Quiz 3 : **16 points** (75 min)

April 12, 2013

- 1. [4 points] Suppose the input X and output Y to a channel are related by $Y = \rho X + N$ where N is a zero-mean Gaussian random variable with variance σ^2 and ρ is a random variable independent of the noise. Assume that X is equally likely to be $\pm A$. Our goal is to decide on the value of X given the observation Y.
 - (a) If ρ is the constant 1, what is the optimal decision rule and the resulting decision error probability?
 - (b) If ρ takes values ± 1 with equal probability, what is the optimal decision rule and the resulting decision error probability?
- 2. [2 points] Find the maximum likelihood decision rule for the following 3-ary hypothesis testing problem where $\mu = \sqrt{2\sigma}$.

$$\begin{array}{rcl} H_1 & : & Y \sim N(-\mu, \sigma^2) \\ H_2 & : & Y \sim N(0, e^2 \sigma^2) \\ H_3 & : & Y \sim N(\mu, \sigma^2) \end{array}$$

Hint: Sketch the density functions keeping in mind that the variances are unequal.

3. [4 points] Suppose we observe Y_i , i = 1, 2, ..., M such that

$$Y_i \sim N(\mu, \sigma^2)$$

where the Y_i 's are independent.

- (a) If μ is **unknown** and σ is **known**, derive the maximum likelihood estimator of μ .
- (b) If μ is **known** and σ is **unknown**, derive the maximum likelihood estimator of σ^2 .
- 4. [2 points] A random variable has generating function $G(s) = \frac{3s}{4-s}$. Find its mean and variance.
- 5. [2 points] Let X_1, X_2, \ldots be a sequence of independent identically distributed (iid) random variables with common generating function $G_X(s)$. Let N be a positive integer-valued random variable which is independent of the X_i 's and has generating function $G_N(s)$. If $S = X_1 + X_2 + \cdots + X_N$, derive the generating function of S in terms of G_X and G_N .
- 6. [2 points] Suppose X and Y are independent random variables with characteristic functions

$$\phi_X(t) = \exp\left(i5t - 5t^2\right)$$

$$\phi_Y(t) = \exp\left(i6t - 4t^2\right)$$

respectively. Find the characteristic function of 3X + 4Y + 5.