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Parameter Estimation

Hypothesis testing was about making a choice between discrete states
of nature

Parameter or point estimation is about choosing from a continuum of
possible states

Example

Consider a manufacturer of clothes for newborn babies

She wants her clothes to fit at least 50% of newborn babies. Clothes
can be loose but not tight. She also wants to minimize material used.

Since babies are made up of a large number of atoms, their length is a
Gaussian random variable (by Central Limit Theorem)
Baby Length ~ N/ (i, o°)

Only knowledge of u is required to achieve her goal of 50% fit
But i is unknown and she is interested in estimating it

What is a good estimator of 17 If she wants her clothes to fit at least
75% of the newborn babies, is knowledge of 1 enough?
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System Model for Parameter Estimation

e Consider a family of distributions
Y~ Pg, BN
where the observation vector Y € R” and A C R™ is the parameter
space. 0 itself can be a realization of a random variable ©

Example

Y NN(M702)

where 1 and o are unknown. Here 6 = [p o] T A=RxR*.
The parameters p and o can themselves be random variables.

e The goal of parameter estimation is to find 8 given Y

e An estimator is a function from the observation space to the parameter
space .
0:R—A



Which is the Optimal Estimator?

e Assume there is a cost function C
C:AxN—=R

such that CJa, 0] is the cost of estimating the true value of 6 as a
e Examples of cost functions for scalar 6

Squared Error Cla, 6] = (a— 0)?

Absolute Error Cla,0] = |a— 0|

i —0| <
Threshold Error Cla, 0] = { (1) :I IZ_ Z{ N 2



Which is the Optimal Estimator?

Suppose that the parameter 6 is the realization of a random variable ©
With an estimator & we associate a conditional cost or risk conditioned

oné@ . R
ro(8) = Eo {c [e(v), e] }
The average risk or Bayes risk is given by
R(B) = E {ro(9)}

The optimal estimator is the one which minimizes the Bayes risk



Which is the Optimal Estimator?
e Given that
ro(8) = Eo {c [é(v),e]} =E {c [9(\/), e] ‘e = e}
the average risk or Bayes risk is given by

RO) = E {c [é(v), e] }

= E{E{C [é(v),e] ‘v}}

/E {C [6(Y). 0] ‘Y = v} pv(y) dy

e The optimal estimate for 8 can be found by minimizing foreach Y =y
the posterior cost

E {c [é(y), e} ’Y = y}



Minimum-Mean-Squared-Error (MMSE) Estimation

e Consider a scalar parameter 6
e Cla, 0] = (a—0)?
e The posterior cost is given by

E {(é(y) oy

Y- y} = [ow)]” - 20E {elv - y}

-

e Differentiating posterior cost wrt d(y), the Bayes estimate is

+E{@2

Oumse(y) = E {e’v = y}



Example: MMSE Estimation

Suppose X and Y are jointly Gaussian random variables
Let the joint pdf be given by

1 Ta—1 )
X, y)=———exp|—=(s— C '(s—
portxy) = 5o (~5s—we s )
2
where s — {x]’ . |:Nx:| and C — { Ox paxzay}
y oy poxoy o

Suppose Y is observed and we want to estimate X
The MMSE estimate of X is

Ximse(y) = E {X‘ Y= J’}

The conditional density of X given Y = y is

_ pxv(x,y)



Example: MMSE Estimation

e The conditional density of X given Y = y is a Gaussian density with
mean

(o3
pixly = px + —p(¥ — py)
Oy

and variance
2 2\ 2
x|y = (1= p%)ox

e Thus the MMSE estimate of X given Y = y is

Kimse(¥) = pix + j—;p(y )
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Maximum A Posteriori (MAP) Estimation

In some situations, the conditional mean may be difficult to compute
An alternative is to use MAP estimation
The MAP estimator is given by

9mﬂw:a@?MPWW)

where p is the conditional density of © given Y.

It can be obtained as the optimal estimator for the threshold cost

function ‘) |
0 ifla—0l<A
qaﬂ—{1 ifla—6] > A

for small A >0
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Maximum A Posteriori (MAP) Estimation

e For the threshold cost function, we have'

E{C [é(y), e] ’Y - y}

-/ ~ clowy). olp(oly) do

by)-n )
/ p(oly) do+ / " p(oly) do
+A

/ p(6ly) do - / p(oly) d

a(y)+A

- 1—/@ p(6ly) do

y)-4

e The Bayes estimate is obtained by maximizing the integral in the last
equality

"Assume a scalar parameter 6 for illustration
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Maximum A Posteriori (MAP) Estimation

p(0ly)

e The shaded area is the integral |, (f(;y))fj p(6ly) do

e To maximize this integral, the location of d(y) should be chosen to be
the value of 8 which maximizes p(6]y)
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Maximum A Posteriori (MAP) Estimation

p(0ly)

Buar(y)

e This argument is not airtight as p(f|y) may not be symmetric at the
maximum

e But the MAP estimator is widely used as it is easier to compute than the
MMSE estimator
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Maximum Likelihood (ML) Estimation

e The ML estimator is given by
Bm.(y) = argmaxp (y|6)
(7]

where p is the conditional density of Y given ©.

e |tis the same as the MAP estimator when the prior probability
distribution of @ is uniform

P(0.Y) _ argmax PVI19) P(6)

p(y) 0 p(y)

Buae(y) = argmax p (6ly) = argmax
] 2]

e |tis also used when the prior distribution is not known
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Example 1: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi~ N(M7 02)

where Y;’s are independent, . is unknown and o2 is known
e The ML estimate is given by

M

. 1

e (Y) = 17 Do
i=1
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Example 2: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Yi~ N(M7 02)

where Y;’s are independent, both 1 and o2 are unknown
e The ML estimates are given by

1 M
fimc(y) = szf
i=1
1 M
sn(y) = MZ(}’/—/AWL(V))2

16/20



Example 3: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Bernoulli(p)

where Y’s are independent and p is unknown
e The ML estimate of p is given by

M
" 1
pu(y) = >
i=1
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Example 4: ML Estimation

e Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Uniform|0, 6]

where Y;’s are independent and 6 is unknown
e The ML estimate of 6 is given by

é\’V’L(y) = max (y17y27 cee 7}’M—17}’M)
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Thanks for your attention
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