Generating Random Variables

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

March 21, 2025

1/13


mailto:sarva@ee.iitb.ac.in

Generating Random Variables

® Applications where random variables need to be generated

® Simulations
® | otteries

® Computer Games
® General strategy for generating an arbitrary random variable
® Generate uniform random variables in the unit interval
® Transform the uniform random variables to obtain the desired
random variables
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Generating Uniform Random Variables

X ~ Ula, b] has density function

L fora<x<b
— b—a = =
he(x) = { 0 otherwise
The distribution function is
0 x<a
Fx(x) = =2 a<x<b
1 X>b
Y ~ U[0, 1] has distribution function
0 x<0
Fy(x)=¢ x 0<x<A1
1 X > 1

Given Y, can we generate X?
(b— a)Y + ahas the same distribution as U|a, b]
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Generating /[0, 1]

Computers can represent reals upto a finite precision
Generate a random integer X from 0 to some positive integer m
Generate the uniform random variable in [0, 1] as

u==
m

The linear congruential method for generating integers from 0 to m
Xnt1=(aXn+C€)modm, n>0

where m, a, ¢ are integers called the modulus, multiplier and increment
respectively. Xy is called the starting value.

For m=10 and X, = a = ¢ = 7, the sequence generated is

7765970777679705"'

The linear congruential method is eventually periodic
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Maximal Period Linear Congruential Generators

Xovt =(@Xn+c)modm, n>0

Theorem
The linear congruential sequence has period m if and only if

® c is relatively prime to m
* b=a-—1isamultiple of p, for every prime p dividing m
® b is a multiple of 4, if m is a multiple of 4.

Remarks
® Having maximal period is not a guarantee of randomness
® Fora=c=1,wehave Xp11 = (Xa+ 1) mod m
e Additional tests are needed (see reference on last slide)

5/13



Generating a Bernoulli Random Variable

The probability mass function is given by

_a_Ip if x =1
P[X—X]—{ 1-p ifx=0
where 0 < p <1
Generate a uniform random variable U ~ ¢/[0, 1]
Generate the Bernoulli random variable by the following rule

1 ifU<Lp
X_{O it U>p

How can we generate a binomial random variable?

6/13



The Inverse Transform Method

e Suppose we want to generate a random variable with distribution
function F. Assume F is one-to-one.

® Generate a uniform random variable U ~ [0, 1]
e X = F~'(U) has the distribution function F

P(X < x) = P(F~'(U) < x) = P(U < F(x)) = F(x)

Example (Generating Exponential RVs)
X is an exponential RV with parameter A > 0 if it has distribution function

Fx)=1—-e™, x>0

How can it be generated?
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Generating Discrete Random Variables

® Suppose we want to generate a discrete random variable X with
distribution function F. F is usually not one-to-one.

Let x1 < x2 < x3 < --- be the values taken by X
® Generate a uniform random variable U ~ U/[0, 1]

Generate X according to the rule
_ X1 IfOSUSF(Xﬂ
Tl oxk ifF(xk—1) < U< F(x) fork > 2

Example (Generating Binomial RVs)
The probability mass function of a Binomial RV X with parameters nand p is

PIX = k] = (:)pkﬂ —p)"* ifo<k<n

How can it be generated?
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Box-Muller Method for Generating Gaussian RVs

Generate two independent uniform RVs U; and U between 0 and 1
Let Vi =2U; —1and Vo, =2U, — 1

Let S = V2 + V2.

If S>1,goto Step 1

If S <1, let
—2InS —-2InS
X1_V1VT’ Xo= Vo S

6. Xi and Xz are independent standard Gaussian random variables

o~ 0 Ddp o~

Proof

(4, V2) represents a random point in the unit circle

Let V; = Rcos® and Vb = Rsin®©

© ~ U[0,27] and R? = S ~ U[0,1]. © and S are independent
Xi =v—-2InScos®and Xo = vV—2InSsin®

X1, Xz also are in polar coordinates with radius R’ = v/—21In S and
angle ©
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Proof Continued

e The probability density function of R’ is fa(r) = re~"/2

Pr [R’gr} = Pr [\/fZInSSr] = Pr [3267,2/2] =1 767’2/2

® The joint probability distribution of X; and X is given by

1 2
/ —e 2 rdrdf
{(r,0)|rcos 0<xq,rsin0<x} 2r

x2 2
= L e 2" dx dy

27 Jix<x y<n}

P(X1 < x1,X2 < X2)

1 X1 2 1 X2 y2
= E/ e‘?dx~E/ e 7 dy

® This proves that X and X; are independent and have standard
Gaussian distribution
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Acceptance-Rejection Method

Suppose we want to generate a random variable X having density f
Suppose X is difficult to generate using the inversion method

Suppose there is a random variable Y with density g which is easy to
generate

For some ¢ € R, suppose f and g satisfy

f(y)
cg(y)

<1 forally.

Generate a uniform random variable U ~ 1/[0, 1]
Generate the random variable Y

If U < vy, set X = Y. Otherwise, generate another pair (U, Y) and
keep trylng untlI the inequality is satisfied

To show that the method is correct, we have to show that

Y _
U< ) =F

P(Ygx

where F(x) = [*__f(t) dt
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Example of Acceptance-Rejection Method

Suppose we want to generate a random variable X with probability
density function

f(x) =20x(1 —x)°, 0<x<1

We need a pdf g(x) such that %’;)) < cforsomeceR

Consider g(x) =1for0 < x < 1

f(x) 1 /3)\°
@_ZOX“_X)SSN'Z'(Z)

Letc=1% — 2 = 28x(1—x)°
X can now be generated as follows
1. Generate U ~ U[0,1] and Y ~ U]0, 1]
2. fU<SZY(1-Y)P setX=Y
3. Otherwise, return to step 1

135
T 64
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Reference

e Chapter 3, The Art of Computer Programming,
Seminumerical Algorithms (Volume 2), Third Edition,
Pearson Education, 1998.

e Karl Sigman, Acceptance-Rejection Method, 2007.
http://www.columbia.edu/~ks20/4703-Sigman/
4703-07-Notes—ARM.pdf
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