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What is a Hypothesis?
One situation among a set of possible situations

Example (Radar)

EM waves are transmitted and the reflections observed.
Null Hypothesis Plane absent

Alternative Hypothesis Plane present

For a given set of observations, either hypothesis may be true.
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What is Hypothesis Testing?

A statistical framework for deciding which hypothesis is true

Under each hypothesis the observations are assumed to have a known
distribution

Consider the case of two hypotheses (binary hypothesis testing)

H : Y~P
H1 . YNP1

Y is the random observation vector belonging to observation set ' C R”
forne N

The hypotheses are assumed to occur with given prior probabilities

Pr(Ho is true) = mo
Pr(H; istrue) =

where g + T = 1.
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Location Testing with Gaussian Error

e |letobservationsetl =Rand >0

Ho : Y~ N(—p,o?)
Hy Y~ N(g 0%

“u " y

e Any pointin ' can be generated under both Hy and H;

e What is a good decision rule for this hypothesis testing problem which
takes the prior probabilities into account?
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What is a Decision Rule?
e A decision rule for binary hypothesis testing is a partition of I' into 'y
and 'y such that
_ 0 ifyerly
5(y)7{ 1 ifyerly
We decide Hi is true when é(y) = i for i € {0,1}

For the location testing with Gaussian error problem, one possible
decision rule is

ro = (*OO7 0]
F1 = (O, OO)
and another possible decision rule is
lh = (—o0,—100)U(-50,0)
r = [-100,-50]U[0, )

Given that partitions of the observation set define decision rules, what is
the optimal partition?
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Which is the Optimal Decision Rule?

Minimizing the probability of decision error gives the optimal decision
rule

For the binary hypothesis testing problem of Hy versus H;, the
conditional decision error probability given H; is true is

Pei = Pr[Deciding H;_; is true|H; is true]
= PF[YE F1,,-|H,-]
= 1 —Pr[YeF,-|H,-]
= 1- Pc\i
Probability of decision error is
Pe = moPejo 4 71 Pey1
Probability of correct decision is

Pc:WOPc|O+7T1Pc|1:1—Pe
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Which is the Optimal Decision Rule?

Maximizing the probability of correct decision will minimize probability of
decision error

Probability of correct decision is
P, = 7I'()Pc‘0—|—7r1 Pc“

= wo [ poly)dy+m / pi(y) dy

y€ly yery

If a point y in T belongs to '}, its contribution to P is proportional to
mipi(y)
To maximize P, we choose the partition {0, 1} as

o = {yellmopo(y) > mpi(y)}
= {yerllmpi(y) > mopo(y)}

The points y for which mopo(y) = m1p1(y) can be in either ', and 'y (the
optimal decision rule is not unique)
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Location Testing with Gaussian Error

L Letu1>uoandﬂ'o=ﬂ'1=%

H : Y=w+Z
H, Y:/L1+Z

where Z ~ N(0, o)

= e 202
Y
) 1 7(}/7#21)2
= e 2o
ity Vero?



Location Testing with Gaussian Error

e Optimal decision rule is given by the partition {[o, 1}

o = {yerlimpo(y)>mpi(y)}
I {y €Tmpi(y) > mopo(y)}

e Formy=m =3

= fredpengn)
)
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Location Testing with Gaussian Error

Pejo = Pr[Y>L42—”1

) -a(g)

] =0 (1) = a1, )

Pe = moPejg + 1 Pej1 = Q (%)

Pe|1 = Pr [Y < BT —;IM

This Pe is for mo = m = §
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Location Testing with Gaussian Error
e Suppose 7y #

e Optimal decision rule is still given by the partition {I'o, 1}

Mo
Iy

{y € Tlmopo(y) > m1pi(y)}
{y € TImipi(y) > mopo(y)}

e The partitions specialized to this problem are
2

Mo = {yer‘yg’“““w g Iog@}
2 (11— po)

2
{yel“y>u1—£u°+ g Iog@}

-
1 (1 — o) > 7
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Location Testing with Gaussian Error
Suppose mp = 0.6 and 7y = 0.4

2 2
T:u1+uo+ o o @:u1+uo+0.4054a

2 (1 = po) 2 (11 = po)
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Location Testing with Gaussian Error
Suppose mo = 0.4 and 71 = 0.6

2 2
T:u1+uo+ o log ™0 — H1+ ko 0.40540

2 (1 = po) 2 (11 = po)
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M-ary Hypothesis Testing

e M hypotheses with prior probabilities 7, i=1,...,M

H1 . YNP1
H, :© Y~P;
Hu @ Y~ Py

e A decision rule for M-ary hypothesis testing is a partition of I' into M
disjoint regions {I;|i = 1,..., M} such that

o(y)=iifyer;

We decide Hi; is true when 6(y) = ifori e {1,..., M}
e Minimum probability of error rule is

dmre(y) = arg [max, mipi(Y)
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Maximum A Posteriori Decision Rule

e The a posteriori probability of H; being true given observation y is

P {H,- is true

_ mipi(y)
y] —p(y)

e The MAP decision rule is given by

omar(y) = argm@%ﬂP {H,- is true

V} = dmpe(Y)

MAP decision rule = MPE decision rule
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Maximum Likelihood Decision Rule

e The ML decision rule is given by

du(y) = arg max pi(y)

e If the M hypotheses are equally likely, w; = 1m

e The MPE decision rule is then given by
owpe(y) = arg @gmepf(v) = om(y)

For equal priors, ML decision rule = MPE decision rule
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Questions?
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