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Basics of Hypothesis Testing



What is a Hypothesis?
One situation among a set of possible situations

Example (Radar)
EM waves are transmitted and the reflections observed.

Null Hypothesis Plane absent

Alternative Hypothesis Plane present

For a given set of observations, either hypothesis may be true.
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What is Hypothesis Testing?
• A statistical framework for deciding which hypothesis is true
• Under each hypothesis the observations are assumed to have a known

distribution
• Consider the case of two hypotheses (binary hypothesis testing)

H0 : Y ∼ P0

H1 : Y ∼ P1

Y is the random observation vector belonging to Rn for n ∈ N
• The hypotheses are assumed to occur with given prior probabilities

Pr(H0 is true) = π0

Pr(H1 is true) = π1

where π0 + π1 = 1.
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Location Testing with Gaussian Error
• Let observation set be R and µ > 0

H0 : Y ∼ N (−µ, σ2)

H1 : Y ∼ N (µ, σ2)

−µ µ y

p0(y)
p1(y)

• Any point in R can be generated under both H0 and H1

• What is a good decision rule for this hypothesis testing problem which
takes the prior probabilities into account?
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What is a Decision Rule?
• A decision rule for binary hypothesis testing is a partition of Rn into Γ0

and Γ1 such that

δ(y) =
{

0 if y ∈ Γ0

1 if y ∈ Γ1

We decide Hi is true when δ(y) = i for i ∈ {0, 1}
• For the location testing with Gaussian error problem, one possible

decision rule is

Γ0 = (−∞, 0]

Γ1 = (0,∞)

and another possible decision rule is

Γ0 = (−∞,−100) ∪ (−50, 0)

Γ1 = [−100,−50] ∪ [0,∞)

• Given that partitions of the observation set define decision rules, what is
the optimal partition?
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Which is the Optimal Decision Rule?
• The optimal decision rule minimizes the probability of decision error
• For the binary hypothesis testing problem of H0 versus H1, the

conditional decision error probability given Hi is true is

Pe|i = Pr [Deciding H1−i is true|Hi is true]

= Pr [Y ∈ Γ1−i |Hi ]

= 1 − Pr [Y ∈ Γi |Hi ]

= 1 − Pc|i

• Probability of decision error is

Pe = π0Pe|0 + π1Pe|1

• Probability of correct decision is

Pc = π0Pc|0 + π1Pc|1 = 1 − Pe
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Which is the Optimal Decision Rule?
• Maximizing the probability of correct decision will minimize probability of

decision error
• Probability of correct decision is

Pc = π0Pc|0 + π1Pc|1

= π0

∫
Γ0

p0(y) dy + π1

∫
Γ1

p1(y) dy

= π0

∫
Γ0

p0(y) dy + π1

[
1 −

∫
Γ0

p1(y) dy

]

= π1 +

∫
Γ0

[π0p0(y)− π1p1(y)] dy

• To maximize Pc , we choose the partition {Γ0, Γ1} as

Γ0 = {y ∈ R|π0p0(y) ≥ π1p1(y)}
Γ1 = {y ∈ R|π0p0(y) < π1p1(y)}

• The points y for which π0p0(y) = π1p1(y) can be in either Γ0 and Γ1 (the
optimal decision rule is not unique)
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Location Testing with Gaussian Error
• Let µ1 > µ0 and π0 = π1 = 1

2

H0 : Y ∼ N (µ0, σ
2)

H1 : Y ∼ N (µ1, σ
2)

µ0 µ1 y

p0(y)
p1(y)

p0(y) =
1√

2πσ2
e− (y−µ0)

2

2σ2

p1(y) =
1√

2πσ2
e− (y−µ1)

2

2σ2
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Location Testing with Gaussian Error
• Optimal decision rule is given by the partition {Γ0, Γ1}

Γ0 = {y ∈ R|π0p0(y) ≥ π1p1(y)}
Γ1 = {y ∈ R|π0p0(y) < π1p1(y)}

• For π0 = π1 = 1
2

Γ0 =

{
y ∈ R

∣∣∣∣y ≤ µ1 + µ0

2

}
Γ1 =

{
y ∈ R

∣∣∣∣y >
µ1 + µ0

2

}
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Location Testing with Gaussian Error

µ0 µ0+µ1
2

µ1 y

Pe|0

Pe|1

Pe|0 = Pr

[
Y >

µ0 + µ1

2

∣∣∣∣H0

]
= Q

(µ1 − µ0

2σ

)

Pe|1 = Pr

[
Y ≤ µ0 + µ1

2

∣∣∣∣H1

]
= Φ

(µ0 − µ1

2σ

)
= Q

(µ1 − µ0

2σ

)
Pe = π0Pe|0 + π1Pe|1 = Q

(µ1 − µ0

2σ

)
This Pe is for π0 = π1 = 1

2
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Location Testing with Gaussian Error
• Suppose π0 ̸= π1

• Optimal decision rule is still given by the partition {Γ0, Γ1}

Γ0 = {y ∈ R|π0p0(y) ≥ π1p1(y)}
Γ1 = {y ∈ R|π0p0(y) < π1p1(y)}

• The partitions specialized to this problem are

Γ0 =

{
y ∈ R

∣∣∣∣y ≤ µ1 + µ0

2
+

σ2

(µ1 − µ0)
log

π0

π1

}
Γ1 =

{
y ∈ R

∣∣∣∣y >
µ1 + µ0

2
+

σ2

(µ1 − µ0)
log

π0

π1

}
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Location Testing with Gaussian Error
Suppose π0 = 0.6 and π1 = 0.4

τ =
µ1 + µ0

2
+

σ2

(µ1 − µ0)
log

π0

π1
=

µ1 + µ0

2
+

0.4054σ2

(µ1 − µ0)

µ0 τ µ1 y

Pe|0

Pe|1

p0(y)
p1(y)
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Location Testing with Gaussian Error
Suppose π0 = 0.6 and π1 = 0.4

τ =
µ1 + µ0

2
+

σ2

(µ1 − µ0)
log

π0

π1
=

µ1 + µ0

2
+

0.4054σ2

(µ1 − µ0)

µ0 µ1 yτ

π0p0(y)
π1p1(y)
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Location Testing with Gaussian Error
Suppose π0 = 0.4 and π1 = 0.6

τ =
µ1 + µ0

2
+

σ2

(µ1 − µ0)
log

π0

π1
=

µ1 + µ0

2
− 0.4054σ2

(µ1 − µ0)

µ0 τ µ1 y

Pe|0

Pe|1

p0(y)
p1(y)
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Location Testing with Gaussian Error
Suppose π0 = 0.4 and π1 = 0.6

τ =
µ1 + µ0

2
+

σ2

(µ1 − µ0)
log

π0

π1
=

µ1 + µ0

2
− 0.4054σ2

(µ1 − µ0)

µ0 µ1 yτ

π0p0(y)
π1p1(y)
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M-ary Hypothesis Testing
• M hypotheses with prior probabilities πi , i = 1, . . . ,M

H1 : Y ∼ P1

H2 : Y ∼ P2
...

...
HM : Y ∼ PM

• A decision rule for M-ary hypothesis testing is a partition of Γ into M
disjoint regions {Γi |i = 1, . . . ,M} such that

δ(y) = i if y ∈ Γi

We decide Hi is true when δ(y) = i for i ∈ {1, . . . ,M}
• Minimum probability of error rule is

δMPE(y) = arg max
1≤i≤M

πipi(y)
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Maximum A Posteriori Decision Rule
• The a posteriori probability of Hi being true given observation y is

P
[
Hi is true

∣∣∣∣y] =
πipi(y)
p(y)

• The MAP decision rule is given by

δMAP(y) = arg max
1≤i≤M

P
[
Hi is true

∣∣∣∣y] = δMPE(y)

MAP decision rule = MPE decision rule
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Maximum Likelihood Decision Rule
• The ML decision rule is given by

δML(y) = arg max
1≤i≤M

pi(y)

• If the M hypotheses are equally likely, πi =
1
M

• The MPE decision rule is then given by

δMPE(y) = arg max
1≤i≤M

πipi(y) = δML(y)

For equal priors, ML decision rule = MPE decision rule
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Irrelevant Statistics



Irrelevant Statistics
• In this context, the term statistic means an observation
• For a given hypothesis testing problem, all the observations may not be

useful

Example (Irrelevant Statistic)

Y =
[
Y1 Y2

]T

H1 : Y1 = A + N1, Y2 = N2

H0 : Y1 = N1, Y2 = N2

where A > 0, N1 ∼ N (0, σ2), N2 ∼ N (0, σ2).
• If N1 and N2 are independent, Y2 is irrelevant.
• If N1 and N2 are correlated, Y2 is relevant.

• Need a method to recognize irrelevant components of the observations
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Characterizing an Irrelevant Statistic

Theorem
For M-ary hypothesis testing using an observation Y =

[
Y1 Y2

]
, the statistic

Y2 is irrelevant if the conditional distribution of Y2, given Y1 and Hi , is
independent of i. In terms of densities, the condition for irrelevance is

p(y2|y1,Hi) = p(y2|y1) ∀i.

Proof

δMPE(y) = arg max
1≤i≤M

πipi(y) = arg max
1≤i≤M

πip(y|Hi)

p(y|Hi) = p(y1, y2|Hi) = p(y2|y1,Hi)p(y1|Hi)

= p(y2|y1)p(y1|Hi)

δMPE(y) = arg max
1≤i≤M

πip(y2|y1)p(y1|Hi) = arg max
1≤i≤M

πip(y1|Hi)
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Example of an Irrelevant Statistic

Example (Independent Noise)

Y =
[
Y1 Y2

]T

H1 : Y1 = A + N1, Y2 = N2

H0 : Y1 = N1, Y2 = N2

where A > 0, N1 ∼ N (0, σ2), N2 ∼ N (0, σ2), with N1,N2 independent

p(y2|y1,H0) = p(y2)

p(y2|y1,H1) = p(y2)
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Example of a Relevant Statistic

Example (Correlated Noise)

Y =
[
Y1 Y2

]T

H1 : Y1 = A + N1, Y2 = N2

H0 : Y1 = N1, Y2 = N2

where A > 0, N1 ∼ N (0, σ2), N2 ∼ N (0, σ2), CY = σ2
[
1 ρ
ρ 1

]

p(y2|y1,H0) =
1√

2π(1 − ρ2)σ2
e
− (y2−ρy1)

2

2(1−ρ2)σ2 ,

p(y2|y1,H1) =
1√

2π(1 − ρ2)σ2
e
− [y2−ρ(y1−A)]2

2(1−ρ2)σ2
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Thanks for your attention
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