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Probability Space

Definition

A probability space is a triple (2, F, P) consisting of
® asetQ,
® ao-field F of subsets of Q and

® a probability measure P on (Q, F).

Remarks
* When Q is finite or countable, F can be 2% (all subsets can be events)
o |f this always holds, then Q uniquely specifies F
® Then the probability space would be an ordered pair (2, P)
e For uncountable Q, it may be impossible to define P if 7 = 2%

* We will see an example but first we need the following definitions

® Countable and uncountable sets
® Equivalence relations
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Countable and Uncountable Sets



One-to-One Functions

Definition (One-to-One function)

A function f : A — Bis a one-to-one function if f(xy) # f(x2) whenever
X1 # Xo and xq, X2 € A.

Also called an injective function
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Onto Functions

Definition (Onto function)
A function f : A — Biis said to be an onto function if f(A) = B.

A

Also called a surjective function
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One-to-One Correspondence

Definition (One-to-one correspondence)

A function f : A — Biis said to be a one-to-one correspondence if it is a
one-to-one and onto function from A to B.

A B

Also called a bijective function
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Countable Sets

Definition
Sets A and B are said to have the same cardinality if there exists a
one-to-one correspondence f: A — B.

Definition (Countable Sets)
A set A is said to be countable if there exists a one-to-one correspondence
between A and N.

Examples
® Nis countable. Consider f : N — N defined as
f(x) =x
e Zis countable. Consider f : Z — N defined as

2x+1 ifx>0
f(x) = .
—2X ifx<0
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More Examples of Countable Sets

(1,1) —— (2,1) 3,1) —— (4,1)

(1,2) (2,2) (3,2) (4,2)

(1,3) (2,3) (3,3) (4,3)

(1,4) (2,4) (3,4) (4,4)
.

(1,5) (2,5) (3,5) (4,5)

Consider the function f : N x N — N where f(/, ) is equal to the number

of pairs visited when (i, j) is visited
N x N is countable

The same argument applies to any A x B where A and B are countable

Z x N is countable — Q is countable

(5.1
(5.2)
(5.3)
(5,4)

(5,9)
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Reals are Uncountable

Definition (Uncountable Sets)

A set is said to be uncountable if it is neither finite nor countable.

Examples

® [0,1) is uncountable
® R is uncountable
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Equivalence Relations



Binary Relations

Definition (Binary Relation)
Given a set A, a binary relation R is a subset of A x A.
Examples

e A={1,2,3,4},R={(1,1),(2,4)}

° R:{(a,b)erZ

a— bis aneven integer}

J R:{(X,Y)eszzN

A bijection exists between X and Y}

If (a, b) € R, we write a ~g b or just a ~ b.
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Equivalence Relations

Definition (Equivalence Relation)

A binary relation R on a set A is said to be an equivalence relation on A if for
all x, y, z € Athe following conditions hold

Reflexive x ~ x
Symmetric x ~ y implies y ~ x
Transitive x ~yand y ~ zimply x ~ z
Examples
* A={1,23,4},R={(1,1),(2,2),(3,3),(4,4)}

° Fx':{(x,y)erZ

X — y is an even integer}

° H:{(x7y)erZx—yisamultipIeofS}

® Let Abe the set of current students in the institute. Are the following
binary relations equivalence relations on A?

® x ~ yif x and y live in the same hostel
® x ~ yif x and y have a course in common
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Equivalence Classes

Definition (Equivalence Class)

Given an equivalence relation R on A and an element x € A, the equivalence
class of x is the set of all y € Asuch that x ~ y.

Examples
e A={1,2,3,4},R={(1,1),(2,2),(3,3), (4,4)}
Equivalence class of 1is {1}.
° R= {(a, b) € Z x Z|a— bis an even integer}

Equivalence class of 0 is the set of all even integers.
Equivalence class of 1 is the set of all odd integers.

° R= {(a, b) € Z x Z|a — b is a multiple of 5}. Equivalence classes?

Theorem
Given an equivalence relation, the collection of equivalence classes form a
partition of A.
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A Non-Measurable Set



Choosing a Random Point in the Unit Interval
* LetQ=[0,1]
e For0<a<b< 1, wewant
P([a, b]) = P((a, b]) = P([a, b)) = P((a,b)) = b—a
® We want P to be unaffected by shifting (with wrap-around)
P ([0,0.5]) = P ([0.25,0.75]) = P ([0.75,1] U [0, 0.25])
® |n general, for each subset AC [0,1]and 0 < r < 1
P(Aar) = P(A)
where @ indicates a circular shift in [0, 1], i.e.
Adr={a+rlacAa+r<it}tu{a+r—1lacAa+r>1}

® We want P to be countably additive

P <G A,-> -~ i P(A)

for disjoint subsets Ay, Az, ... of [0, 1]
® Can the definition of P be extended to all subsets of [0, 1]?
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Building the Contradiction

Suppose P is defined for all subsets of [0, 1]
Define an equivalence relation on [0, 1] given by

X~y < x—yisrational

This relation partitions [0, 1] into disjoint equivalence classes

Let H be a subset of [0, 1] consisting of exactly one element from each
equivalence class. Let 0 € H;then 1 ¢ H.

[0,1) is equal to U,cpo.1)no(H & 1)
Since the sets Ha r for r € [0,1) N Q are disjoint, by countable additivity
P(0,1)= > PHar)

ref0,1)NQ

Shift invariance implies P(H @ r) = P(H) which implies
P(0,1)= > P(H
ref0,1)NQ

which is a contradiction
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Consequences of the Contradiction

P cannot be defined on all subsets of [0, 1]
But the subsets it is defined on have to form a o-field

The o-field of subsets of [0, 1] on which P can be defined without
contradiction are called the measurable subsets

That is why probability spaces are triples
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