Assignment 4: 25 points

Due Date: March 30, 2015

- 1. Suppose the input X and output Y to a channel are related by $Y = \rho X + N$ where N is a zero-mean Gaussian random variable with variance σ^2 and ρ is a random variable independent of the noise. Assume that X is equally likely to be $\pm A$. Our goal is to decide on the value of X given the observation Y.
 - (a) $[2\frac{1}{2}]$ points If ρ is the constant 1, what is the optimal decision rule and the resulting decision error probability?
 - (b) $[2\frac{1}{2} \text{ points}]$ If ρ takes values ± 1 with equal probability, what is the optimal decision rule and the resulting decision error probability?
- 2. [5 points] Find the maximum likelihood decision rule for the following 3-ary hypothesis testing problem where $\mu = \sqrt{2}\sigma$.

$$H_1 : Y \sim N(-\mu, \sigma^2)$$

 $H_2 : Y \sim N(0, e^2\sigma^2)$
 $H_3 : Y \sim N(\mu, \sigma^2)$

Hint: Sketch the density functions keeping in mind that the variances are unequal.

3. Consider the following binary hypothesis testing problem where the hypotheses are equally likely.

$$H_0$$
: $Y \sim U\left[-\sqrt{\frac{e^2\pi}{2}}, \sqrt{\frac{e^2\pi}{2}}\right]$
 H_1 : $Y \sim \mathcal{N}(0, 1)$

U denotes the uniform distribution, \mathcal{N} denotes the Gaussian distribution and e is the base of the natural logarithm.

- (a) $[2\frac{1}{2} \text{ points}]$ Find the decision error probability of the rule which decides H_1 is true if $|Y| > \sqrt{\frac{e^2\pi}{2}}$ and decides H_0 is true if $|Y| \le \sqrt{\frac{e^2\pi}{2}}$. Express your answer in terms of the Q function.
- (b) $[2\frac{1}{2}$ points] Find the decision error probability of the optimal decision rule. Express your answer in terms of the Q function.
- 4. [5 points] Suppose observations Y_i , i = 1, 2, ..., N are Poisson distributed with parameter λ . Assume that the Y_i 's are independent.
 - (a) Derive the ML estimator for λ .
 - (b) Find the mean and variance of the ML estimate.
- 5. [5 points] Suppose we observe a sequence of random variables Y_1, Y_2, \ldots, Y_n given by

$$Y_k = \theta s_k + N_k, \quad k = 1, 2, \dots, n$$

where the N_k 's are independent zero-mean Gaussian random variables with variance σ^2 . The sequence s_1, \ldots, s_n is a known signal sequence and θ is an unknown parameter.

- (a) Find the maximum likelihood estimate $\hat{\theta}_{ML}(\mathbf{Y})$ of the parameter θ .
- (b) Find the mean and variance of $\hat{\theta}_{ML}(\mathbf{Y})$.