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Expectation of Discrete Random Variables

Definition
The expectation of a discrete random variable X with probability mass
function f is defined to be

E(X ) =
∑

x :f (x)>0

xf (x)

whenever this sum is absolutely convergent. The expectation is also called
the mean value or the expected value of the random variable.

Example
• Bernoulli random variable

Ω = {0, 1}

f (x) =
{

p if x = 1
1 − p if x = 0

where 0 ≤ p ≤ 1

E(X ) = 1 · p + 0 · (1 − p) = p
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More Examples
• The probability mass function of a binomial random variable X with

parameters n and p is

P[X = k ] =

(
n
k

)
pk (1 − p)n−k if 0 ≤ k ≤ n

Its expected value is given by

E(X ) =
n∑

k=0

kP[X = k ] =
n∑

k=0

k

(
n
k

)
pk (1 − p)n−k = np

• The probability mass function of a Poisson random variable with
parameter λ is given by

P[X = k ] =
λk

k !
e−λ k = 0, 1, 2, . . .

Its expected value is given by

E(X ) =
∞∑

k=0

kP[X = k ] =
∞∑

k=0

k
λk

k !
e−λ = λ
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Why do we need absolute convergence?
• A discrete random variable can take a countable number of values
• The definition of expectation involves a weighted sum of these values
• The order of the terms in the infinite sum is not specified in the definition
• The order of the terms can affect the value of the infinite sum
• Consider the following series

1 − 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+ · · ·

Its sums to a value less than 5
6

• Consider a rearrangement of the above series where two positive terms
are followed by one negative term

1 +
1
3
− 1

2
+

1
5
+

1
7
− 1

4
+

1
9
+

1
11

− 1
6
+ · · ·

Since
1

4k − 3
+

1
4k − 1

− 1
2k

> 0

the rearranged series sums to a value greater than 5
6
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Why do we need absolute convergence?
• A series

∑
ai is said to converge absolutely if the series

∑
|ai |

converges
• Theorem: If

∑
ai is a series which converges absolutely, then every

rearrangement of
∑

ai converges, and they all converge to the same
sum

• The previously considered series converges but does not converge
absolutely

1 − 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+ · · ·

• Considering only absolutely convergent sums makes the expectation
independent of the order of summation
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Expectations of Functions of Discrete RVs
• If X has pmf f and g : R → R, then

E(g(X )) =
∑

x

g(x)f (x)

whenever this sum is absolutely convergent.

Example
• Suppose X takes values −2,−1, 1, 3 with probabilities 1

4 ,
1
8 ,

1
4 ,

3
8

respectively.
• Consider Y = X 2. It takes values 1, 4, 9 with probabilities 3

8 ,
1
4 ,

3
8

respectively.

E(Y ) =
∑

y

yP(Y = y) = 1 · 3
8
+ 4 · 1

4
+ 9 · 3

8
=

19
4

Alternatively,

E(Y ) = E(X 2) =
∑

x

x2P(X = x) = 4 · 1
4
+ 1 · 1

8
+ 1 · 1

4
+ 9 · 3

8
=

19
4
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Expectation of Continuous Random Variables
Definition
The expectation of a continuous random variable with density function f is
given by

E(X ) =

∫ ∞

−∞
xf (x) dx

whenever this integral is finite.

Example (Uniform Random Variable)

f (x) =
{ 1

b−a for a ≤ x ≤ b
0 otherwise

x

f (x)

a b

1
b−a

E(X ) = a+b
2
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Conditional Expectation

Definition
For discrete random variables, the conditional expectation of Y given X = x
is defined as

E(Y |X = x) =
∑

y

yfY |X (y |x)

For continuous random variables, the conditional expectation of Y given X is
given by

E(Y |X = x) =
∫ ∞

−∞
yfY |X (y |x) dy

The conditional expectation is a function of the conditioning random variable
i.e. ψ(X ) = E(Y |X )

Example
For the following joint probability mass function, calculate E(Y ) and E(Y |X ).

Y ↓,X → x1 x2 x3

y1
1
2 0 0

y2 0 1
8

1
8

y3 0 1
8

1
8
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Law of Iterated Expectation

Theorem
The conditional expectation E(Y |X ) satisfies

E [E(Y |X )] = E(Y )

Example
A group of hens lay N eggs where N has a Poisson distribution with
parameter λ. Each egg results in a healthy chick with probability p
independently of the other eggs. Let K be the number of chicks. Find E(K ).

9 / 19



Some Properties of Expectation
• If a, b ∈ R, then E(aX + bY ) = aE(X ) + bE(Y )

• If X and Y are independent, E(XY ) = E(X )E(Y )

• X and Y are said to be uncorrelated if E(XY ) = E(X )E(Y )

• Independent random variables are uncorrelated but uncorrelated
random variables need not be independent

Example
Y and Z are independent random variables such that Z is equally likely to be
1 or −1 and Y is equally likely to be 1 or 2.
Let X = YZ . Then X and Y are uncorrelated but not independent.
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Expectation via the Distribution Function
For a discrete random variable X taking values in {0, 1, 2, . . .}, the expected
value is given by

E [X ] =
∞∑
i=1

P(X ≥ i)

Proof

∞∑
i=1

P(X ≥ i) =
∞∑
i=1

∞∑
j=i

P(X = j) =
∞∑
j=1

j∑
i=1

P(X = j) =
∞∑
j=1

jP(X = j) = E [X ]

Example
Let X1, . . . ,Xm be m independent discrete random variables taking only
non-negative integer values. Let all of them have the same probability mass
function P(X = n) = pn for n ≥ 0. What is the expected value of the
minimum of X1, . . . ,Xm?
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Expectation via the Distribution Function
For a continuous random variable X taking only non-negative values, the
expected value is given by

E [X ] =

∫ ∞

0
P(X ≥ x) dx

Proof

∫ ∞

0
P(X ≥ x) dx =

∫ ∞

0

∫ ∞

x
fX (t) dt dx =

∫ ∞

0

∫ t

0
fX (t) dx dt

=

∫ ∞

0
tfX (t) dt = E [X ]
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Variance
• Quantifies the spread of a random variable
• Let the expectation of X be m1 = E(X )

• The variance of X is given by σ2 = E [(X − m1)
2]

• The positive square root of the variance is called the standard deviation

• Examples
• Variance of a binomial random variable X with parameters n and p

is

var(X ) =
n∑

k=0

(k − np)2P[X = k ] =
n∑

k=0

k2

(
n
k

)
pk (1 − p)n−k − n2p2

= np(1 − p)

• Variance of a uniform random variable X on [a, b] is

var(X ) =

∫ ∞

−∞

[
x − a + b

2

]2

fU(x) dx =
(b − a)2

12
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Properties of Variance
• var(X ) ≥ 0
• var(X ) = E(X 2)− [E(X )]2

• For a, b ∈ R, var(aX + b) = a2 var(X )

• var(X + Y ) = var(X ) + var(Y ) if and only if X and Y are uncorrelated
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Probabilistic Inequalities



Markov’s Inequality
If X is a non-negative random variable and a > 0, then

P(X ≥ a) ≤ E(X )

a
.

Proof
We first claim that if X ≥ Y , then E(X ) ≥ E(Y ).
Let Y be a random variable such that

Y =

{
a if X ≥ a,
0 if X < a.

Then X ≥ Y and E(X ) ≥ E(Y ) = aP(X ≥ a) =⇒ P(X ≥ a) ≤ E(X)
a .

Exercise
• Prove that if E(X 2) = 0 then P(X = 0) = 1.
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Chebyshev’s Inequality
Let X be a random variable and a > 0. Then P (|X − E(X )| ≥ a) ≤ var(X)

a2 .

Proof
Let Y = (X − E(X ))2.

P (|X − E(X )| ≥ a) = P(Y ≥ a2) ≤ E(Y )

a2 =
var(X )

a2 .

Setting a = kσ where k > 0 and σ =
√

var(X ), we get

P (|X − E(X )| ≥ kσ) ≤ 1
k2 .

Exercises
• Suppose we have a coin with an unknown probability p of showing

heads. We want to estimate p to within an accuracy of ϵ > 0. How can
we do it?

• Prove that P(X = c) = 1 for some c ∈ R ⇐⇒ var(X ) = 0.
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Cauchy-Schwarz Inequality
For random variables X and Y , we have

|E(XY )| ≤
√

E(X 2)
√

E(Y 2)

Equality holds if and only if P(aX = bY ) = 1 for some real a, b such that at
least one of them is nonzero.

Proof
Assume E(X 2) > 0,E(Y 2) > 0. Proof is easy if this does not hold. Consider
Z = aX − bY for some a, b ∈ R. What can we say about E [Z 2]
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Reading Assignment
Sections 3.3, 4.3 from Probability and Random Processes,
G. Grimmett and D. R. Stirzaker, 2020 (4th Edition)
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