2, ..tk} and its output response is given by
O={o1,o2,….ok} with a predefined fault coverage, where |T| =
k. Each test vector is formed by a fixed ordered set of bits bj
i.e., ti =< b1,b2, ...bl >, where l =length of the test vectors or
the number of primary inputs (PIs) of the circuit. Assume Π be
the initial ordering of test vectors T.

The problem of scan in scan out power minimization by test
vector reordering is to compute an optimal vector ordering Π_
of T such that total scan in scan out power dissipation in the
circuit during testing is minimized. The problem of reducing
the peak power dissipation is not considered here. Only the
average power reduction has been considered. Since, the
power dissipation is directly proportional to switching activity,
the problem can be restated as to find out an optimal path or
optimal ordering of vertices Π_ from the search space of
having all possible orderings of vectors V such that total
switching activity in the circuit is minimized.

IV. AN A*-BASED METHOD FOR DYNAMIC POWER
MINIMIZATION BY TEST VECTOR REORDERING

A. Basic underlying principle for A* algorithm
The A* algorithm combines features of uniform-cost search

and pure heuristic search to efficiently compute optimal
solutions. A* is a best-first search in which the cost associated
with a node is given by the evaluation function f (n).

 f (n) = g(n)+h(n) (2)
where g(n) is the cost of the path from the initial state to node
n, and h(n) is the heuristic estimate of the cost of a path from
node n to a goal node. Thus, f (n) estimates the lowest total
cost of any solution path going through node n. At each point,
a node with lowest f -value is chosen for expansion. Ties
among nodes of equal f -value is broken in favor of nodes with
lower h-values. The algorithm terminates when a goal node is
chosen for expansion. For a given node, the sum [current cost
+ heuristic value] is an estimation of the cost of reaching the
ending node from the starting node, passing by the current
one. This value is used to continuously choose the most
promising path. In practice, the algorithm maintains two lists
of nodes that are filled and modified during the search: an
OPEN list and a CLOSED list. OPEN list is a priority queue,
contains the tracks leading to nodes that can be explored in
increasing order of the evaluation function f (n). Initially, there
is only the starting node and at each step, the best node of
OPEN list is taken out. Then, the best successor of this node
(according to the heuristic) is added to the list as a new track.
The CLOSED list stores the tracks leading to nodes that have
already been explored.

B. Cost function g(n)
A complete weighted graph X(T,O,E,W) is constructed

where T is the test set, O is the output response, E is the set of
edges

Figure 1. a.) Test vector b.) Output Response

Weighted Transition Matrix(WTM) is used here to reorder the
test patterns. Here different test patterns passed through the
output response and hence the switching will occur and from
that WTM is made as shown in figure 1 c. The corresponding
equation is also shown below.

Figure 1 c.) Test vector passing through output response

WTM =∑n
j=1 ∑n

i=1 t(j , i) XOR O(j , i)*(n-i) (3)

| 0 2 3 2 4 4 4 4 |
| 5 0 2 1 5 5 1 3 |
| 4 2 0 2 4 4 4 1 |
| 6 4 1 0 6 1 2 2 |
| 3 1 4 3 0 3 5 5 |
| 5 3 2 1 5 0 3 3 |
| 3 1 4 3 3 3 0 5 |
| 6 4 1 0 6 6 2 0 |

Figure 2. Weighted Transition Matrix

and W represents the set of weights associated with each edge
indicating the total number of signal transitions (i.e., total
switching activity) in the whole circuit considering internal
lines for consecutive application of two adjacent test vectors.
So, WTM (Weighted transition matrix) represents a matrix of
total transitions and it is called as Transition graph or T-graph.
For example, Fig. 4 represents the T-graph for the test vectors
shown in Fig. 1(a),(b) for S27 benchmark circuit of ISCAS85.
 The cost function g(ni) of a successor ni of the node n is
calculated by g(ni) = g(n)+W(n,ni), where W-value is taken
from the T-graph.

RASDAT 2011 Page 67

C. Computing lower bound of switching activity : Heuristic
function h(n)
In the A*-based algorithm, lower bound of switching

activity among the remaining test vectors is taken as the
heuristic function h(n) for a node n. Lower bound of signal
transition is computed by bit-wise scanning the test vectors to
be selected to reach the Goal node. If for ith bit of all the test
vectors are 1 or 0, then the lower bound of switching activity
for ith bit is 0; otherwise, it is taken as 1. So, the maximum
value of the lower bound is equal to the length of the test
vectors, l.
Theorem 1. The lower bound (lb) of switching activity for the
remaining test vectors is given by the sum of the lower bounds
for all the bits.

An heuristic h is called an admissible heuristic, if it never
overestimates the cost to reach the goal. The above lower
bound of signal transition is computed using a procedure f ind
lower bound() and it never overestimates the actual cost of
reaching the Goal node. Thus, it is an admissible heuristic.
Some examples of calculating h() value has been shown in
Fig. 3 for the test vectors shown in Fig. 1(a).

t2 : 001
t3 : 110
t4 : 111
t5 : 010
t6 : 010
t7 : 100
t8 : 100

 Lb(bitwise) 111 =3
a.) For the remaining test vector <2,3,4,5,6,7,8> the

lower bound h()=3

t3 : 110
t4 : 111
t5 : 010
t6 : 010
t7 : 100
t8 : 100

 Lb(bitwise) 111 =3

b.) For the remaining test vector <3,4,5,6,7,8> the
lower bound h()=3

t3 : 110
t4 : 111

 Lb(bitwise) 001 =1

c.) For the remaining test vector <3,4> the lower
bound h()=1

t5 : 010
t6 : 010
t7 : 100
t8 : 100

 Lb(bitwise) 110 =2

d.) For the remaining test vector <5,6,7,8> the lower
bound h()=2

Figure 3. Examples of calculating lower bound by h(n)

D. The A*-based algorithm : AITVR
Here an approach is propose of test vector reordering for

power minimization using the of concept of A*-search of AI
and we call it as AI-based Test Vector Reordering (AITVR).
The dynamic power minimization problem by test vector
reordering involves selection of test vectors one by one.
Consider a search tree, with source node for the case when no
test vector is selected, and the goal node for the case when all
the test vectors are selected. A node at level p represents the
sequence of p test vectors chosen so far. To obtain a sequence/
Ordering with minimum dynamic power dissipation, we find
the minimum-cost path from Source to Goal, with
appropriately defined cost. Proposed algorithm AITVR finds
the optimal solution path. Each node of the tree has a cost =
g() obtained from so far due to selection of test vectors + h()
of the lower bound of switching activity among the remaining
test vectors. This implies the following result. Lemma 1. The
lower bound of switching activity h() is an admissible
heuristic.
Theorem 2 [12]. A* returns an optimal solution with an
admissible heuristic.
Lemma 1 and Theorem 2 leads to the following result.
Corollary. For the initial number of test vectors, the algorithm
AITVR terminates, and always produces a solution with
minimum switching activity.
In the following description of the algorithm - OPEN is a list
containing the un-expanded nodes, CLOSED is a list
containing the already-expanded nodes, g(n) is switching
activity from the Source to node n, h(n) is the estimated
switching activity from n to Goal, and f (n) = g(n)+h(n) is the
total estimated switching activity from Source to Goal passing
through node n. The pseudo code for the algorithm is given as
Algorithm AITVR.
__
Algorithm 1 AITVR()
__

1. Find the T matrix for the test set V
2. G(Source)=0;
3. H(source)=0;
4. F(source)=0;
5. Put Source in OPEN; found=False
6. while OPEN not empty and not(Found) do
7. Select a node n from OPEN with minimum f -value
8. Remove n from OPEN and put n in CLOSED
9. if n is a Goal node then
10. Found = True

RASDAT 2011 Page 68

11. else
12. Get the list of test vectors selected so far from
13. Source to the node n. Let, this is Vs
14. Get the list (V_s) of test vectors not selected so far

from Source to the node n
15. Expand n (* consider each successor test vector to the

next level in V_s *)
16. for each immediate successor ni of n do
17. g(ni) = g(n)+W(n,ni)
18. Find V_s for ni i.e., V_s (ni)
19. h(ni) = f ind lower bound(V_s (ni)
20. f (ni) = g(ni)+h(ni)
21. Put ni in OPEN
22. Direct backward pointer from ni to n
23. end for
24. end if
25. end while
26. Find the remaining test vector vrem to be selected; vlast

=last test vector selected in the Goal node n
27. Find SWlast =W(vlast ,vrem)
28. Calculate total switching activity SW = f (n)+SWlast
29. Output SW and solution path Π_ (* sequence of test

vectors selected *) by tracing back pointers

The proposed algorithms finds the optimal ordering of test
vectors from the search space as shown by the path
<5,2,7,1,3,8,4,6 > from Start node to Goal node in Fig. 4.

Figure 4. Finding optimal path in the informed search space

E. Time complexity of AITVR
Complexity of A*-based algorithm is obtained from its

empirical performance. However, time complexities can be
estimated for the heuristic computation, and node expansion.
The worst-case complexity for computing g() for each node is
O(n2). If l be the length of the test vectors, then the time
complexity for calculating h()-value for each node expanded is
O(ln), in worst case. Thus, a single node generation in AITVR
requires time O(n2)+O(ln).

V. EMPIRICAL OBSERVATION
The proposed algorithm AITVR was implemented in

MATLAB on an Windows platform with an Intel Pentium IV
proces- sor of 1 GHz clock speed and 1 GB RAM. For
evaluation of the proposed algorithm, S27 benchmark circuits
were considered. First test patterns were generated by the
Mentor Graphics. DFT Advisor and Fast Scan are used from
Mentor Graphics to generate patterns.

Mentor Graphics ATPG tool with 100% fault coverage and
those were taken as initial ordering of the test set. In this work,
we have reduced dynamic power consumption during test
application without losing stuck-at fault coverage. A
simulation-based technique has been used to obtain the actual
switching activity at the internal nodes of a circuit using unit-
delay model and the total Weighted Transition Matrix was
formed. The comparision of the switching activity is shown in
in Table 1.

Experimental result shows that the dynamic power of a
given combinational circuit can be reduced by about 56.52%
after applying the test vectors in the order given by AITVR
over the test vectors order given by Mentor Graphics, where as
Hamming distance method provides 17.39% reduction in
switching activity on an average for all the benchmarks.

VI. CONCLUSION
Test power has become a serious problem with scan-based

testing. It can lead to prohibitive test power in the process of
test application. In this paper we have proposed an AI-based
algorithm for dynamic power minimization through test vector
reordering. The proposed algorithm AITVR gives optimal
solution for the benchmark circuits. The switching activity for
the proposed algorithm has been compared with that obtained
by Hamming distance techniques. The results are quite
encouraging. This has been proved with sequential benchmark
circuits.

REFERENCES

[1] Concorde’s TSP solver,
http://www.tsp.gatech.edu/concorde/index.html. 2005.

[2] S. Chattopadhyay and N. Choudhary. “ Genetic Algorithm based
Approach for Low Power Combinational Circuit Testing.” In
Proc. of the VLSID, pages 552–559, 2003.

[3] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy.
“Techniques for Minimizing Power Dissipation in Scan and
Combinational Circuits During Test Application.” IEEE TCAD,
17(12):1325–1333, 1998.

RASDAT 2011 Page 69

http://www.tsp.gatech.edu/concorde/index.html.%202005

[4] P. Flores, J. Costa, H. Neto, J. Monteiro, and J. Marques-Silva.
“Assignment and Reordering of Incompletely Specified Pattern
Sequences Targeting Minimum Power Dissipation.” In Proc. of
the VLSID, pages 37–41, 1999.

[5] P. Girard. “ Survey of Low-Power Testing of VLSI Circuits.” IEEE
Design and Test, 19(3):82–92, 2002.

[6] P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac.
“Reducing Power Consumption During Test Application by Test
Vector Ordering.” In Proc. of the ISCAS, pages 296–299, 1998.

[7] H. Hashempour and F. Lombardi. “ATE-Amenable Test Data
Compression with No Cyclic Scan.” In Proc. of the IEEE ISDFT,
page 151, Washington, DC, USA, November 2003.

[8] H. Hashempour and F. Lombardi. “Evaluation of Heuristic
Techniques for Test Vector Ordering.” In Proc. of the GLSVLSI,
pages 96–99, 2004.

[9] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys.
“The Traveling Salesman Problem.” John Wiley, Chichester, 1985.

[10] N. Nicola and B. M. Al-Hashimi. “Power-Constrained Testing of
VLSI Circuits.” Kluwer Academic Publishers, 2003.

[11] K. Roy, R. K. Roy, and C. A. “Stress Testing of Combinational
VLSI Circuits Using Existing Test Sets.” In Proc. Of the ISVLSI,
pages 93–98, 1995.

[12] S. J. Russell and N. Peter. “Artificial Intelligence: A Modern
Approach”. Pearson Education, 2003.

[13] A. Sokolov, A. Sanyal, D. Whitley, and Y. Malaiya. “ Dynamic
Power Minimization During Combinational Circuit Testing as a
Traveling Salesman Problem.” In Proc. of the IEEE Congress on
Evolutionary Computation, volume 2, pages 1088–1095, 2005.

[14] Seongmoon Wang, Sandeep k.Gupta, Feb. “ATPG for HEAT
Dissipation Minimization During Test Application” IEEE Trans.
On computer Vol: 47, No. 2, pp 256-262, 1998.

[15] Z Luo et. All, “Test Power Optimization Techniques for CMOS
Circuits” Proceedings of the 11th Asian Test Symposium, 2002.

[16] K.Royand S.Prasad, “Low Power CMOS VLSI Circuit Design”
Wiely Inc. 2000.

[17] S Roy, S Gupta, A Pal “Artificial intelligence approach to test
vector reordering for dynamic power reduction during VLSI
testing” Proceedings of IEEE Region 10 Conference, TENCON
2008, pp.1- 6

TABLE 1

 COMPARISON OF SWITCHING ACTIVITY

Sr.
No

ISCAS
circuit

Switching
in case of
Ready
Test Data

Switching in
Hamming
Distance
Based
Reordering

Switching in
Artificial
Intelligence
Based
Reordering

Improvement
in
% reduction

1 S27 23 19 10 56.52
2 S298 1595 1631 1328 16.73
3 S344 1475 1517 1244 15.66
4 S349 1602 1615 1312 18.10
5 S382 3951 4008 3595 9.01
6 S386 402 389 250 37.8
7 S400 4124 4139 3439 16.61
8 S420 3239 3241 2642 18.43
9 S444 4218 4187 3585 15.00
10 S510 754 697 536 28.9
11 S526 4523 4510 3969 12.24
12 S641 3181 3185 2674 15.93
13 S713 2590 2626 2165 16.40
14 S820 857 794 616 28.12
15 S832 886 815 653 26.29
 Avg=22.11

RASDAT 2011 Page 70

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4766747&queryText%3DArtificial+Intelligence+Approach+to+Test+Vector+Reordering+for+Dynamic+Power+Reduction+During+VLSI+Testing%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4766747&queryText%3DArtificial+Intelligence+Approach+to+Test+Vector+Reordering+for+Dynamic+Power+Reduction+During+VLSI+Testing%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4766747&queryText%3DArtificial+Intelligence+Approach+to+Test+Vector+Reordering+for+Dynamic+Power+Reduction+During+VLSI+Testing%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4753725
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4753725

A design methodology for specification and
performances evaluation of Network On Chip

Djamel Adrouche∗, Rabah Sadoun∗, Sébastien Pillement†
∗ Ecole Nationale Polytechnique d’Alger, Algeria

Djamel.Adrouche@gmail.com, rabah.sadoun@mail.enp.edu.dz
† University of Rennes 1, CAIRN IRISA/INRIA, France

Sebastien.P illement@irisa.fr

Abstract—In modern SoC the bottleneck is the interconnection
structure. Networks on Chips are good solutions in order to
offer high flexibility, scalability, while maintaining performances
requirements.

Designing a NoC based circuit is difficult due to the lack
in methodology including NoC parameters in the design-cycle
life. Some development techniques are used to model NoC at a
high level of abstraction for validation and functional verification.
However, these tools rarely support simulation for performances
evaluation of NoC, in terms of throughput and latencies.

In this paper, we propose a design methodology for NoC
design. The NoC architecture behavior is described by using
the SDL language. We then generate SDL Agent to evaluate the
performances of the NoC in the NS2 simulator. As a proof of
concept we implement and evaluate a simple protocol in SDL.

I. INTRODUCTION

IC designers faces challenges to propose an interconnection
structures that are scalable, reusable and efficient. These
communications platforms needs to support the integration of
an increasing number of heterogeneous cores on a single chip.
The Network-on-Chip (NoC) paradigm seems particularly
adapted. It consists to use the non-integrated network concepts
such as communication protocols and topologies, to offer
flexible and distributed integrated communication structures.

Nowadays the communication structures is the bottleneck
of modern System-on-Chip (SoC). This will requires that
designing frameworks must address all the properties of NoC.
As a NoC offer flexibility, designers must take into account
the implementation costs of such a structure (area of routers,
power consumption, . . .). Due to the design complexity of
NoC systems, the frameworks must allow early simulation and
performance estimation prior to system implementation.

To make early estimation of network performances, early
works proposed to reuse the design approaches and tools
widely used in non-integrated networks domain. The NoC is
modeled at a high level of abstraction in order to perform
bandwidth and latency evaluations. unfortunately, these tools
must be extended in order to be adapted to the NoC charac-
teristics (area overhead estimation, power consumption, . . .).

Formal methods are a particular kind of mathematically-
based techniques for the specification, development and veri-
fication of software and hardware systems. The use of formal
methods for system design is motivated by the expectation that,

it is possible to formally verify essential design properties to
improve the reliability and robustness of a design. However,
using formal methods comes with a high timing cost and
high complexity descriptions. Furthermore, some works have
proposed to use formal development techniques to model
the NoC, but they do not permit to integrate simulators for
performances evaluation.

In this work, we propose a complete NoC design method-
ology (Fig. 1) that supports the specification, the implemen-
tation and the validation/simulation steps. The entry point of
our methodology is a formal language, in order to produce
specifications and check at a high-level any inconsistencies in
it. Also, the high level model can be extended for NoC design
exploration, by estimations of specific NoC characteristics.
The formal specification is then interfaced with the NS2
simulator [1] for performance evaluation purpose. The NS2
tool is widely used in the non-integrated networks domain, to
simulate communication protocols and to study the interoper-
ability of heterogeneous protocols.

In this paper, we presents the NoC specification and the
link with the performances evaluation. The remainder of this
paper is as follows: in the next section we draw a state of the
art of NoC design frameworks. In section III we present the
NoC design methodology. Finally, after presentation of results
in section V, some conclusions and future work are discussed.

II. RELATED WORKS

With the emergence of the NoC concept [2], researchers
have realized the need in design methodologies which fulfill
the NoC design style. For topology and performances eval-
uations, some existing network simulator such as Network
simulator (NS2) was used to simulate and observe the behavior
of a NoC [3] and [4]. But in this works the proposed simulation
frameworks used predefined NS2 component, such as UDP
protocol, which are not suited for NoC implementation. The
main problem coming from the definition of NoC protocol
under NS2.

Among all the proposed approach in NoC design, [5]
propose a design flow that allows to automatically determine
the parameters of a NOC giving application constraints. The
design environment tool µSpider was developed, it consists of
tools for decision and synthesizable VHDL code generation.

RASDAT 2011 Page 71

This design approach is dedicated to a specific NoC architec-
ture based on TDMA bandwidth reservation technique. The
ATLAS environment [6] was developed to automates several
design steps. The design flow supports: NoC generation,
simulation and performance evaluation based on various traffic
generation. This environment is dedicated for the HERMES
network a 2D mesh NoC.

Formal description techniques were studied for NoC func-
tional verification and simulation purpose. In [7], the author
gives some indications where formal methods can be used in
the NoC research field. SDL has been used in [8] to create
a simulator tool for performance evaluation. They have used
SDL as it has the features to represent block, concurrent pro-
cess, dynamic generation of process, communication channels
and timers. The simulator is created to evaluate architecture
options buffer size in switches and their effect on delay and
packet loss. In SDL, the NoC performances evaluation, in
terms of latencies and throughput is a complex task.

A number of works have proposed a designing frameworks
for NoC architecture. These frameworks permits to evaluate
the NoC performances throughout the design cycle to suit
application’s needs. The main problem is that most of these
design frameworks are specific to particular NoC or implement
only part of the overall framework.

III. NOC DESIGN FRAMEWORK

We propose a complete methodology (Fig. 1) independent
of a particular NoC, implementing the overall design process
(i.e. from specification to implementation via simulation). Our
methodology is based on an SDL (Specification and Descrip-
tion Language [9]) specification of the NoC. SDL was chosen
because it was designed for specification and validation of
communication systems. All the constructs required for a NoC
representation are presents in the language. The use of this
formal language will enable us to make high level specification
checking, to evaluate the correctness of the specification. As
said above, it is quite difficult to make performance evaluations
at the SDL level to obtain accurate results. We then use the
NS2 simulator for this purpose.

The NS2 simulator should be extended to support the SDL
specification. So, a new module (SDL Agent) was developed in
order to define new NoC protocol in the NS2 simulator. Based
on the redefinition of communication mechanism of NS2 this
module permits to create in the interpreter a simulation model
based on the SDL specification of the NoC.

The network infrastructure is generated from the SDL
specification to represents the network’s nodes in the NS2
environment. These modification permits to efficiently use
the different environment. The SDL specification describe the
overall NoC protocol layers (transport , network and data
link layers), the communication parameters (routing proto-
col, communication protocol, switching mode) and the flow
control. While the simulator components provide the network
parameters such as topology, buffers size and links.

As NS2, do not support NoC parameters evaluation, we
will introduce in the specification some models for area and

power evaluation of a specific implementation of the NoC.
Finally a classic SDL-to-VHDL code generator is used for
implementation of the resulting network.

SDL Simulation

SDL Specification

NS2 Modelisation

SDL Validation

NS2 Performances

Evaluation

Simulation

Implementation

Architectural

raffinement

SDL application

generation

SDL Agent

creation

SDL to VHDL

traduction

TauSDL environment

NS2 environment

Architectural

raffinement

Fig. 1. Proposed NoC design flow. After the formal description of the NoC,
a SDL Agent can be generated in order to integrate the SDL description in
the NS2 environment for simulation purpose. After validation and simulation
a VHDL generator is used for implementation of the NoC.

In this paper, we present the SDL specification, the func-
tional simulation and the integration of SDL specification
within the simulator to achieve some performances evaluation.
The formal verification of the NoC protocol, the validation and
the implementation on a target circuit are under the scope of
this paper, since they are ongoing works.

A. SDL specification

In the first step of the methodology, we model the NoC at
a high level of abstraction. The SDL language is well suited
for describing reactive discrete systems [10], which is a good
model for NoC description. For instance, a NoC is composed
of switchs, that reacts on a discrete event: a packet arrival.
After that it takes a decision and perform some actions in order
to route the packet across the network. Due to the high level
of description, it is relatively simple to build such a complex
system model.

In SDL, the behavior of the system is specified using
concurrent processes. Each process contains an extended fi-
nite state machine wich communicate by exchanging signals
through channels (or signal routes).

A NoC protocol is constructed as several layers (transport,
network, data link, etc.). Each layer providing services to
higher layers of the protocol. Therefore, the NoC protocol
can be represented by an SDL system which is composed of
blocks interconnected by channels, as depicted in Figure 2.
At the higher level of hierarchy, we find the NoC protocol

RASDAT 2011 Page 72

layers (transport, network, etc.). Each layer is build over
blocks which implement services of the layer. Each block is
composed of processes, interconnected by signals, and which
describe the behavior of this block. For instance, the network
layer is represented by the "network block" which contains a
"routing process". This process achieve the routing algorithm.

Transport
layer

process
fragment

sig2

listen

closed

block Transport

process
Fragment

 [sig2]
 [sig1] sr1

Network
layer

process
routing

sig1

ready

idle

block Network

process
routing

 [sig1]
[sig2] sr2

ch1

[sig2]

[sig1]

system NoC

state
machine

Fig. 2. In SDL, the NoC protocol is modeled as a system containing blocks.
Each block may contain either blocks or processes. Each process contains
an extended finite state machine. State machines communicate by exchanging
signals through channels (or signal routes).

The TauSDL [11] editor is used to describe functional rep-
resentation of a system hierarchy using blocks and processes.
To check and debug the syntactic errors of the description, the
SDL compiler is used.

B. SDL simulation

SDL simulators provide high caliber debugging features,
from symbol by symbol stepping to automatic simulations
using various strategies (random, exhaustive, bit-state, super-
trace etc.). For the functional simulation of NoC protocol, we
use the MSC (Message Sequence Charts) diagrams which are
describing the requirements on the dynamic behavior. We can
notice that currently only functional simulation is supported.

IV. INTEGRATION OF SDL APPLICATION WITHIN NS2
ENVIRONMENT

In order to obtain precise evaluation of network perfor-
mance, we needs to interface the NoC specification with the
NS2 environment. This is done by the mean of generating
an SDL Agent which represents one node of the network.
The topology of the network is obtained by the mean of
interconnecting several ns node, using ns links.

A. Structure of the NoC architecture in NS2

Figure 3 shows the structure of the NoC architecture which
should be implemented on NS2. Each node of the network
represents an SDL Agent which is composed of an SDL appli-
cation and SDL interface. The SDL application is generated
from the SDL specification thanks to the the Cadvanced SDL
to C compiler. An SDL application (Fig. 3) is:

• the SDL system: which describes the SDL system be-
havior. This block implement the NoC protocol. It is

implemented by the way of independent C processes
communicating through the SDL kernel.

• the SDL Kernel: this system layer support the scheduling
of SDL processes and the SDL system communications.

• the environment functions: This layer implement the
interface of communication between the SDL system and
the external environment, in our case, the NS2 simulator.

SDL 00 SDL 10 SDL 20

SDL 01 SDL 11 SDL 21

SDL 02 SDL 12 SDL 22

Process 1 Process 2

SDL System

SDL Kernel

Environnement functions

SDL send

primitive

SDL receive

primitive

xOutEnv xInEnv

SDL application

SDL Interface

SDL Agent

Fig. 3. Structure of a Noc architecture in NS2. Each ns node implements an
SDL Agent which is composed of an SDL application and an SDL interface.

B. Operation of the NoC architecture in NS2

In NS2, the SDL network is described in a script file which
instantiate the SDL application and permits to monitor the
progress of the simulation by the ns scheduler.

The ns and the SDL schedulers operate according to the con-
cept of globally-asynchronous locally-synchronous. Indeed,
the two schedulers are independent. The ns scheduler ensures
the progress of the overall simulation while the SDL schedule
the application operations. By construction, in the SDL Agent,
the SDL interface and the SDL application needs to operate
in synchronous mode. To achieve this operation mode, we do
some changes in the SDL scheduler.

As we will see the data carried out by ns components are
provided to the SDL application through the xInEnv() function.
The SDL scheduler implements an infinite loop which calls
the xInEnv() function in order to extract signals sent by the
environment to the SDL applications. We modify this behavior
so that the function is activated only if a signal is sent
to the SDL application. This activation is controlled by the
SDL interface which notifies to the SDL application when it
receives a packet from an ns components.

Similarly, a timer is implemented in the SDL interface to
allow to the SDL application to notify that data provided
through the xOutEnv() function should be transmitted through
the network.

The data area must suitable to represented the signals treated
by the components of the network (SDL application, SDL
interface, ns links, etc.). Figure 4 shows the structure of data
exchanged through the network. Inside an SDL application,
SDL signals ensure transfer of data exchanged between dif-
ferent processes.

RASDAT 2011 Page 73

data are encapsulated
in ns packet

in xOutEnv function data are extrated
from the SDL signal parameters

An SDL signal sent to
another SDL application

ns Packet

Data

hdr_Sdl

Data 1

SDL Agent Packet

Data n

Common

hdr_Sdl

data are desencapsulated
from ns packet

Process 1 Process 2

SDL System

Environnement functions

xOutEnv xInEnv

SDL Interface

SDL signal (signal info, Param1,..,Param2)
data are carried by signal parameters

in xinEnv function data are affected
to SDL signal parameters

SDL Application

An SDL signal sent from
another SDL application

Fig. 4. Structure of data exchanged between the SDL application components
and the SDL interface.

When signals are exchanged between two SDL applications,
data are extracted from the SDL signal parameters thanks
to the xOutEnv() function. Data are then passed to the SDL
interface through temporary buffers. SDL interface encapsulate
the data in ns packets to be transmitted over the network. Upon
a packet is received by the destination node, the SDL interface
extract data and store them in a buffer. Data are then affected to
SDL signals parameters through the xInEnv() function. These
functions are described in section IV-C2.

To allow the network components to identify the data type
to be treated, an identifier is associated to the data exchanged.
For example, the packets exchanged on ns links are composed
of two fields. The first is used to carry the data. The second
field identifies the data type carried by the packets.

Also, an addressing system is used to identify the nodes on
the network. In fact, each node have two address. The first
address identifies the ns nodes in the network. This address
is provided to each ns node through the simulation script.
The second address is used to identify the SDL applications
over the SDL network. These addresses are expressed in XY,
where X represents the horizontal position and Y the vertical
position. Each time an SDL application instance is created in
the simulator it received it’s address through the SDL kernel.
A correspondence between these two system needs to be made
(an SDL application is mapped on a ns node).

All these adaptations are supported in the SDL Agent.

C. The SDL Agent

The SDL Agent (SDL application+SDL interface) represents
the new protocol added to the NS2 environment. The key point
in integrating SDL Agent in the simulator, rely on the correct
definition of the SDL interface.

1) SDL interface: The SDL interface implements mainly
the functions which allowed to insert the SDL protocol in the
simulator. This interface is developed to:

• ensure a synchronous data transmission between SDL
applications and ns components,

• allow data transfer between SDL signals and ns packets,
• locate the SDL application in the ns architecture.
The SDL Agent (representing the NoC protocol) is declared

in the ns architecture as a subclass of the Agent class. This
permit to inherit the functions that allow to send and to receive
data exchanged between the SDL applications. The SDL Agent
contains and mainly implements the command(), send() and
recv() functions .

//NoC protocol packet header
struct hdr_sdl {

unsigned int id;
unsigned int payload;

//required method for the PacketHeaderManager to access
//NoC protocol

packet header
static int offset_;
inline static int& offset() {

return offset_;
}
inline static hdr_sdl* access(const Packet* p) {
return (hdr_sdl*) p->access(offset_);
}

};

Listing 1. SDL header packet declaration.

The first thinks to do, is to add the definition of SDL packet
header by the way of the PacketHeaderManager to the ns
packets headers. As said before in NS2, the packet header
have a data structure composed of two fields. The first one
called "payload" is used to transport data exchanged between
the SDL applications. The second field called "id" is used to
distinguish between different types of data. Listing 1 shows
the declaration of the SDL packet header and the link with
the ns packet structure.

In order to take into account SDL Agent a link between the
simulator and the objects interpreter is required. So, when
an object is created in the interpreter, an equivalent object
is created in the simulator. Listing 2 shows the association
of the SDL packet which is defined by the static variable
class_sdlhdr of the SdlHeaderClass. It also shows the link
of the SdlAgentClass object with the interpreter TclClass class.

int hdr_sdl::offset_;
static class SdlHeaderClass: public PacketHeaderClass {

public:
SdlHeaderClass():PacketHeaderClass("PacketHeader/Sdl",
sizeof(hdr_sdl)) {

bind_offset(&hdr_sdl::offset_);
}

} class_sdlhdr;

static class SdlAgentClass : public TclClass {
public:
SdlClass() : TclClass("Agent/Sdl") {}
TclObject* create(int argc, const char*const* argv) {

return (new SdlAgent(nsaddr_t));
}

} class_sdl;

Listing 2. Association between the simulator and the interpreter objects.

RASDAT 2011 Page 74

2) SDL application: As said above the SDL application
is generated by the Cadvanced SDL to C compiler. We also
use the Targeting Expert tool to manage and make easier
the complete process of targeting. In the Targeting Expert
tool, we configure the compiler and link modules to get an
SDL application library which is compatible with the NS2
environment. As described above, this library is composed of
SDL system, SDL kernel and environment functions. Compiled
with the SDL interface, we obtain an SDL Agent which is
instantiated in the ns interpreter to create the NoC architecture.

In order to enable the communication between the SDL
applications and the ns components, we add in the environ-
ments functions the actions that should be performed when an
SDL application send/receive signals to/from the neighboring
nodes of the network. For instance, we implement actions that
control the execution of the SDL application and the SDL
interface timers, and permits to affect/extract data to/from the
SDL signals parameters.

a) The xOutEnv() function: Each time a signal is sent
from the SDL system to the environment, the function
xOutEnv() is called. The xOutEnv() function will have the
current signal to send as parameter, so we have all the
information contained in the signals (signal type, the sending
and receiving process instance and the parameters of the
signal). As shown in listing 3, in the xOutEnv function, the
NameNode is used to determine the signal type provided
by the SDL system. For each signal type, we extract data
parameters carried out by the signal and we activate the SDL
interface timer to notify that a packet needs to be sent through
the network.These information will be used to construct the
ns packet by the SDL interface.

extern void xOutEnv(xSignalNode *SignalOut)
{
...

if ((*SignalOut) -> NameNode == To_Env)
{
...
start_req = ((yPDP_To_Env)(*SignalOut)) -> Param1;
start_rsp = ((yPDP_To_Env)(*SignalOut)) -> Param2;
...
wait_ns = true;
xReleaseSignal (SignalOut);
return;
}
...

}

Listing 3. Actions achieved in the xOutEnv function.This function prepare
SDL signals to be transmitted as ns packet

b) The xInEnv() function: The SDL kernel implement a
loop which continually call the xInEnv() function in order to
see if signals are sent from the environment to the processes
within the SDL systems. When a packet is received by the
SDL interface, a notification is made that information are
to be forwarded to the SDL system. The xInEnv() function
implements two functions that allow to forward signals to the
SDL system. We use the xGetSignal function to obtain a data
area suitable to represent an SDL signal and the SDL_Output

function to send the signal to the specific receiving process
according to the semantic rules of SDL.

Listing 4 show how data are affected to a signal parameters
in the xInEnv function. The xGetSignal function provides
three parameters. The first parameter is a reference to the
symbol table node which represent the current signal type.
The second parameter represent the receiver process identifier
Pid, in our case we use xNotDefPId to indicate that the
signal should be sent as an output without TO clause. The
last parameter gives the sender Pid value, in our case we
use xEnv value to refers to an environment process instance
(i.e. an ns node). In the SDL_output function we use the
value (xIdNode *)0 to represent that no via list of channels
is present.

#ifndef XTENV
extern void xInEnv (SDL_Time Time_for_next_event)

#else
extern SDL_Duration xInEnv (SDL_Time

Time_for_next_event)
#endif
{

xSignalNode SignalIn;
...
SignalIn = xGetSignal (Fr_Env, xNotDefPId, xEnv);
((yPDP_Fr_Env)SignalIn)->Param1 = start_req;
((yPDP_Fr_Env)SignalIn)->Param2 = start_rsp;
...
SDL_Output (SignalIn, (xIdNode *)0);
...
#ifdef XTENV
return SDL_Time_Lit((xint32)0,(xint32)0);
#endif

}

Listing 4. Actions achieved in the xInEnv() function. This function permits
to forward information from the ns environment to a particular SDL system.

V. RESULTS

As a proof of concept for the overall methodology, we
implement in the simulator a NoC architecture in which each
network node implements the ping protocol. Even if the ping
protocol is not a NoC protocol, the goal is to illustrate our
design methodology and to validate the integration of an SDL
specification into the NS2 environment. Therefore, we use the
approach presented in Section III to model the ping protocol.
As the SDL interface is constant for the methodology and
implement the required modification, only the SDL applica-
tions are generated for the implementation of this “NoC”. The
simulation model is described in OTcl script. The topology of
the NoC (Fig. 5) is built through the instanciation of nodes
and links. We built a simple NoC with 4 nodes with a mesh
topology. The nodes are interconnected with bidirectional
links. We generate a traffic which allow to transmit packets in
cyclic manner from node 0 to node 3. The generated traffic is
sufficiently significant to involves packets drop.

A periodic bandwidth record is made at each SDL appli-
cation node. The results are shown in the Figure 6. In fact,
bandwidth record and links parameters analysis is useful for
design of an appropriate switch for the NoC.

RASDAT 2011 Page 75

Fig. 5. The experimental ping “NoC”. Four SDL systems network shown in
the NAM simulator tool. The ping traffic is generated between node 0 and 3.

Fig. 6. Bandwidth available for each node in the NoC.

We monitor the queues implemented in the NS2 links to
calculate the number of packets in the queue at a periodic
time (see Figure 7). For instance, the analysis of packets loss
and the amount of packets in the queue allow the choice of
the optimal buffer size in switchs.

Fig. 7. Queue monitoring of each node.

The main results here is that the methodology permit to
simulate a NoC described in SDL language. As all the code
is generated and the interface defined it is then easy to make
the exploration of NoC parameters exploration. In NS2, it is
also possible to analyze the number of packets sent, received
and rejected according to the network load traffic (not shown

here due to space limitation) to evaluate NoC implementation
(by changing the queue size for example) on the overall
performance of the constituted network.

VI. CONCLUSION AND FUTURE WORKS

In this paper a NoC design methodology is presented.
First, an overall design flow is described which includes the
specification and validation of a NoC. The proposed flow uses
the SDL language to describe the NoC protocol independently
of any architecture. The integration of the SDL description in
the NS2 environment for performance evaluation purpose has
been presented and validated on a proof-of-concept example.
Finally the NoC implementation can be made by the use of a
SDL to VHDL generator.

Also, the fact that using generated code from the SDL
description for performances evaluation, permit to not main-
tain separated code for simulation and description purposes,
avoiding consistency check and error in translation.

Currently we are describing a real NoC using our method-
ology, to compare with real implementation results. Also, in
the future, high level models of area and power consumption
will be added in the specification level, to evaluate the NoC
implementation costs.

REFERENCES

[1] The network simulator ns2, information sciences institute, university of
southern california. [Online]. Available: http://www.isi.edu/nsnam/ns

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of
network-on-chip,” ACM Computing Surveys (CSUR), vol. 38, pp. 1–51,
2006.

[3] M. Ali, M. Welzl, A. Adnan, and F. Nadeem, “Using the ns-2 network
simulator for evaluating network on chips (noc),” in Proc. International
Conference on Emerging Technologies ICET ’06, 2006, pp. 506–512.

[4] Y.-R. Sun, S. Kumar, and A. Jantsch, “Simulation and evaluation for
a network on chip architecture using ns-2,” in 20th IEEE Norchip
Conference, novembre 2002.

[5] S. Evain, “µspider environment for network on chip design,” Ph.D.
dissertation, INSA de RENNES, 2006.

[6] Atlas - an environment for noc generation and evaluation. [Online].
Available: http://www.inf.pucrs.br/gaph/AtlasHtml/AtlasIndex_us.html

[7] K. Goossens, “Formal methods for networks on chips,” in ACSD05,
Fifth International Conference on Application of Concurrency to System
Design, 2005, pp. 188–189.

[8] R. Holsmark, M. Högberg, and S. Kumar, “Modelling and evaluating of
a network on chip architecture using sdl,” in 11th SDL Forum, juillet
2003.

[9] SDL Methodology guidelines, Appendice i, recommendation z.100 ed.,
International Telecommunication Union, March 1993.

[10] Z. Mammeri, SDL : modelling protocols and reactive systems. Hermes
science publications, 2000.

[11] T. Telelogic Tau Generation 1. [Online]. Available:
http://www.telelogic.com/products/tau/index.cfm

RASDAT 2011 Page 76

FOCAS: A NOVEL FRAMEWORK FOR SYSTEM-ON-

CHIP DATAPATH VALIDATION
Balvinder Singh Khurana1, Atul Gupta2

Networking and Multimedia Design, Freescale Semiconductors
Noida, UP, India

 1
Balvinder.Khurana@freescale.com

 2
Atulg@freescale.com

ABSTRACT – With the enablement of the sub-micron

technologies and the advent of multi-core devices, the

complexity of the system-on-chip (SOC) is increasing

exponentially. This technology drift is pushing the post-

silicon validation to a new extreme. The challenge is to

rapidly validate the entire application scenario and deliver

a zero defect silicon to the customer under squeezed

timelines. This paper proposes an innovative Framework

for On-Chip Application data-path Stress (FOCAS)

validations, with high visibility and control. It also presents

the typical problems of debug and control that plague

existing validation methodologies and shows how FOCAS

solves these, using a novel approach. Finally, we

demonstrate the effectiveness of the proposed framework,

by illustrating examples and comparative data from other

existing application validation techniques.

I. INTRODUCTION

Sub-micron design challenges are pushing the

traditional validation techniques to abstract the

complexity of the silicon and adopt an interface based

system validation approach [1], [2], [3], [4]. These aim

to deliver a zero defect silicon to customers under strict

timelines. Though interface based SOC abstractions

does facilitate rapid validation of application data paths,

high level of abstraction does impose challenges in

terms of visibility and control. Keeping this goal in

mind and looking at traditional validation techniques,

we find them lacking in one parameter or another.

Before we benchmark the traditional techniques, let

us list down the basic paradigms of an efficient SOC

validation framework (see Table I).

With these paradigms in mind, we start looking at

traditional validation techniques and evaluate each on an

attribute scale (high, low and medium).

Table I

PARADIGMS OF VALIDATION FRAMEWORK

A. JTAG Based Testing

IEEE 1149.1 [5] based JTAG is a serial interface

available on almost all modern SOCs and which can be

used to connect to a Low Level Debugger (LLD) and a

Command Converter Server (CCS).

CCS-LLD [6] is a piece of software that converts

high-level user tests generally written in TCL (Tool

Command Language) [7] script, to low-level JTAG

commands. These JTAG commands are then used to

Attribute Validation Paradigm

 Ease of Use (E) Test Creation Ease

Rapid Test

Creation (R)

Quick Test Creation and parameterization

using scripting [11]

Debug (D) Ability to Debug

� Hardware

� Source Level Debug

� Run/Stop Control

SOC

Abstraction(A)

Ability to Test at all SOC Abstractions

� Hardware

o HAL (Hardware

Abstraction Layer)

� Software

o Driver Layer

o Application Layer

Unified(U) SOC validation with all domains of

validation

� Directed

� Application

Stress (S) Ability to create stress iterations with easy

system parameterization

Infrastructure

(I)

Minimal Host Infrastructure

� On-Chip Testing

Tests

Overhead(O)

Minimal Test Compilations

Random (Rand) Ability to run random test patterns

Efficient (EF) Able to detect bugs

Re-Use (Re-U) Able to Re-Use test patterns

RASDAT 2011 Page 77

read/write or program any register or memory connected

to the SOC.

B. Random Testing

Another effective validation technique is random

testing [8]. This technique makes use of high-level

macro language and random library to create the tests on

the host and to be run by the core on the SOC over an

embedded kernel [13].

C. Linux

Linux is one of the most frequent and effective

application validation technique, which uses proven

software architecture, with a complex application stack

and a real time kernel, to create real life scenarios, but

with limited debug [13], [14].

Further, to benchmark the above validation

techniques across validation paradigms (see Table II),

we did functional validation cycle over a

Communications Processor SOC for Networking

Applications (Fig.1).

From this comparative analysis, we illustrate that

there is a dire need of an effective validation framework

which should address the caveats of each of these

traditional validation techniques.

With this goal in mind this paper proposes FOCAS.

The rest of the paper is organized as follows: In

section II, we will talk about FOCAS setup and

architecture. In section III, we will discuss the

implementation and ease of use of the framework by

means of illustrative examples. In section IV, we will

discuss the implementation of the framework with

experimental results from real-time application,

demonstrating the effectiveness of the framework.

Finally, we conclude and propose to use this framework

for SOC validations.
Table II

BENCHMARKING VALIDATION TECHNIQUES

*WW – working weeks

Attribute JTAG [5], [6] Random [8] Linux [13], [14], [16]

 Ease of Use (E) HIGH

All Tests coded in TCL scripting language.

MEDIUM

Tests coded in High level macro language.

Macro language removes overhead of

drafting random assembly level test cases.

LOW

Linux tool-chain, drivers, and operating system

expertise required to create system scenarios.

Rapid test creation

(R)

HIGH

IP (Intellectual Property) blocks sanity

testing completed in typical 4WW*.

HIGH

Random IP block validation completed in

typical 8WW*.

MEDIUM

Linux partial bring-up in typical 4WW*.

Debug (D) LOW

Limited Testing done at JTAG speed.

MEDIUM

Since using macro language, no source

level debugs and core run/stop control.

MEDIUM

Limited source debug and run/stop control.

Multiple Linux process debug still under evolution.

SOC Abstraction

(A)

LOW

Only test creation at the Hardware

Abstraction Layer (HAL) possible.

LOW

HAL Abstraction and limited interface

abstraction like interrupts were able to

test.

MEDIUM

Applications and drivers were tested for the use

cases but with limited hardware visibility.

Unified (U) LOW

Did limited directed testing and were not

able to create application scenarios.

LOW

Only able to do IP centric random testing.

MEDIUM

Application validation for SOC use cases done, but

heavy overhead in test image creation,

configuration and debug.

Stress (S) LOW

Were able to create the stress scenarios only

on HAL Layer.

MEDIUM

Only able to create IP centric random

stress scenarios at HAL, but got limited

while creating application scenarios, due

to limited macros available to construct

the applications.

MEDIUM

Created the use case stress scenarios but found

them hard to parameterize and debug.

Infrastructure (I) MEDIUM

Host needed to connect to JTAG and TCL

interpreter.

HIGH

Significant host infrastructure requirement

in terms of Macros, compilers, libraries,

test cases, target connect tools etc.

MEDIUM

Host with platform tool-chain/cross compiler

required.

Test Overhead (O) LOW

Low Overhead since TCL Tests interpretation

on Host and no test compilation.

HIGH

High Overhead since tests generated on

Host.

MEDIUM

Linux 2.6 kernel needs around 30 minutes to build

on a 2Ghz Pentium class processor.

Random (Rand) MEDIUM

Limited Random TCL Libraries supported on

host CCS-LLD TCL interpreter.

HIGH

Full IP Random validation possible.

MEDIUM

Constraint Random validation not possible.

Efficient (EF) LOW

Only obvious IP Bugs found, no system bugs.

MEDIUM

High coverage for individual IP Bugs but

low for system bugs.

MEDIUM

High coverage on system bugs but hard to debug

Re-Use (Re-U) HIGH

Platform independent TCL tests used for IP

validation.

HIGH

Platform independent Random Macro tests

used for IP validation.

MEDIUM

Limited platform porting required,

4WW of Porting Effort typically.

RASDAT 2011 Page 78

Figure 1: Communications Processor

II. FOCAS SETUP and ARCHITECTURE

The FOCAS setup (Fig. 2) consists of the following

entities:

A. Hardware

1) Host – Standard host (Windows/Linux).

2) DUT – Device-Under-Test (Fig. 1).

3) Protocol Exercisers/Analyzers (Optional) -

depending on the test.

4) Analog-Cz (Characterization) Setup

(Optional) - Oscilloscopes, bit error rate

testers etc.

B. Software

1) On HOST

a. JTAG CCS-LLD.

b. Serial Console.

2) On DUT

a. FOCAS Software.

Figure 2: FOCAS Setup

C. What we propose from FOCAS:

1) The user creates an application scenario in

TCL.

2) The user runs FOCAS software provided

with a TCL interpreter on the DUT. The

software also provides a serial console to the

user to communicate with the DUT.

3) The user downloads the TCL test to the DUT

memory (e.g. DDR, Flash) through the serial

console.

4) FOCAS Software TCL interpreter will do

On-Chip interpretation of the test case and

then execute it.

5) Finally, the host can also trigger the remote

Cz setups and analyzers to monitor the DUT.

D. FOCAS ARCHITECTURE

Figure 3: FOCAS Architecture

The FOCAS software architecture (Fig. 3) is designed

as a small footprint On-Chip framework that runs a

simple TCL interpreter at the application layer. Since

the framework works in single software context and

limited software layers, the system is easy to debug,

with a capability to connect to a debugger. The FOCAS

software components/layers are organized as follows:

1) Hardware Abstraction Layer (HAL)

2) Driver Layer

3) Application Layer

1) HAL – Hardware Abstraction Layer

HAL is closest to the hardware. It comprises of the APIs

(Application-Program-Interface) [17] or software

services, which interact directly with the hardware.

Some of the examples of HAL APIs:

i. mm <address> <bytes> <data> - API to modify

number of bytes in memory at address with the

data.

ii. md <address> <bytes> - API to read number of

bytes in memory at address.

RASDAT 2011 Page 79

2) Driver Layer

This layer abstracts all the peripherals of the SOC, and

provides the services of configuring/control of each of

those interfaces and their interrupt callbacks [14].

Some of the examples are:

i. configureDMA <base-address> - API to

configure the DMA at the base address.

ii. startDMA <base-address> - API to start the

DMA operation.

3) Application Layer

This layer is the top most. It comprises of the following

components of the design:

i. TCL Interpreter

a. Open source thin TCL Interpreter [9],

responsible for run-time interpretation of the

downloaded TCL test from user. In addition

to the interpretation, the interpreter provides

a registration mechanism to the user to add

new commands in interpreter (interp), and

associates it with procedure (proc), using

API Tcl_CreateCommand (Fig.4), which is a

part of interpreter library tcl.h. It is done

such that whenever cmdName is invoked as

a TCL command in a script, the TCL

interpreter will call proc to process the

command [10], [11].

b. The advantage is that the user can identify

the data-path to be stressed and then can,

register the required services from any

software layer to the interpreter, to create a

FOCAS software image. The image is then

loaded to the on-chip memory, for real-time

interpretation of those services, which are

now a part of the TCL tests.

c. Additionally, the user can register TCL

callback routines to be executed whenever a

peripheral interrupt occurs.

d. Registration mechanism also allows the

system configuration and driver

configuration APIs to be registered to the

interpreter, facilitating the test

parameterization through TCL without

compilation. This approach has also been

used in [12].

 In this way, FOCAS provides a framework

to the user to rapidly code and parameterize

a test case at any SOC abstraction level, viz.

HAL, driver layer or system configuration

layer. The examples mentioned in Section

III illustrate the usage.

ii. Serial Command Line Interface (CLI) (Application

Abstracted UART Driver)

a. UART CLI forms the interface to the user.

b. User downloads and controls the execution

of TCL test from the CLI.

c. CLI is also used for debug prints and to

provide IP statistics information to the user

during run-time.

Finally, this FOCAS DUT software is maintained as

Freescale CodeWarrior IDE (Integrated-Developer-

Environment), to be executed on POR (power-on-reset)

from on-chip memory and attached to any third party

debugger.

Figure 4: Command Registration Mechanism

Tcl_CreateCommand (interp, cmdName, proc, clientData,
deleteProc)

Arguments
Tcl_Interp *interp (in)

Interpreter in which to create new command.

char *cmdName (in)
Name of the command.

Tcl_CmdProc *proc (in)
Implementation of new command: proc will be called

whenever cmdName is invoked as a command.

typedef int Tcl_CmdProc(

 ClientData clientData,
 Tcl_Interp *interp,

 int argc,
 char *argv[]);

When proc is invoked the clientData and interp
parameters will be copied to the clientData and interp

arguments given to Tcl_CreateCommand. Typically,
clientData points to an application-specific data
structure that describes what to do when the command

procedure is invoked. Argc and argv describe the
arguments to the command, argc giving the number of

arguments (including the command name) and argv
giving the values of the arguments as strings.

ClientData clientData (in)
Arbitrary one-word value to pass to proc

Tcl_CmdDeleteProc *deleteProc (in)

Procedure to call before cmdName is deleted from the
interpreter; allows for command-specific cleanup. If
NULL, then no procedure is called before the command

is deleted.

Example Tcl_CreateCommand
► Tcl_createCommand(interp,"ETSEC_init",Tcl_ETSEC_ini

t,NULL, NULL);

Example Tcl_ETSEC_init

► Tcl_ETSEC_init(Tcl_Interp *interp, int argc, Tcl_Obj
*const *argv)

Example Tcl script using ETSEC_init
Puts “Initiasing eTSEC controller”

ETSEC_init 1
exit

RASDAT 2011 Page 80

III. FOCAS ILLUSTRATIONS

In this section, we substantiate the FOCAS claims

of an effective validation framework using illustrative

examples, and list FOCAS results for each of the

attributes against Table 1.

Example 1

Example 1 is a simple directed test case coded in TCL

to test the Ethernet Controller Interface in the loopback

mode, as shown in fig. 5.

.

Figure 5: Ethernet Controller Directed Test with HAL

Abstraction

Validation Paradigms Results:

i. E, R – HIGH, Test coded in TCL script using

the TCL scripting constructs (for, If etc.) and

Ethernet data-path coded in 2 days.

ii. A – HIGH, Ethernet data-path validated at HAL

Layer.

iii. D – HIGH, Script based breakpoints possible.

iv. Re-U – HIGH, JTAG tests coded in TCL can

now run by core.

C. Example 2

Example 2 is a driver abstracted Ethernet Controller

TCL test, as shown in Fig. 6.

Figure 6: Driver Abstracted Ethernet Controller Test

Validation Paradigms Results:

i. E, A, R, S,RAND – HIGH

a. Ethernet controller TCL data-path

created using driver layer APIs in just

3 days.

b. System and Ethernet IP configuration

APIs registered to the interpreter aided

in easy rapid creation of stress

scenarios with random configurations.

Advantages of this approach are listed

in [7].

D. Example 3

Example 3 is a DMA test with interrupt call-back.

Figure 7 shows the driver DMA test with callbacks.

Figure 7: Driver Abstracted DMA Test with Callbacks

Inferences:

i. Peripheral Interrupt callbacks can be coded in

TCL, by using the interpreter registered

interrupt controller driver API (setintr

<intr_source> <callback procedure>), used by

DMA interrupt callback for transfer completion.

ii. Any peripheral interrupt can be mapped to a

TCL procedure, such that whenever that

interrupt is triggered, the respective TCL

procedure will get executed.

IV. FOCAS EXPERIMENTS

A. Example 4

Example 4 is a L2 Bridge Application data-path on

FOCAS. Fig. 8 shows the L2 bridge test setup.

Test Setup:

i. Example SOC [Fig. 1] with Ethernet application

layer registered to FOCAS Interpreter.

#Interrupt Callback registered to interpreter

proc Intr_Callback { } {
 puts "I am in Interrupt Call Back";
 set Val [md e0008104 4]

 set Val [lindex $Val 1]
 mm e0008104 4 $Val;

}

#Code snippet from DMA test

set dest_addr [alloc [expr $byte_count*4]];
puts "Destination Address: 0x$dest_addr";

set immr_addr 0xe0000000;

mbf -w $src_addr $byte_count a5a5a5a5 0;

mbf -w $dest_addr $byte_count 5a5a1a5a 0;

Setting Interrupt for DMA complete
SetIntr 71 Intr_Callback ;

DMA Callback

procedure to be
called for each

transfer
completion

SetIntr registers
Intr_Callback

procedure for DMA
interrupt source
(71)

set pass 1;
for {set i 0} {$i<1000} {incr i} {};

puts "After 1000";
SICRL;
mm e0000114 4 00 00 00 13;

SICRH
mm e0000118 4 00 00 00 00

ECNTRL define RGMII 1000 Mbps
mm e0024020 4 00 00 10 10
mm $addr1 4 12 34 56 79 ;

md $addr1 4 12 34 56 79 ;
bp

 mm $addr2 4 12 34 56 78 ;

 mm $addr3 4 00 00 00 00;
 mm $addr4 4 00 00 00 00;

TCL

Scripting
Constructs
for delay

Debug
prints on
UART

console

Script Breakpoint
implemented as infinite

loop till key press

Memories read and modify
TCL commands added
from the HAL layer

Initialize the System Parameters
sys_params_init "cacheEnable 0" ;

sys_params_init "csbClkSpeed 133" ;
sys_params_init "mmuEnable 0" ;

initialize the parameters for Application
etsec_params_init 0 "bro 1" ;

etsec_params_init 0 "pro 1" ;
etsec_params_init 0 "loopback 1" ;

etsec_params_init 0 "numRxQueue 8" ;

#===== Code Starts ============

for {set j 0 } {$j < $maxEtsecPort} {incr j} {
 for {set i 0} {$i < $numRxQueue} {incr i} {

 set rxBaseAddrji [getRxBaseQ $j $i] ;
 }
}

Create Tx frames and transmit =====
for {set i 0} {$i < $numTxPacket} {incr i} {

 set frameBaseAddr$i [createTxFrames
$packetsize $datatype]

 set bdID [createTxBd $etsec0
$frameBaseAddr$i]
 if {expr [!$bdID] } {

 error "ETSEC:$etsec0
$frameBaseAddr$i Tx BD creation not successful\n" ;

 }

sys_paams_init is
registered C API

from system
configuration layer

etsec_params_init is
registered C API

from the Ethernet
driver to

parameterize the
Ethernet controller

CreateTxFrames

and createTxBD
returns the
address of

transmit buffer
and Buffer

Descriptor

RASDAT 2011 Page 81

ii. Ethernet Exerciser connected to Ethernet port 1

and 2. It is used to monitor and exercise traffic

and bridge data.

iii. Application abstracted TCL test loaded on the

DUT (Fig. 9).

iv. IP Parameterization control in TCL

 Figure 8: L2 Bridge Test Setup

Figure 9: L2 Bridge Test

Validation Paradigms Results:

I. E, A, R, S, RAND, D – HIGH

a. L2 bridge application coded in TCL in

just 2 days.

b. L2 bridge application stressed with

random parameters.

c. High visibility, since debugger

connected for source level debugging

and TCL breakpoints and print

messages helps further in debug

tracing and control.

II. I, O – LOW

a. Host only required for hosting the

serial console and debugger.

b. No test compile overhead due to on-

chip test interpretation.

III. EF – HIGH

a. Performance at par with Linux.

b. Multiple data path exercised in single

TCL - Ethernet Controller 0, Ethernet

Controller 1, DMA, and UART.

Fig. 10 and Fig. 11 show the Performance

Benchmarking Results of FOCAS vs. Linux

[15].

Figure 10: Uni-Directional Performance

Figure 11: Bi-Directional Performance

V. CONCLUSIONS

In this paper, we have first discussed the paradigms

of an ideal validation framework. Existing validation

methodologies were then rated against each of these

parameters, and were found to be inadequate in covering

all the validation aspects satisfactorily.

 To account for these insufficiencies, we proposed

an innovative generic Framework for On-Chip

Application Stress (FOCAS), which facilitates rapid

application data path creation and control, with very

high debug and observability. FOCAS setup and

architecture is discussed in detail with examples to

illustrate the effectiveness of FOCAS over other

methodologies. Finally, experimental results have been

initialize the parameters for Ethernet controller

etsec_params_init 0 "bro 1" ;
etsec_params_init 0 "pro 1" ;

etsec_params_init 0 "loopback 1" ;
etsec_params_init 0 "numRxQueue 8" ;

#System Configuration part

#Application abstracted code ………

 while {1} {
 for {set i 0} {$i < $numRxQueue0} {incr i} {
 set nxtBd [lindex $nxtUseRxBd0 $i];

 if { [frameRcved $nxtBd $etsec0 $i] } {
 # Get the Baseaddr of Tx queue

 set status [createTxBd $i $etsec1] ;
 ETSEC_TxResumeAfterHalt $etsec1 ;
 #bp;

 }

 if { [frameTxed $etsec1 $i] } {
 #puts "eTSEC 1: Frame TXed";

 #bp
 }

Ethernet IP

parameterization in
control of TCL

Ethernet Application

abstracted TCL code

RASDAT 2011 Page 82

provided to demonstrate the effectiveness of the claims

made.

REFERENCES
[1] Debashis Panigrahi, Clark N. Taylor and Sujit Dey,

 “Interface based Hardware/Software Validation of a

 System-on-Chip,” High-Level Design Validation and Test

 Workshop, 2000. Proceedings, IEEE International.

[2] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-

 Based Design”, Proc. of Design Automation Conference,

 1997.

 [3] Kirovski, D.; Potkonjak, M.; Guerra, L.M,“Improving

 the observability and controllability of datapaths for

 emulation- based debugging,” Transactions on

 Computer-Aided-Design of Integrated Circuit and

 Systems, Vol. 18, No. 11, November 1999.

[4] D. Kirovski, M. Potkonjak, and L. M. Guerra,

 “Functional Debugging of systems-on-chip,” Conf,

 Computer-Aided-Design, 1998.

[5] Be Van Ngo, Peter Law, Antony Sparks,”Use of JTAG

 Boundary- Scan for Testing Electronic Circuit Boards

 and Systems,”AUTOTESTCON, 2008 IEEE.

 [6] Universal Command Converter User's Manual [Online],

 Avaliable:

 http://irtfweb.ifa.hawaii.edu/~m2/tony/DSP56000_ref/

 doc/cconvert/ucc70um.pdf

 [7] John K. Ousterhout, “Tcl: An Embeddable Command

 Language,” 1990, [Online], Available:

 htttp://citeseerx.ist.psu.edu/viewdoc/summary?

 /doi=10.1.1.38.820

[8] Duran, Joe W.; Ntafos, Simeon C, “An Evaluation of

 Random Testing,”Software Engineering, IEEE

 Transactions on Software Engineering,

 Issue Date: July 1984, Volume: SE-10, Issue: 4.

[9] The Jim Interpreter [Online], Available:

 http://jim.berlios.de/

[10] C Programming and Tcl [Online], Available:

 http://www.beedub.com/book/3rd/Cprogint.pdf.

[11] John Menges Mark, Mark Parris, “Tcl and Tk Use in the

 Artifact Based - Collaboration-System”, [Online],

 Available:

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

 10.1.1.35.289

 [12] Fahri Basegmez, “Extending a Scientific Application

 using Scripting Capabilities”, Computing in Science

 Engineering, Issue Date: Nov/Dec 2002, Volume: 4,

 Issue: 6.

 [13] Greg Kroah-Hartman, Linux Kernel in a Nutshell.

 O'Reilly Media, December 2006.

[14] Alessandro Rubini, Linux Device Drivers,

 O'Reilly Media, February 1998.

[15] J. T. Yu: “Performance Evaluation on Linux Bridge”,

 Telecommunications System Management Conference

 2004, Louisville, Kentucky (April 2004).

[16] Advantages and Disadvantages of Linux [Online],

 Available: http://www.rtcubed.com/consulting/linux-

 advantages-disadvantages.html

[17] Aldred, B.K., Bonsall, G.W., Lambert, H.S., Mitchell

 H.D. , “An application programming interface for

 collaborative networking”, Telecommunications, 1993.

RASDAT 2011 Page 83

 1

Synthesis of Reversible Logic Circuit using Unitary Matrix

Bikromadittya Mondal

B. P. Poddar Institute of Management and Technology, Kolkata, W.B., India, (E-mail: bikmondal@gmail.com)

Pradyut Sarkar

Simplex Infrastructures Limited, Kolkata, W.B., India, (E-mail: pradyut_sarkar77@yahoo.com)

Susanta Chakraborty

Bengal Engineering and Science University, Shibpur, Howrah, W.B., India, (E-mail: susanta_chak@yahoo.co.in)

(Communicating author and supervisor)

Abstract

Reversible logic plays a significant role in the low power

circuit design, quantum computing and nanotechnology.

Synthesis of reversible logic circuit is a complex and

challenging problem. The paper proposes a novel synthesis

technique of a reversible logic circuit based on unitary matrix.

To synthesis the reversible logic circuit, the unitary matrix of

the functional specification is mapped to an identity matrix by

performing circular shift operations. The proposed heuristic

algorithm performs circular shift operations in each row of

the unitary matrix. The unitary matrices generated by the

algorithm are replaced by equivalent reversible logic gates if a

suitable match is found. Otherwise, the synthesis technique is

applied until the final circuit is constructed. Experimental

results on reversible logic circuits show effectiveness of the

proposed technique.

Keywords - Synthesis, reversible logic gate, unitary matrix,

identity matrix, quantum computing.

1. Introduction

Reversible circuits can be focused as a special case of

quantum circuits because quantum computations are

inherently reversible in nature. Quantum circuits can solve

some problems like prime factorization, exponentially

faster compared to non-quantum (classical) approaches.

Quantum circuits store information in microscopic states

and process it using quantum mechanical operations or

“gates” that modify these states. The unit of quantum

information is called a qubit. A qubit can be in a zero or a

one state, conventionally denoted by |0> and |1>

respectively. However, it can also be in a superposition of

these states, i.e., ∞0|0> + ∞1|1>, where ∞0 and ∞1 are

complex numbers called amplitudes.

A circuit or gate is said to be reversible if the (Boolean)

function it computes is bijective i.e., there is a one-to-one

and onto correspondence between its input and output. The

input vector can be uniquely determined from the output

vector and vice versa. A necessary condition is that the

circuit has the same number of input and output wires.

Functions of most of the classical logic gates like AND, OR,

EXOR are not reversible. Controlled–NOT (CNOT) gates

proposed by Feynman[7], Toffoli gates[10], and Fredkin[8]

gates are well known reversible logic gates that are needed

to design reversible logic circuits.

Recently many algorithms have been proposed by several

authors to synthesize reversible logic circuit. Toffoli [14]

proposed CNOT based gates synthesis algorithm. Local

transformation based algorithm is presented in [13]. Miller

[14] uses Rademacher-Walsh spectral and two-place

decompositions techniques to synthesize a reversible logic

circuit. A new heuristic algorithm [15] uses binary decision

diagram to represent reversible logic circuit. Shende et al in

[16] proposed a number of techniques to synthesize optimal

and near-optimal reversible logic circuits that require little

or no temporary storage. Saeedi et al, [18] investigated the

behavior of substitution-based techniques to synthesize

reversible logic circuit and proposed a new hybrid

DFS/BFS synthesis algorithm. Gupta et al, [12] proposed an

algorithm that uses the positive-polarity Reed–Muller

expansion of a reversible function to synthesize the function

as a network of Toffoli gates. The algorithm utilizes a

priority based search tree and heuristics are used to rapidly

prune the search space.

This paper addresses the synthesis of reversible logic circuit

using unitary matrix. The unitary matrix of the reversible

circuit is mapped to an identity matrix by performing

circular shift operations. A heuristic algorithm is proposed

to construct the final reversible logic circuit by the

equivalent reversible logic gates of the unitary matrices.

2. Preliminaries

2.1 Unitary Matrix

A unitary matrix is a square matrix U whose entries are

complex numbers and whose inverse is equal to its

conjugate transpose U
*
. This means that U

*
U = UU

*
 = I,

where U
*
 is the conjugate-transpose of U and I is the

identity matrix. A unitary matrix in which all entries are

real is the same thing as an orthogonal matrix. Just as an

orthogonal matrix G preserves the (real) inner product of

two real vectors, thus <Gx, Gy> = <x, y>, so also a unitary

matrix U satisfies <Ux, Uy> = <x, y> for all complex

vectors x and y, where <.,.> stands now for the standard

inner product on C
n
. A matrix is unitary if and only if its

columns form an orthonormal basis of C
n
 with respect to

this inner product. Reversible logic gates and circuits are

represented by unitary matrices. Unitary matrices of

reversible logic gates and reversible circuits are presented

in section 2.2 and 2.3 respectively.

RASDAT 2011 Page 84

 2

x
/
 x

x' x

y' y

z' z

x' x

y' y

2.2 Reversible logic gates

The NOT gate shown in Fig.1 is a one input one output gate.

It inverts the input. The CNOT gate shown in Fig.2 is a 2x2

gate. The value at the first input is left unchanged, and the

value on the second input is inverted if and only if the value

at the first input is 1, else remains unchanged. The Toffoli

gate (2-CNOT) shown in Fig.3 is a 3x3 gate. It passes the

first two inputs through and inverts third if the first two are

both 1, else remain unchanged.

(a) Symbol (b) Truth table (c) Unitary matrix

Fig.1: NOT gate representation

 (a) Symbol

 (c) Unitary matrix

 (b) Truth table

Fig.2: CNOT gate representation

 (a) Symbol (b) Truth table

(c) Unitary matrix

Fig.3: Toffoli (2-CNOT) gate representation

2.3 Reversible Logic Circuit

A reversible circuit and it’s unitary matrix is shown in Fig

4(b) and 4(c) respectably. The Unitary matrix of a

reversible circuit is directly obtained from the output

function of the circuit or multiplying the unitary matrices of

the reversible logic gates present in the circuit.

 F = (7, 0, 1, 3, 4, 2, 6, 5)

 (a) Reversible logic Function (b) Reversible Circuit

(c) Unitary matrix

Fig.4: Unitary matrix of a 3-bit reversible circuit

3. Proposed Synthesis Technique

We propose unitary matrix based synthesis of reversible

logic circuit. The unitary matrix (OM) of order n of a

reversible functional specification (q bits) is mapped to an

identity matrix by shifting of ‘1’. If the unitary matrix is

matched with a reversible logic gate then it is replaced by

that reversible gate. Otherwise, the number of circular right

shift of ‘1’ is counted for each row of the unitary matrix

with respect to an identity matrix. If the number of shift |S|

≠ 2
m
 (where 0≤m< q) and |S| = (n – 2

p
 – p) (where 0≤p<q -

1) then the row is shifted to 2
p
 positions. Suppose for a

unitary matrix of order 8 of a 3-bit reversible logic circuit,

if the number of shift in a row is 7 then 7 = 8-2
0
-0 and the

position of ‘1’ is shifted 2
0
(=1) position. Similarly, if the

number of shift in a row is 5 then 5 = 8-2
1
-1 and the

position of ‘1’ is shifted 2
1
(= 2) positions. In other case, if

the number of shift |S| ≠ 2
m
 (where 0≤m<q), it is shifted to

2
q-1

positions. Due to the shift operations all the other

affected rows are adjusted to maintain the unitary matrix

property. The amount of shifting is decided such that it can

be realized by equivalent reversible logic gates. Number of

rows in the unitary matrix of a k-CNOT reversible logic

gate differ by 2
η-k

 with that of an identity matrix and

number of circular shifts in a row are 2
γ
, where η= number

of bits, k = number of control bits and γ is the binary

position (from right) of the target bit(line).The unitary

matrix thus generated by the shifting process is named as

NM. Back-tracing on the OM and NM generates another

unitary matrix named as BM. If ‘1’ is found in the (i
th
 row

& j
th
 column) in the NM and in the (j

th
 row and k

th
 column)

in the OM, place ‘1’ in the i
th

row and k
th
 column in the BM.

 Output

In
p
u
t

 0 1

0 0 1

1 1 0

Input Output

x x
/

0 1

1 0

 Output

In

p
u
t

 00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0

Input Output

x y x' y'

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Input Output

x y z x' y' z'

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

 Output

In

p
u
t

 000 001 010 011 100 101 110 111

000 1 0 0 0 0 0 0 0

001 0 1 0 0 0 0 0 0

010 0 0 1 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 0 0 0 1

111 0 0 0 0 0 0 1 0

 Output

In

p
u
t

 000 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0 1

001 1 0 0 0 0 0 0 0

010 0 1 0 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 0 0 0 0 1 0 0 0

101 0 0 1 0 0 0 0 0

110 0 0 0 0 0 0 1 0

111 0 0 0 0 0 1 0 0

RASDAT 2011 Page 85

 3

The BM is compared with the unitary matrices of reversible

logic gates. The total number of reversible logic gates are

m(
m-1

C0 +
m-1

C1 +
m-1

C2 + ………. +
m-1

Cm-1) ⇒ m2
m-1

,

where n= order of the unitary matrix & m = log2n. If a

match is found then the BM is replaced by the reversible

logic gate. Otherwise, repeat the synthesis technique on the

BM until a suitable matching is found. Then apply similar

matching and synthesis technique on the NM.

3.1 Proposed Algorithm

1. Read the unitary matrix (OM) of order n of a q bit

reversible logic circuit

2. For each row count the number of circular right shift

with respect to identity matrix and let it be S.

If |S| ≠ 2
m
 (0≤m< q)

 If |S| = n - 2
p
 - p (0≤p< q -1)

 Shift 2
p
 positions

 Else

 Shift 2
q -1

positions

 Endif

Endif
The new unitary matrix thus generated is named NM

3. Generate another unitary matrix (BM) from the OM

and NM by back-tracing.

4. If BM matches with a reversible logic gate

 Replace it by the reversible logic gate

 Else

Apply the synthesis technique on BM

 Endif

5. If NM matches with a reversible logic gate

 Replace it by the reversible logic gate

 Else

 Apply the synthesis technique on NM

 Endif

Example: The given reversible logic function is shown in

Fig.5(a) and the corresponding unitary matrix is in Fig.5(b).

Fig.5(a): Reversible logic function

Fig.5(b): Unitary matrix

Fig.5(c): OM

Fig.5(d): NM

The right hand side in Fig.5(c) shows the number of

circular right shift in each row with respect to the identity

matrix. Shifting operation is performed according to the

expression shown in step 2 and the NM is shown in Fig.5(d).

Fig.5(e): BM Fig.5(f): Reversible

 logic gate

BM (Fig.5(e)) is generated by applying back-tracing on the

two matrices (Fig.5(c) and Fig.5(d)). The BM is replaced

by equivalent reversible logic gate shown in Fig.5(f). The

matrix in Fig.5(d) is not matched with reversible logic gate

and further synthesis generates NM shown in Fig.5(g) and

then back-tracing generates BM shown in Fig.5(i). The

unitary matrices in Fig.5(g) and Fig.5(i) are equivalent to

reversible logic gates shown in Fig.5(h) and Fig.5(j)

respectively and no further synthesis is required.

 Fig.5(g): Updated NM Fig.5(h): Reversible

 logic gate

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 �0

0 1 0 0 0 0 0 0 �0

0 0 1 0 0 0 0 0 �0

0 0 0 1 0 0 0 0 �0

0 0 0 0 1 0 0 0 �0

0 0 0 0 0 0 1 0 �7

0 0 0 0 0 1 0 0 �1

0 0 0 0 0 0 0 1 �0

1 0 0 0 0 0 0 0 �0

0 1 0 0 0 0 0 0 �0

0 0 1 0 0 0 0 0 �0

0 0 0 1 0 0 0 0 �0

0 0 0 0 1 0 0 0 �0

0 0 0 0 0 0 0 1 �6

0 0 0 0 0 1 0 0 �1

0 0 0 0 0 0 1 0 �1

1 0 0 0 0 0 0 0 �0

0 1 0 0 0 0 0 0 �0

0 0 1 0 0 0 0 0 �0

0 0 0 1 0 0 0 0 �0

0 0 0 0 1 0 0 0 �0

0 0 0 0 0 1 0 0 �0

0 0 0 0 0 0 0 1 �7

0 0 0 0 0 0 1 0 �1

1 0 0 0 0 0 0 0 �0

0 1 0 0 0 0 0 0 �0

0 0 1 0 0 0 0 0 �0

0 0 0 1 0 0 0 0 �0

0 0 0 0 1 0 0 0 �0

0 0 0 0 0 1 0 0 �0

0 0 0 0 0 0 0 1 �7

0 0 0 0 0 0 1 0 �1

≡

≡

F (a, b, c) = (0, 1, 2, 3, 4, 6, 5, 7)

RASDAT 2011 Page 86

 4

 Fig.5(i): Updated BM Fig.5(j): Reversible

 logic gate

The final reversible logic circuit is constructed by putting

the reversible logic gates in reverse order as shown in Fig.6.

Fig.6: Reversible logic circuit after synthesis

Lemma 1: Number of rows in the unitary matrix of a k-

CNOT reversible logic gate differ by 2
η-k

 with that of an

identity matrix, where η= number of bits and k = number of

control bits.

Proof: Let η be the number of bits in the reversible logic

gate. So, the number of control bits(k) will be 0≤k<η. There

will be 2
η
 rows in the unitary matrix of the reversible logic

gate. Each row corresponds to an input vector. If 0 or no

control bit is involved, all the rows will be affected. If a

single control bit is involved, the control bit is 1 in half of

the input vectors and half of the rows will be affected. If

two control bits are involved, both the control bits are 1 in

one fourth of the input vectors and one-fourth of rows will

be affected. Mathematically we can show

If k=0, number of rows affected = 2
η
/2

0
 ⇒ 2

η-0

If k=1, number of rows affected = 2
η
/2

1
 ⇒ 2

η-1

If k=2, number of rows affected = 2
η
/2

2
 ⇒ 2

η-2

………………………..

If c= η-1, number of rows affected = 2
η
/2
η-1

 ⇒ 2
1

So, number of rows differ = 2
η-k

, where 0≤k<η. 

Lemma 2: Number of circular shifts in a row of the unitary

matrix (compared to an identity matrix) of a k-CNOT

reversible logic gate are 2
γ
, where γ is the binary position

(from right) of the target bit(line).

Proof: In a k-CNOT reversible logic gate, a single bit is

changed for any input irrespective of the value of k. If γ is

the target line then only the bit in the γ
th
 position will be

changed and other bits remain unchanged. The changes are

shown as follows

xn-1xn-2…….xγ……x1x0 � xn-1xn-2…….xγ′……x1x0

Therefore,

|xn-1xn-2…….xγ……x1x0 - xn-1xn-2…….xγ′……x1x0 | = 2
γ

Hence, the numbers of shifts in a row of the unitary matrix

of a reversible logic gate are 2
γ
. 

4. Experimental Results

The proposed algorithm is implemented and applied to

reversible logic circuits. Experimental results are shown in

Table 1. The 2
nd
 column of the table represents the

functional specifications of reversible logic circuits. The 3
rd
,

4
th
 and 5

th
 column shows the number of k-CNOT gates,

quantum cost and circuit representation respectively.

Table 1

1 0 0 0 0 0 0 0 �0

0 1 0 0 0 0 0 0 �0

0 0 1 0 0 0 0 0 �0

0 0 0 1 0 0 0 0 �0

0 0 0 0 1 0 0 0 �0

0 0 0 0 0 0 0 1 �6

0 0 0 0 0 0 1 0 �0

0 0 0 0 0 1 0 0 �2

C
ir
cu
it

S
p
ec
if
ic
a
ti
o
n

N
u
m
b
er
 o
f

G
a
te
s

Q
u
a
n
tu
m
 C
o
st

C
ir
cu
it

R
ep
re
se
n
ta
ti
o
n

1 (7, 0, 1, 2, 3, 4, 5, 6) 3 5 (f3), (f3, f2), (f3, f2, f1)

2 (0, 1, 2, 3, 4, 6, 5, 7) 3 15 (f1, f2, f3), (f1, f3, f2), (f1, f2, f3)

3 (0, 1, 2, 4, 3, 5, 6, 7) 5 13
(f1, f3), (f1, f3,f2), (f2,f3,f1),

(f1,f3,f2), (f1, f3)

4

(0, 1, 7, 6, 2, 3, 5, 4,

10, 11, 13, 12, 8, 9,

15, 14)

6 6
(f1, f2), (f3, f4), (f2, f3), (f3, f2),

(f2, f1), (f3, f4)

5 (1, 2, 3, 4, 5, 6, 7, 0) 3 5 (f2, f3, f1), (f3, f2), (f3)

6 (6, 3, 4, 1, 0, 5, 2, 7) 3 3 (f1), (f1, f2), (f3, f1)

7

(0, 1, 7, 6, 12, 13, 11,

10, 8, 9, 15, 14, 4, 5,

3, 2)

3 3 (f2, f1), (f3, f4), (f3, f2)

8 (0, 1, 7, 6, 4, 3, 5, 2) 3 7 (f2, f3), (f1, f3, f2), (f2, f1)

9 (0, 5, 7, 2, 3, 6, 4, 1) 3 3 (f1, f2), (f2, f3), (f3, f1)

10 (0, 1, 3, 6, 5, 7, 2, 4) 4 12
(f1, f3, f2), (f2, f1), (f1, f3),

(f2, f3, f1)

11 (3, 2, 0, 1, 5, 6, 4, 7) 4 8 (f3), (f2, f3), (f2), (f1, f3, f2)

12 (2, 1, 0, 3, 5, 6, 4, 7) 3 7 (f2), (f1, f2, f3), (f3, f2)

13 (7, 0, 1, 3, 4, 2, 6, 5) 6 10
(f3), (f1, f3), (f3, f2), (f3, f2, f1),

(f2, f3), (f1, f2, f3)

14 (0, 1, 3, 2, 6, 4, 5, 7) 3 7 (f1, f3, f2), (f2, f3), (f1, f2)

15 (0, 2, 1, 4, 7, 5, 6, 3) 5 7
(f2, f3, f1), (f3, f2), (f2, f3),

 (f1, f3), (f3, f2)

≡

RASDAT 2011 Page 87

 5

5. Conclusions

The paper proposes a novel synthesis technique of

reversible logic circuit based on unitary matrix. The unitary

matrix of a reversible circuit is mapped to an identity matrix.

Finally the reversible logic circuit is constructed by the

reversible logic gates of equivalent unitary matrices.

Experimental results are provided to support our proposed

technique. This work may be extended to the fault detection

and testing of reversible logic circuit based on unitary

matrix.

References

[1] R. Landauer, “Irreversibility and Heat Generation in

the Computing Process,” IBM Journal, vol. 5, pp.

183-191, July 1961.

[2] C. Bennett, “Logical Reversibility of Computation,”

IBM Journal, vol. 17(6), pp. 525-532, November

1973.

[3] G. Schrom, “Ultra-Low-Power CMOS Technology,”

PhD Thesis, Technischen Universitat Wien, June

1998.

[4] E. Knill, R. Laamme, and G. J. Milburn, “A Scheme

for Efficient Quantum Computation with Linear

Optics,” Nature, pp. 46-52, January 2001.

[5] M. Nielsen and I. Chuang, “Quantum Computation

and Quantum information,” Cambridge University

Press, 2000.

[6] A. Mishchenko and M. Perkowski, “Logic synthesis

of Reversible Wave Cascades,” in Proc. Int.

Workshop. Logic Synthesis, pp. 197-202, June 2002.

[7] R. Feynman. “Quantum Mechanical Computers,”

Optic News, pp.11-20, 1985.

[8] E. Fredkin, and T. Toffoli, “Conservative Logic,”

International Journal of Theoretical Physics, 21:219-

253, 1982.

[9] D. Maslov, “Reversible logic synthesis benchmarks

page,” May 2005. http://www.cs.uvic.ca/~dmaslov/

[10] T. Toffoli, “Reverible computing,” Tech memo

MIT/LCS/TM-151, MIT Lab for Computer Science,

1980.

[11] T. Sasao, “Logic Synthesis and Optimization,”

Kluwer Academic Publishers, 1993.

[12] P. Gupta, A. Agrawal, and N. K Jha, “An Algorithm

for Synthesis of Reversible Logic Circuits,” TCAD,

November 2006.

[13] D. M. Miller, D. Maslov, and G. W. Dueck, “A

Transformation Based Algorithm for Reversible

Logic Synthesis,” DAC, pp. 318-323, 2003.

[14] D. M. Miller, “Spectral and Two-Place

Decomposition Techniques in Reversible Logic,”

MWSCAS, pp. 493-496, 2002.

[15] P. Kerntopf, “A New Heuristic Algorithm for

Reversible Logic Synthesis,” DAC, pp. 834-837,

2004.

[16] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.

Hayes, “Synthesis of Reversible Logic Circuits,”

TCAD, vol. 22(6), pp. 710-722, 2003.

[17] W. Hung, X. Song, G. Yang, J. Yang, and M.

Perkowski, “Quantum Logic Synthesis by Symbolic

Reachability Analysis,” DAC, pp. 838-841, 2004.

[18] M. Saeedi, M. S. Zamani, M. Sedighi, “On the

Behavior of Substitution-based Reversible Circuit

Synthesis algorithms: Investigation and

Improvement,” IEEE Computer Society Annual

Symposium on VLSI (ISVLSI'07), 2007.

[19] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P.

Hayes., “Reversible logic circuit synthesis,” Proc.

IEEE/ACM Intl. Conf. on Computer Aided Design,

pages 353–60, November 2002.

[20] V. V. Shende, S. S. Bullock, I. L. Markov,

“Synthesis of Quantum Logic Circuits,” IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 25(6), pp. 1000-

1010, June 2006.

[21] F. S. Khan, and M. M. Perkowski, “Synthesis of

Ternary Quantum Logic Circuits by

Decomposition,” in Proc. Of the 7th International

Symposium on Representations and Methodology

of Future Computing Technologies, 2005.

[22] G. Dahl, E. Ovrum, J. M. Leinaas, J. Myrheim, “A

tensor product matrix approximation problem in

quantum physics”, June 15, 2006.

[23] A. Muthukrishnan (RCQI), “An Introduction to

Quantum Computing”, Quantum Information

Seminar Friday, September, 1999.

RASDAT 2011 Page 88

Efficient SOPC-Based Multicore System Design
Using NOC

 T.Vanchinathan,

 Femtologicdesign,Chennai,

 India

e-mail:tvanchi@gmail.com

 S.Arunraj,

 M.E., VLSI Design Student,
 Adhiparasakthi Enginering College,India

 e-mail:arunmakes@gmail.com

Abstract — Due to the advancement of VLSI (Very Large Scale
Integrated Circuits) technologies, we can put more cores on a
chip, resulting in the emergence of a multicore embedded
system. This also brings great challenges to the traditional
parallel processing as to how we can improve the performance
of the system with increased number of cores. In this paper, we
meet the new challenges using a novel approach. Specifically,
we propose a SOPC (System on a Programmable Chip) design
based on multicore embedded system. Under our proposed
scheme, in addition to conventional processor cores, we
introduce dynamically reconfigurable accelerator cores to
boost the performance of the system. We have built the
prototype of the system using FPGAs (Field-Programmable
Gate Arrays). Simulation results demonstrate significant
system efficiency of the proposed system in terms of
computation and power consumption. Our approach is to
develop a highly flexible and scalable network design that
easily accommodates the various needs. This paper presents
the design of our NOC (Network on Chip) which is a part of
the platform that we are developing for a reconfigurable
system. The major drawback of SOPC based systems lies in the
routing of the various on-chip cores. Since it is technically
difficult to integrate more than one core on a single chip, we
come across several routing problems which lead to inefficient
functioning. Thus we implemented several NOC based routing
algorithms which considerably improve accessing speed and
enhance the system efficiency.

Keywords: Multicore system, System on a Programmable
Chip (SOPC), Network on Chip (NOC), Multiprocessor
System-on-Chip (MPSOC).

I. INTRODUCTION

During the 1990s more and more processor cores and large
reusable components have been integrated on a single
silicon die‚ which has become known under the label of

System-on-Chip (SOC). Buses and point-to-point
connections were the main means to connect the
components, Hence they can be used very cost efficiently.
As silicon technology advances further‚ several problems
related to buses have appeared. [1][5] Buses can efficiently
connect 3-10 communication partners but they do not scale
to higher numbers. As a result‚ around 1999 several
research groups have started to investigate systematic
approaches to the design of the communication part of
SOCs. It soon turned out that the Problem has to be
addressed at all levels from the physical to the architectural
to the operating system and application level. Hence‚ the
term Network on Chip (NOC) is today used mostly in a very
broad meaning‚ encompassing the hardware communication
infra-structure‚ the middleware and operating system
communication services and a design methodology and
tools to map applications onto a NOC. All this together can
be called a NOC platform. [4] Networks on Chip (NOCs)
have emerged as a viable option for designing scalable
communication architectures. For multiprocessor System-
on-Chips (MPSOCs), on-chip micro networks are used to
interconnect the various cores. The main idea with NOCs,
besides the solutions to the physical issues, is the possibility
for more cores to communicate simultaneously, leading to
larger on-chip bandwidths. The adoption of NOC
architecture is driven by several forces: from a physical
design viewpoint, in nanometer CMOS technology
interconnects dominate both performance and dynamic
power dissipation, as signal propagation in wires across the
chip requires 2 multiple clock cycles. NOC links can reduce
the complexity of designing wires for predictable speed,
power, noise, reliability, etc., thanks to their regular, well
controlled structure. From a system design viewpoint, with
the advent of multi-core processor systems, a network is a

RASDAT 2011 Page 89

natural architectural choice ..NOC can provide separation
between computation and communication; support
modularity and IP reuse via standard interfaces; handle
Synchronization issues; serve as a platform for system test
and hence increase engineering productivity.

II. DIFFERENT NOC TOPOLOGIES

The Network-on-Chip (NOC) architecture, as outlined in
Figure 1, provides the communication infrastructure for the
resources. In this way it is possible to develop the hardware
of resources independently as stand-alone blocks and create
the NOC by connecting the blocks as elements in the
network.

.
Figure.1. Network on chip [7]

A number of different NOC topologies have been proposed.
They all have in common that they connect resources to
each other through networks and that information is sent as
packets over the networks [7]. Network on Chip (NOC) has
evolved as an important research topic during the last few
years. The idea is that scalable switched networks are used
for on-chip communication among processing units, in order
to cope with design of continuously growing systems.
Design complexity promotes reuse of investment in earlier
designs as well as purchase of outside intellectual property
(IP). However, in larger designs, communication among
components will become a bottleneck using traditional
techniques like common buses. NOC is one solution to
address this issue because packet switched communication
can provide higher flexibility, throughput and reusability.
To gain full advantage when using this concept in NOC
architecture design, the size of resources should be similar
and the communication facilities should be homogeneous.

2.1 Honey Comb Technology

In NOC design, the resources communicate with each other
by sending addressed packets of data and routing them to
the destinations by the network of switches [7]. Though
many topologies are possible, we will first discuss about
Honey comb topology. The overall organization is in the
form of a honeycomb, as shown in Figure.2. The resources -
computational, storage and I/O - are organized as nodes of
the hexagon with a local switch at the centre that
interconnects these resources. Hexagons at the periphery
would be primarily for I/O, whereas the ones in the core
would have storage and computational resource. To further
improve the connectivity, switches are directly connected to
their next nearest neighbors, as shown in Figure 2, allowing
any resource to reach 27 additional resources with two hops.
As a last measure to further improve connectivity, every
alternate switch is directly connected making each resource
element reach a lot more elements with minimal number of
hops.

 Figure.2. A honey comb structure for NOC [7]

2.2 Mesh Topology

NOC is a scalable packet switched communication platform
for single chip systems. The NOC architecture consists of a
mesh of switches together with some resources which are
placed on slots formed by the switches.[2] Figure 3 shows
NOC architecture with 16 resources. Each switch is
connected to four neighboring switches and one resource.
Resources are heterogeneous. A resource can be a processor
core, a memory block, a FPGA, custom hardware block or
any other intellectual property (IP) block, which fits into the
available slot and complies with the interface with the NOC
switch. We assume switches in NOC have buffers to
manage data traffic.

RASDAT 2011 Page 90

Figure.3. 4×4 NOC switch [2]

Every resource has a unique address and is connected to a
switch in the network via a resource network interface
(RNI). The NOC platform defines four protocol layers: the
physical layer, the data link layer, the network layer, and the
transport layer. The RNI implements all the four layers,
whereas every switch to switch interface implements the
three of four layers except physical layer. The NOC
architecture also has a concept of region allows us to handle
physically larger resources and can be used to provide fault
tolerance. A typical NOC architecture will provide a
scalable communication infrastructure for interconnecting
cores. The area of multi-media is a very suitable candidate
for using this high computing capacity of NOCs. NOC is a
general paradigm and one needs to specialize a NOC based
architecture for every application area.

III. SOPC BUILDER

SOPC Builder is a powerful system development tool.
SOPC Builder enables us to define and generate a complete
system-on-a-Programmable-chip (SOPC) in much less time
than using traditional, manual integration methods. SOPC
Builder is included as part of the Quartus II software
(www.Altera.com). We used SOPC Builder to create
systems based on the Nios® II processor. [3]

 Figure.4. System example [3]
Figure.4 shows an FPGA design that includes an SOPC
Builder system and custom logic modules. We can integrate
custom logic inside or outside the SOPC Builder system. In
this example, the custom component inside the SOPC
Builder system communicates with other modules through
an Avalon-MM master interface. The custom logic outside
of the SOPC Builder system is connected to the SOPC
Builder system through a PIO interface. The SOPC Builder
system includes two SOPC Builder components with
Avalon-ST source and sinks interfaces. The system
interconnect fabric shown below in Figure.5 connects all of
the SOPC Builder components using the Avalon-MM or
Avalon-ST system interconnects as appropriate. The
systems interconnect fabric [3] for memory-mapped
interfaces are a high-bandwidth interconnects structure for
connecting components that use the Avalon® Memory-
Mapped (Avalon-MM) interface. The system interconnect
fabric consumes minimal logic resources and provides
greater flexibility than a typical shared system bus. It is a
cross-connect fabric and not a tri-stated or time domain
multiplexed bus. Here we describe the functions of system
interconnect fabric for memory-mapped interfaces and the
implementation of those functions.

RASDAT 2011 Page 91

Figure.5. System interconnect fabric

3.1. Chip Planner

The Chip Planner provides a visual display of chip
resources. It can show logic placement, Logic Lock and
custom regions, relative resource usage, detailed routing
information, fan-in and fan-out paths between registers, and
delay estimates for paths.

 Figure.6. Chip planner tool bar from Quartus II Software

With the Chip Planner, we can view critical path
information, physical timing estimates, and routing
congestion. We can also perform assignment changes with
the Chip Planner, such as creating and deleting resource
assignments, and post-compilation changes like creating,
moving, and deleting logic cells and I/O atoms. By using the
Chip Planner in conjunction with the Resource Property

Editor, we can change connections between resources and
make post-compilation changes to the properties of logic
cells, I/O elements, PLLs, and RAM and digital signal
processing (DSP) blocks. With the Chip Planner, we can
view and create assignments for a design floor plan, perform
power and design analyses, and implement ECOs in a single
tool.

3.2. Viewing Routing Congestion

The Routing Congestion view allows us to determine the
percentage of routing resources used after a compilation.
This feature identifies where there is a lack of routing
resources. This information helps us to make decisions
about design changes that might be necessary to ease the
routing congestion and thus meet design requirements. The
congestion is visually represented by the color and shading
of logic resources. The darker shading represents greater
routing resource utilization. We can set a routing congestion
threshold to identify areas of high routing congestion. After
selecting the Routing Utilization layer setting, click on the
Routing Congestion icon on the taskbar.

3.3. Viewing I/O Banks

The Chip Planner can show all of the I/O banks of the
device. To see the I/O bank map of the device, click the
Layers icon located next to the Task menu. Under
Background Color Map, select I/O Banks.

3.4. Generating fan-in and fan-out Connections

This feature enables us to view the immediate resource that
is the fan-in or fan-out connection for the selected atom. For
example, selecting a logic resource and choosing to view the
immediate fan-in enables us to see the routing resource that
drives the logic resource. We can generate immediate fan-in
and fan-outs for all logic resources and routing resources.
To remove the connections that are displayed, click the
“Clear Connections” icon in the toolbar.

3.5. Highlight Routing

This feature enables us to highlight the routing resources
used for a selected path or connection.

3.6. Delay Calculation

We can view the timing delays for the highlighted
connections when generating connections between
elements. For example, you can view the delay between two
logic resources or between a logic resource and a routing
resource.

3.7. Viewing Assignments in the Chip Planner

RASDAT 2011 Page 92

Location assignments can be viewed by selecting the
appropriate layer set from the tool. To view location
assignments in the Chip Planner, select the Floor plan
Editing (Assignment) task or any custom task with
Assignment editing mode. The Chip Planner shows
location assignments graphically, by displaying assigned
resources in a particular color (gray, by default). We can
create or move an assignment by dragging the selected
resource to a new location.

IV. RESULTS

Using SOPC Builder in Quartus II tool, we designed and
simulated efficient SOPC-based Multicore System, and the
results are listed in Figure 7-11.

Figure 7 shows the screenshot of the developed SOPC
builder system. It is done using SOPC builder, this build
system has a design of multicore system with 2 CPU’s,
Avalon tri state bridge, flash memory, LCD and PIO’s. It’s
a FPGA design which includes SOPC builder system and
custom logic modules. We can integrate custom logic inside
or outside the SOPC builder system. In this design the
custom logic modules inside the SOPC builder system
communicates with other modules through an Avalon-MM-
master interface. The custom logic modules outside of the
SOPC builder system is connected to SOPC system through
a PIO interface.

Figure.7. SOPC builder for system building

The block diagram of the symmetric file is shown in Figure
8. SOPC builder allows us to design the structure of a
hardware system. The GUI allows adding components to a
system configure the components and specify the
connectivity. After adding and parameterize components,

SOPC Builder generates the system interconnect fabric,
outputs HDL files and .BDF during system generation.
This .BDF file shown in Figure8 represents the top –level
SOPC system for use in Quartus II.

Figure.8. Block diagram of the symmetric file

The compilation result is shown in Figure 9. Once the
system design is over it need to be verified whether the
designed system has no errors so in order to test the system
we compile our system. It shows 100% full compilation
during synthesize of our SOPC system.

Figure.9. Compilation

The chip planner view of the compiled design is shown in
Figure 10. In this screenshot we can see the build
components placed in this chip planner. We can view
critical path information, physical timing estimation and
routing congestion. The Chip Planner uses a hierarchical
zoom viewer that shows various abstraction levels of the

RASDAT 2011 Page 93

targeted Altera device. As we increase the zoom level, the
level of abstraction decreases, thus revealing more detail
about our design.

Figure.10. Chip planner view of compiled design

The routing utilization is shown in Figure 11. It allows us to
determine the percentage of routing resources used after
compilation. This information helps us to make decisions
about design changes which is necessary to ease the routing
congestion to meet the design requirements. The routing
congestion is visually represented by the color and shading
of logic resources. In Figure 11 we can see some areas are
dark and some areas are bright. The dark regions represent
greater routing resource utilization and the bright regions
represent no routing congestion.

 Figure.11. Routing utilization (Darker areas
Show dense routing connections)

V. CONCLUSIONS AND FUTURE WORK

In this paper, a simple multicore embedded system was
developed and synthesized using Altera SOPC Builder.
The synthesize results demonstrate that routing will be the
greater issue when it comes to the chip design. Using
network-on-chip architecture a prototype system based on
networking was developed to overcome the routing issue.
As a result, network-on-chip micro networks are used in
multicore processors to interconnect the various cores to
communicate simultaneously. This leads to larger on-chip
bandwidth and reduces routing congestion so that the
system efficiency is enhanced. Our designed multicore
system has two CPU cores which are individually optimized
to the particular computational characteristics of different
application fields, complementing each other to deliver high
performance levels with high flexibility at reduced cost.
The research focus is shifting from implementation of NOC
to investigation of its optimal use. The research problems in
NOC design are identified as synthesis of communication
infrastructure, choice of communication paradigm,
application mapping and optimization. In the future, we will
continue to design an efficient multicore SOPC with
optimized timing constraints, reduced latency and improved
programmability. We will also develop highly embedded,
multi-core systems with more number of cores which in turn
increases the system performance and many applications
can run at the same time.

REFERENCES

 [1] Luca Benini, Giovanni De Micheli, “Networks on
Chips: A New SoC Paradigm”, Computer, v.35 n.1, p.70-
78, January 2002.
 [2] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M.
Millberg, J. Oberg, K. Tiensyrja, A. Hemani, “A network
on chip architecture and design methodology”, Proceedings
of IEEE Computer Society Annual Symposium on VLSI, pp.
105-112, April 2002.
[3] Quartus II Handbook, SOPC Builcer, Version 9.0,
Volume 4, URL:
 www.altera.com/literature/hb/qts/qts_qii5v4.pdf
[4] Axel Jantesh and Hannu Tenhumen, “Networks on
Chip”, Kluwer Academic Publications, 2003, Boston, USA.
[5] Muhammad Ali, Michael Welzl, Sybille Hellebrand, “A
dynamic routing mechanism for network on chip”,
Proceedings of IEEE NORCHIP, Oulu, Finland, 21-22,
Nov. 2005.
[6] International Technology Roadmap for Semiconductors
2003, URL: http://public.itrs.net
[7] H. Tenhunen and A. Jantsch, "Networks on Chip",
Springer, 1st edition, ISBN: 1402073925, Jan. 2003.

RASDAT 2011 Page 94

http://public.itrs.net/�

Author Index

A

Achira Pal.......................................48

Alak Datta.......................................48

Atal Chaudhuri48

Adithya Thaduri60

Ajit Verma60

Adrouche Djamel71

Atul Gupta77

Arunraj Subramanyan89

B

Breeta SenGupta13

Bikramadittya Mondal.............. 37,84

Balvinder Khurana77

C

..

D

..

E

Erik Larsson13

F

..

G

Gopika Vinod..................................60

H

Hideo Fujiwara7

Hiroaki Yoshida19,54

Harikrishna Parmar65

I

..

J

Jaeho Lee19

K

KS Dasgupta...................................65

L

..

M

Makoto Nakao7

Michiko Inoue7

Masahiro Fujita..............................19

Mark Zwolinski43,54

M. Rajesh Gopalan60

N

Nirjan Devashrayee........................65

O

..

P

Priadarshini Shanmugasundaram .25

Pradyut Sarkar..........................37,84

Pillement Sebastien71

Q

..

R

Rajat Pal...48

S

Senling Wang31

Seiji Kajihara31

Sudhakar Reddy31

Susanta Chakraborty37,84

Shohei Ono54

Sadoun Rabah71

T

Tomokazu Yoneda7

Tarak Mandal.................................48

U

Urban Ingelsson.............................13

Usha Mehta....................................65

V

Vishwani Agrawal25

Vanchinathan Thankavel................89

W

..

X

Xiaoxin Fan....................................31

Y

Yasuo Sato...................................7,31

Yang Lin..43

Z

...

RASDAT 2011 Page 95

	Insert from: "rasdat2011_submission_14.pdf"
	I. Introduction
	II. preliminaries and prior work
	A. Power dissipation in CMOS technology
	B. Prior work
	III. motivation of the work and problem formulation
	A. Motivation of the work
	B. Problem formulation

	IV. an a*-based method for dynamic power minimization by test vector reordering
	A. Basic underlying principle for A* algorithm
	B. Cost function g(n)
	C. Computing lower bound of switching activity : Heuristic function h(n)
	D. The A*-based algorithm : AITVR
	E. Time complexity of AITVR

	V. Empirical Observation
	VI. conclusion
	references
	[13] A. Sokolov, A. Sanyal, D. Whitley, and Y. Malaiya. “ Dynamic Power Minimization During Combinational Circuit Testing as a Traveling Salesman Problem.” In Proc. of the IEEE Congress on Evolutionary Computation, volume 2, pages 1088–1095, 2005.

	table 1
	 Comparison of Switching activity

