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Expectation of Discrete Random Variables

Definition
The expectation of a discrete random variable X with probability mass
function f is defined to be

E(X)= Y xf(x)
x:f(x)>0
whenever this sum is absolutely convergent. The expectation is also called
the mean value or the expected value of the random variable.
Example

e Bernoulli random variable
Q={0,1}

P if x =1
f(x)—{ 1-p ifx=0

where 0 < p <1

EX)=1-p+0-(1-p)=p
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More Examples

The probability mass function of a binomial random variable X with
parameters nand p is

PIX = k] = (Z)pkﬁ —p)"F ifo<k<n

Its expected value is given by

E(X)=> KP[X =K = Zk( )p(1 p)" ¥ =np

k=0

The probability mass function of a Poisson random variable with
parameter X is given by

A" N
PIX =K =" e k=0,1,2,...

Its expected value is given by

:ikP[X:k]: ikﬁe*:A

k=0
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Why do we need absolute convergence?

A discrete random variable can take a countable number of variables
The definition of expectation involves a weighted sum of these values
The order of the terms in the infinite sum is not specified in the definition
The order of the terms can affect the value of the infinite sum

Consider the following series

1 — 1 + 1 — 1 + 1
2 3 4 5
Its sums to a value less than g
Consider a rearrangement of the above series where two positive terms
are followed by one negative term
11 1 1 1 1 1

tgts—gtgtir gt

1
t3 275 479 11 6

Since
1 1 1

ak—3 a1 2k
the rearranged series sums to a value greater than g

>0
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Why do we need absolute convergence?

A series Y a; is said to converge absolutely if the series > |aj|
converges

Theorem: If 3 a; is a series which converges absolutely, then every
rearrangement of > a; converges, and they all converge to the same
sum

The previously considered series converges but does not converge

absolutely

1_1+1_1+1_1+1_1+...
2 3 4 5 6 7 8

Considering only absolutely convergent sums makes the expectation
independent of the order of summation
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Expectations of Functions of Discrete RVs
e |f X haspmffand g:R — R, then

E(g(X)) =D _ g(x)f(x)

whenever this sum is absolutely convergent.

Example
* Suppose X takes values —2, —1, 1,3 with probabilities §, §, 7,3
respectively.
e Consider Y = X°. It takes values 1,4, 9 with probabilities 2, 1, 2
respectively.
3 1 3 19
E(Y)f;yP(ny)f1-§+4-Z+9«§ 4
Alternatively,
B =S P —x) =411 11 g 810
EY) = EX) = AP =x) =4 g 1o g 1448 0=



Expectation of Continuous Random Variables

Definition
The expectation of a continuous random variable with density function f is
given by

E(X) = /_oo xf(x) dx

whenever this integral is finite.
Example (Uniform Random Variable)

L fora<x<b
— b—a = =
fx) = { 0 otherwise

f(x)

1

b—a

E(X) = 2

a b



Conditional Expectation

Definition
For discrete random variables, the conditional expectation of Y given X = x

is defined as
E(Y|X=x) = Z}’fnx y1x)
For continuous random variables, the condltlonal expectation of Y given X is
given by
E(YIX=x)= [ yitybx) oy

The conditional expectation is a function of the conditioning random variable
i.e. (X) = E(Y|X)

Example

For the following joint probability mass function, calculate E(Y) and E(Y|X).

Y/X ‘ X1 Xo X3
1% % 0 O
2 0 % 15
Y3 0 & 3
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Law of Iterated Expectation

Theorem
The conditional expectation E(Y|X) satisfies

ETE(YIX)] = E(Y)

Example

A group of hens lay N eggs where N has a Poisson distribution with
parameter \. Each egg results in a healthy chick with probability p
independently of the other eggs. Let K be the number of chicks. Find E(K).
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Some Properties of Expectation
If a,b € R, then E(aX + bY) = aE(X) + bE(Y)
If X and Y are independent, E(XY) = E(X)E(Y)
X and Y are said to be uncorrelated if E(XY) = E(X)E(Y)

Independent random variables are uncorrelated but uncorrelated
random variables need not be independent

Example

Y and Z are independent random variables such that Z is equally likely to be
1 or —1 and Y is equally likely to be 1 or 2.

Let X = YZ. Then X and Y are uncorrelated but not independent.
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Variance

Quantifies the spread of a random variable
If k is a positive integer, the kth moment my of X is defined to be

mix = E(X")
The kth central moment oy is

W:Ehx—my]

The first moment is the same as the expectation m; = E(X)
The second central moment o2 = E[(X — my)?] is called the variance
The positive square root of the variance is called the standard deviation

o =/ E[(X—m)?]

Properties of Variance
e var(X) >0
o var(X) = E(X?) - [E(X)]
e Fora,b e R, var(aX + b) = & var(X)
e var(X + Y) =var(X) +var(Y) if and only if X and Y are
uncorrelated
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Examples

e Variance of a binomial random variable X with parameters nand p is

var(X) = Z K2P[X = K] — (np)* = Z K2 (Z) p(1 = p)" " = np?
k=0 k=0
= np(1-p)

e Variance of a Poisson random variable X with parameter X is given by

o5} o5} k
var(X) = > KPIX =K] - \* = Zkz%e—* X =2
k=0 k=0 ’

e Variance of a uniform random variable X on [a, b] is

var(X) = /:: X2fy(x) dx — (a42_b>2 _(b 1—2a)2
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Expectation via the Distribution Function

For a discrete random variable X taking values in {0, 1,2, ...}, the expected
value is given by

E[X] = i P(X > i)

Proof

ip(xz/)— ZZP(X_j = iZP(ij)z ZJ‘P(X=/)=E[X]

i=1 j=i Jj=1 i=1

Example

Let Xi, ..., Xm be mindependent discrete random variables taking only
non-negative integer values. Let all of them have the same probability mass
function P(X = n) = p, for n > 0. What is the expected value of the
minimum of Xi, ..., Xn?
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Expectation via the Distribution Function

For a continuous random variable X taking only non-negative values, the
expected value is given by

E[X] :/Ooo P(X > x) dx

Proof

/OOOP(XZX)dX - /Ooo/xoofx(t)dtdx:/Ooo/otfx(t)dxdt

/  the(t) ot = E[X]
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Probabilistic Inequalities



Markov’s Inequality

If X is a non-negative random variable and a > 0, then

P(X > a) < E(X)

Proof
We first claim that if X > Y, then E(X) > E(Y).
Let Y be a random variable such that

Y — a ifX>a
o ifX<a

Then X > Y and E(X) > E(Y) = aP(X > a) = P(X > a) < X,

Exercise
e Prove that if E(X?) = 0 then P(X = 0) = 1.
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Chebyshev’s Inequality

Let X be a random variable and a > 0. Then P (|X — E(X)| > a) < %9,

Proof
Let Y = (X — E(X))2

P(X—-E(X)|>a)=P(Y>d) <

Setting a = ko where k > 0 and o = y/var(X), we get

1

P(IX ~ E(X)| > ko) < 1.

Exercises

e Suppose we have a coin with an unknown probability p of showing
heads. We want to estimate p to within an accuracy of ¢ > 0. How can
we do it?

e Provethat P(X =c) =1 < var(X) =0.
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Cauchy-Schwarz Inequality

For random variables X and Y, we have

|E(XY)| </ E(X?)\/ E(Y?)

Equality holds if and only if P(X = cY) = 1 for some constant c.

Proof
For any real k, we have E[(kX + Y)?] > 0. This implies

K2E(X?) + 2kE(XY) + E(Y?) >0

for all k. The above quadratic must have a non-positive discriminant.

[2E(XY))? — 4E(X?)E(Y?) < 0.
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Questions?
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