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Probability Space

Definition
A probability space is a triple (Ω,F ,P) consisting of

• a set Ω,
• a σ-field F of subsets of Ω and
• a probability measure P on (Ω,F).

Remarks
• When Ω is finite or countable, F can be 2Ω (all subsets can be events)
• If this always holds, then Ω uniquely specifies F
• Then the probability space would be an ordered pair (Ω,P)

• For uncountable Ω, it may be impossible to define P if F = 2Ω

• We will see an example but first we need the following definitions
• Countable and uncountable sets
• Equivalence relations
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Countable and Uncountable Sets



One-to-One Functions

Definition (One-to-One function)
A function f : A → B is a one-to-one function if f (x1) ̸= f (x2) whenever
x1 ̸= x2 and x1, x2 ∈ A.
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Also called an injective function

4 / 18



Onto Functions

Definition (Onto function)
A function f : A → B is said to be an onto function if f (A) = B.
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Also called a surjective function
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One-to-One Correspondence

Definition (One-to-one correspondence)
A function f : A → B is said to be a one-to-one correspondence if it is a
one-to-one and onto function from A to B.

x1

x2

x3

x4

A

y1

y2

y3

y4

B

Also called a bijective function

6 / 18



Countable Sets

Definition
Sets A and B are said to have the same cardinality if there exists a
one-to-one correspondence f : A → B.

Definition (Countable Sets)
A set A is said to be countable if there exists a one-to-one correspondence
between A and N.

Examples
• N is countable. Consider f : N → N defined as

f (x) = x

• Z is countable. Consider f : Z → N defined as

f (x) =

{
2x + 1 if x ≥ 0
−2x if x < 0
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More Examples of Countable Sets
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· · ·
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· · ·

· · ·
. . .

• Consider the function f : N× N → N where f (i, j) is equal to the number
of pairs visited when (i, j) is visited

• N× N is countable
• The same argument applies to any A × B where A and B are countable
• Z× N is countable =⇒ Q is countable
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Reals are Uncountable

Definition (Uncountable Sets)
A set is said to be uncountable if it is neither finite nor countable.

Examples
• [0, 1) is uncountable
• R is uncountable
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Equivalence Relations



Binary Relations

Definition (Binary Relation)
Given a set A, a binary relation R is a subset of A × A.

Examples
• A = {1, 2, 3, 4},R = {(1, 1), (2, 4)}

• R =

{
(a, b) ∈ Z× Z

∣∣∣∣a − b is an even integer
}

• R =

{
(X ,Y ) ∈ 2N × 2N

∣∣∣∣ A bijection exists between X and Y
}

If (a, b) ∈ R, we write a ∼R b or just a ∼ b.
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Equivalence Relations
Definition (Equivalence Relation)
A binary relation R on a set A is said to be an equivalence relation on A if for
all x , y , z ∈ A the following conditions hold

Reflexive x ∼ x

Symmetric x ∼ y implies y ∼ x

Transitive x ∼ y and y ∼ z imply x ∼ z

Examples
• A = {1, 2, 3, 4},R = {(1, 1), (2, 2), (3, 3), (4, 4)}

• R =

{
(x , y) ∈ Z× Z

∣∣∣∣x − y is an even integer
}

• R =

{
(x , y) ∈ Z× Z

∣∣∣∣x − y is a multiple of 5
}

• Let A be the set of current students in the institute. Are the following
binary relations equivalence relations on A?

• x ∼ y if x and y live in the same hostel
• x ∼ y if x and y have a course in common
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Equivalence Classes

Definition (Equivalence Class)
Given an equivalence relation R on A and an element x ∈ A, the equivalence
class of x is the set of all y ∈ A such that x ∼ y .

Examples
• A = {1, 2, 3, 4},R = {(1, 1), (2, 2), (3, 3), (4, 4)}

Equivalence class of 1 is {1}.

• R =

{
(a, b) ∈ Z× Z

∣∣∣∣a − b is an even integer
}

Equivalence class of 0 is the set of all even integers.
Equivalence class of 1 is the set of all odd integers.

• R =

{
(a, b) ∈ Z× Z

∣∣∣∣a − b is a multiple of 5
}

. Equivalence classes?

Theorem
Given an equivalence relation, the collection of equivalence classes form a
partition of A.
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A Non-Measurable Set



Choosing a Random Point in the Unit Interval
• Let Ω = [0, 1]
• For 0 ≤ a ≤ b ≤ 1, we want

P([a, b]) = P((a, b]) = P([a, b)) = P((a, b)) = b − a

• We want P to be unaffected by shifting (with wrap-around)

P ([0, 0.5]) = P ([0.25, 0.75]) = P ([0.75, 1] ∪ [0, 0.25])

• In general, for each subset A ⊆ [0, 1] and 0 ≤ r ≤ 1

P(A ⊕ r) = P(A)

where ⊕ indicates a circular shift in [0, 1], i.e.

A ⊕ r = {a + r |a ∈ A, a + r ≤ 1} ∪ {a + r − 1|a ∈ A, a + r > 1}

• We want P to be countably additive

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

for disjoint subsets A1,A2, . . . of [0, 1]
• Can the definition of P be extended to all subsets of [0, 1]?
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Building the Contradiction
• Suppose P is defined for all subsets of [0, 1]
• Define an equivalence relation on [0, 1] given by

x ∼ y ⇐⇒ x − y is rational

• This relation partitions [0, 1] into disjoint equivalence classes
• Let H be a subset of [0, 1] consisting of exactly one element from each

equivalence class. Let 0 ∈ H; then 1 /∈ H.
• [0, 1) is equal to

⋃
r∈[0,1)∩Q(H ⊕ r)

• Since the sets H ⊕ r for r ∈ [0, 1)∩Q are disjoint, by countable additivity

P([0, 1)) =
∑

r∈[0,1)∩Q

P(H ⊕ r)

• Shift invariance implies P(H ⊕ r) = P(H) which implies

1 = P([0, 1)) =
∑

r∈[0,1)∩Q

P(H)

which is a contradiction
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Consequences of the Contradiction
• P cannot be defined on all subsets of [0, 1]
• But the subsets it is defined on have to form a σ-field
• The σ-field of subsets of [0, 1] on which P can be defined without

contradiction are called the measurable subsets
• That is why probability spaces are triples
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