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Parameter Estimation

Hypothesis testing was about making a choice between discrete states
of nature

Parameter or point estimation is about choosing from a continuum of
possible states

Example

Consider a manufacturer of clothes for newborn babies

She wants her clothes to fit at least 50% of newborn babies. Clothes
can be loose but not tight. She also wants to minimize material used.

Since babies are made up of a large number of atoms, their length is a
Gaussian random variable (by Central Limit Theorem)
Baby Length ~ N (u, 0%)

Only knowledge of p is required to achieve her goal of 50% fit
But 1 is unknown and she is interested in estimating it

What is a good estimator of 4? If she wants her clothes to fit at least
75% of the newborn babies, is knowledge of 1 enough?
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System Model for Parameter Estimation

e Consider a family of distributions
Y~Pg, B€N

where the observation vector Y € R” and A C R” is the parameter
space. 0 itself can be a realization of a random variable ®

Example

Y ~ N(p,0%)
where p and o are unknown. Here 6 = [ o] T A=RxR*.
The parameters p and o can themselves be random variables.
® The goal of parameter estimation is to find € given Y

® An estimator is a function from the observation space to the parameter
space A
0:R—A
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Which is the Optimal Estimator?

e Assume there is a cost function C
C:AxAN=R

such that C[a, 0] is the cost of estimating the true value of 6 as a
e Examples of cost functions for scalar 6

Squared Error C[a, 6] = (a— 0)?
Absolute Error Cla,f] = |a— 0|

Threshold Error Cla, 6] = { ? :I iZ: zi E 2
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Which is the Optimal Estimator?

Suppose that the parameter 6 is the realization of a random variable ©
With an estimator & we associate a conditional cost or risk conditioned

oné@ ) .
re(8) = Eo {c [9(\(), 9] }
The average risk or Bayes risk is given by
R(B) = E{re(0)}

The optimal estimator is the one which minimizes the Bayes risk
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Which is the Optimal Estimator?
* Given that
@@y:a{c@wyﬂ}=E{C@WL9H9=9}
the average risk or Bayes risk is given by
R(®) = E{Cpﬂ)@”
_ E{E{c[vaeHv}}
~ [e{clom.e]|[v =y} mi oy

* The optimal estimate for @ can be found by minimizing foreach Y =y
the posterior cost

E {c [é(y), e] ’Y - y}
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Minimum-Mean-Squared-Error (MMSE) Estimation

e Consider a scalar parameter 6
® Cla,f] = (a—0)?
® The posterior cost is given by

e{d) - or

voy} =[] -2imefelv-v}

Y:y}

* Differentiating posterior cost wrt A(y), the Bayes estimate is

+E{e2

Buwse(y) = E {e‘v ~v}
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Example: MMSE Estimation
Suppose X and Y are jointly Gaussian random variables

Let the joint pdf be given by

1 1 Tt )
Xy) = ——exp(—S(s—p)C (s —
prv(x.) 2W|C|;exp( Ms-mwC s - )

2
wheres:{x],u:{”x} andC:{ Ix pg"gy}
y 7

y pOxTy ‘7;%
Suppose Y is observed and we want to estimate X
The MMSE estimate of X is

Kuwse(y) = E [X' vy

The conditional density of X given Y = y is

_ pxy(x,y)
p(xly) = YR
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Example: MMSE Estimation

® The conditional density of X given Y = y is a Gaussian density with
mean

g,
pixly = px + —p(¥ — py)
Oy

and variance
2 _(q 2\ 2
OX|ly = (1—p")ox

® Thus the MMSE estimate of X given Y = y is

)A(MMSE(Y) = px + %P(y — fiy)
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Maximum A Posteriori (MAP) Estimation

In some situations, the conditional mean may be difficult to compute
An alternative is to use MAP estimation
The MAP estimator is given by

Ouar(y) = afg?axp(ew)

where p is the conditional density of ® given Y.

It can be obtained as the optimal estimator for the threshold cost

function () |
0 ifla—0|l<A
C[a’e]—{ 1 ifla—6]>a

forsmall A >0
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Maximum A Posteriori (MAP) Estimation

e For the threshold cost function, we have'
E {c [é(y), e} ‘Y = y}

_ / ~ Cliy). olp (0ly) do

o(y)—A o
/ p(6ly) do + / p(6ly) do

—oo o(y)+A
oo a(y)+A
= [ pem - [ " pely)
— oo 6(y)—A
6(y)+a
- 1 / p(oly) do
o(y)—A

® The Bayes estimate is obtained by maximizing the integral in the last
equality

"Assume a scalar parameter 6 for illustration
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Maximum A Posteriori (MAP) Estimation

p(oly)

a(y)

® The shaded area is the integral | gfi((;’)):’ﬁ p(6ly) do

* To maximize this integral, the location of A(y) should be chosen to be
the value of  which maximizes p(6|y)
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Maximum A Posteriori (MAP) Estimation

p(oly)

Ouae(y)

® This argument is not airtight as p(f]y) may not be symmetric at the
maximum

® But the MAP estimator is widely used as it is easier to compute than the
MMSE estimator
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Maximum Likelihood (ML) Estimation

® The ML estimator is given by
Bu(y) = argmaxp (y|6)

where p is the conditional density of Y given ©.

® |t is the same as the MAP estimator when the prior probability
distribution of @ is uniform

p(6.y) p(y|6) p(6)

= argmax

p(y) o p(y)

Ouap(y) = argmaxp (0]y) = argmax
6 o

® |tis also used when the prior distribution is not known
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Example 1: ML Estimation
® Suppose we observe Y;, i =1,2,..., M such that
Yi ~ N, 0%)

where Y;’s are independent, 1 is unknown and o2 is known
® The ML estimate is given by
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Example 2: ML Estimation

® Suppose we observe Y;, i =1,2,..., M such that

Yi ~ N, 0%)

where Y;’s are independent, both 1, and 2 are unknown

® The ML estimates are given by
fmc(y) =

sly) =

NEe
<

i — e (y))?

NE
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Example 3: ML Estimation

® Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Bernoulli(p)

where Y/’s are independent and p is unknown
® The ML estimate of p is given by

1 M
pu(y) = 27 >_Vi

i=1
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Example 4: ML Estimation
® Suppose we observe Y;, i =1,2,..., M such that
Y; ~ Uniform[0, 6]

where Y;’s are independent and 6 is unknown
® The ML estimate of 6 is given by

O (y) = max(y1, ¥z, .-\ Yu—1,Ym)
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