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Parameter Estimation

e Hypothesis testing was about making a choice between discrete states
of nature

e Parameter or point estimation is about choosing from a continuum of
possible states

Example
Consider the signal below
y(t) = Asin(2rf;t + ¢) + n(t)

where n(t) is a noise signal.

The amplitude A is a real number

The frequency f; is a positive real number in some known interval

The phase ¢ can take any real value in the interval [0, 27)
e We are interested in estimating A, f; and ¢



System Model for Parameter Estimation
e Consider a family of distributions
Y~Py, €A
where the observation vector Y ¢ ' C R" for n € Nand A C R” is the
parameter space

Example

Y=A+Z
where Ais an unknown parameter and Z is a standard Gaussian RV. Here
6 = A.
e The goal of parameter estimation is to find 6 given Y

e An estimator is a function from the observation space to the parameter
space R
0:T = A



Which is the Optimal Estimator?

e Assume there is a cost function C
C:AxN=R

such that Cla, 0] is the cost of estimating the true value of 6 as a
e Examples of cost functions

Squared Error Cla, 6] = (a— 0)?

Absolute Error Cla, 0] = |a— 0|

i —0| <
Threshold Error Cla, 0] = { (1) :; Ig_ Z{ N 2



Which is the Optimal Estimator?

Suppose that the parameter 6 is the realization of a random variable ©
With an estimator § we associate a conditional cost or risk conditioned

oné A R
ro(8) = E; {c [e(v), 9] }
The average risk or Bayes risk is given by
A(d) = E{re(0)}

The optimal estimator is the one which minimizes the Bayes risk



Which is the Optimal Estimator?

e Given that

o) =& {c[in.0]} = £{c[im.e] o=}

the average risk or Bayes risk is given by
E{cpwyﬂ}
= E{E{C@WLGHY}}

e The optimal estimate for 6 can be found by minimizing foreachY =y

the posterior cost
E{CWWL@HY=V}

R(9)



Minimum-Mean-Squared-Error (MMSE) Estimation
e Cla, 0] =(a—6)?
e The posterior cost is given by

Y-y} = [ion]
AeﬂwE{%Y:y}

-

e{w) - oy

+E{@2

e The Bayes estimate is given by

Buwse(y) = E {e]Y -}



Example 1: MMSE Estimation

Suppose X and Y are jointly Gaussian random variables
Let the joint pdf be given by

1 1 Te—1 )
V)= ———exp|—=(s—p) T '(s—
pxy (X, y) P Xp< 5(8— 1) (s —nm)

2
wheres:{x],,u:{’”} andZ:[ Ix pangy]
y Hy pOxCy Oy
Suppose Y is observed and we want to estimate X

The MMSE estimate of X is

Xmse(y) = E {X‘ Y = J’}



Example 1: MMSE Estimation

e The conditional distribution of X given Y = y is a Gaussian RV with
mean

(o3
pixyy = px + —p(¥ — py)
Oy

and variance
2 2\ 2
x|y = (1= p%)ox

e Thus the MMSE estimate of X given Y = y is

Xumse(y) = pix + %p(y — i)
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Example 2: MMSE Estimation

Suppose A is a Gaussian RV with mean . and known variance v2
Suppose we observe Y, i =1,2,..., M such that

Yi=A+ N

where N;’s are independent Gaussian RVs with mean 0 and known
variance o2
Suppose A is independent of the N’s
The MMSE estimate is given by
2 A
M Ai(y) +

/IZ\MMSE(y) =
" 41

where Ai(y) = £ S, i
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Maximum A Posteriori (MAP) Estimation

In some situations, the conditional mean may be difficult to compute
An alternative is to use MAP estimation
The MAP estimator is given by

Ouar(y) = argmax p (0‘Y = y)

where p is the conditional density of © given Y.

It can be obtained as the optimal estimator for the threshold cost

function ‘) |
0 ifla—0l<A
C[a’el—{ 1 ifla—6]>A

for small A >0
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Maximum A Posteriori (MAP) Estimation

e For the threshold cost function, we have'
E {C [0y). €] ’Y = v}
— [ cii).op (o]v =y) o
6(y)—Aa 0o
/ p(&‘Y:y) d€+/ p(&‘Y:y) do
—o0 o(y)+A
=) o(y)+A
—0 o(y)—A
0(y)+a
1—/ p(@‘Y:y) do
o(y)—a

e The Bayes estimate is obtained by maximizing the integral in the last
equality

"Assume a scalar parameter 6 for illustration
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Maximum A Posteriori (MAP) Estimation

POY =y)

b(y)

e The shaded area is the integral f( A p (G‘Y = y) do

e To maximize this integral, the location of A(y) should be chosen to be
the value of # which maximizes p(9]Y =y)
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Maximum A Posteriori (MAP) Estimation

p(OIY =y)

Buar(y)

e This argument is not airtight as p(f|Y = y) may not be symmetric at the
maximum

e But the MAP estimator is widely used as it is easier to compute than the
MMSE estimator
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Maximum Likelihood (ML) Estimation
e The ML estimator is given by
Om.(y) = argmax p (Y = v‘0>
6

where p is the conditional density of Y given ©.

e |tis the same as the MAP estimator when the prior probability
distribution of © is uniform

e |tis also used when the prior distribution is not known
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Example 1: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N(Mv 02)

where Y;’s are independent, . is unknown and o2 is known
e The ML estimate is given by

M
. 1
f(¥) = 7 DoV
i=1
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Example 2: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N(Mv 02)

where Y;’s are independent, both 1 and o2 are unknown
e The ML estimates are given by

1 M
Amc(y) = szf
i=1
1 M
sn(y) = MZ(Yf—ﬂML(V))Z
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Example 3: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Bernoulli(p)

where Y;’s are independent and p is unknown
e The ML estimate of p is given by

1 M
Pu(y) = 4 o
i
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Example 4: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Uniform|0, 6]

where Y’s are independent and 6 is unknown
e The ML estimate of 0 is given by

O (y) = max (yi, Yz, -, Yu—1, Ym)
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Questions?
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