
Bitcoin Smart Contracts

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

August 3, 2018

1 / 28

mailto:sarva@ee.iitb.ac.in


Smart Contracts



Smart Contracts

• Computer protocols which help execution/enforcement of regular
contracts

• Minimize trust between interacting parties
• Hypothetical example: Automatic fine for noise pollution

• IITB hillside community hall parties use loudspeakers
• Party organizers pay bitcoin security deposit
• If noise rules violated, deposit distributed to nearby residents

• Two actual examples
• Escrow
• Micropayments

3 / 28



Escrow Contract



Problem Setup

• Alice wants to buy a rare book from Bob
• Alice and Bob live in different cities
• Bob promises to ship the book upon receiving Bitcoin payment
• Alice does not trust Bob
• Alice proposes an escrow contract involving a third party Carol

5 / 28



Escrow Contract

• Alice requests public keys from Bob and Carol
• Alice pays x bitcoins to a 2-of-3 multisig output

OP_2 <PubKeyA> <PubKeyB> <PubKeyC> OP_3 OP_CHECKMULTISIG

• Bob ships book once Alice’s transaction is confirmed
• Bitcoins can be spent if any two of the three provide signatures
• Any of the following scenarios can occur

• Alice receives book.
Alice and Bob sign.

• Alice receives the book but refuses to sign.
Bob provides proof of shipment to Carol.
Bob and Carol sign.

• Bob does not ship the book to Alice.
Bob refuses to sign refund transaction.
Alice and Carol sign.

• Escrow contract fails if Carol colludes with Alice or Bob
• Also proof of shipment is not proof of contents

6 / 28



Micropayments



Problem Setup

• Bitcoin transaction fees make small payments expensive
• Micropayments contract can aggregate small payments
• Alice offers proofreading and editing services online
• She accepts bitcoins as payments
• Clients email documents to Alice
• Alice replies with typos and grammatical errors
• Alice charges a fixed amount of bitcoins per edited page
• To avoid clients refusing payment, Alice uses micropayments

contract
• Suppose Bob wants a 100 page document edited
• Alice charges 0.0001 BTC per page
• Bob expects to pay a maximum of 0.01 BTC to Alice

8 / 28



Micropayments Contract (1/3)
Creating Refund Transaction

• Bob requests a public key from Alice

• Bob creates a transaction t1 which
transfers 0.01 bitcoins to a 2-of-2
multisig output

• Bob does not broadcast t1 on the
network

• Bob creates a refund transaction t2
which refunds the 0.01 BTC

• A relative lock time of n days is set on t2
• Bob includes his signature in t2 and

sends it to Alice

• If Alice refuses to sign, Bob terminates
the contract

• If Alice signs t2 and gives it Bob, he has
the refund transaction

Alice Bob

Request public key

Send PubKeyA Create PubKeyB
Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig

9 / 28



Micropayments Contract (2/3)
Getting Paid for First Page Edits

• Bob broadcasts t1 on the network

• Once t1 is confirmed, he sends Alice
his document

• Alice edits only the first page of the
document

• She creates a transaction e1 which
unlocks t1 and pays her 0.0001 BTC
and 0.0099 BTC to Bob

• Alice signs e1 and sends it to Bob
along with the first page edits

• If Bob refuses to sign e1, then
• Alice terminates the contract.
• Bob broadcasts t2 after lock

time expires
• If Bob signs e1 and returns it to Alice,

then Alice is guaranteed 0.0001
bitcoins if she broadcasts e1 before
lock time on t2 expires.

Alice Bob Network

Request public key

Send PubKeyA Create PubKeyB
Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig Broadcast t1

t1 confirmation

Send document

Send e1 with A’s sig and page 1 edits

Send e1 with B’s sig

10 / 28



Micropayments Contract (3/3)
Getting Paid for Second Page, Third Page . . .

• Alice edits the second page of the
document

• She creates a transaction e2 which
unlocks t1 and pays her 0.0002 BTC
and 0.0098 BTC to Bob

• Alice signs e2 and sends it to Bob
along with the second page edits

• If Bob refuses to sign e2, then Alice
terminates the contract.
Alice broadcasts e1 and receives
0.0001 BTC.

• If Bob signs e2 and returns it to Alice,
then Alice is guaranteed 0.0002
bitcoins if she broadcasts e2 before
lock time on t2 expires.

• Alice continues sending edited pages
along with transactions requesting
cumulative payments

• She has to finish before the refund
transaction lock time expires

Alice Bob Network

Request public key

Send PubKeyA Create PubKeyB
Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig Broadcast t1

t1 confirmation

Send document

Send e1 with A’s sig and page 1 edits

Send e1 with B’s sig

Send e2 with A’s sig and page 2 edits

Send e2 with B’s sig

...

Send e100 with A’s sig and page 100 edits

Send e100 with B’s sig

Broadcast e100

e100 confirmation

11 / 28



Key Takeaways

• Smart contracts reduce the need for trust
• Bitcoin’s scripting language enables some smart contracts
• Not powerful enough to express complex contracts

12 / 28



SegWit for Safer Contracts



Transaction ID

nVersion
Number of Inputs N
hash
n
scriptSigLen
scriptSig
nSequence

...
hash
n
scriptSigLen
scriptSig
nSequence
Number of Outputs M
nValue
scriptPubkeyLen
scriptPubkey

...
nValue
scriptPubkeyLen
scriptPubkey
nLockTime

Regular Transaction

Input 0

Input N − 1

Output 0

Output M − 1

Double
SHA-256

Hash
Tx ID

14 / 28



Refund Protocol

• Alice wants to teach Bob about transactions
• Bob does not own any bitcoins
• Alice decides to transfer some bitcoins to Bob
• Alice does not trust Bob
• She wants to ensure refund

15 / 28



Refund Protocol

Input unlocking
x bitcoins from
Alice’s UTXO

Output locked by
2-of-2 multisig

challenge script

Transaction t1
with TXID i1

Input with hash = i1 and
n = 0 unlocking the

2-of-2 multisig output in t1

Output returning
funds to Alice

Transaction t2

Input 0

Output 0

Input 0

Output 0

Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig 5. Broadcast t1

t1 confirmation

6. Broadcast t2

t2 confirmation

16 / 28



Exploiting Transaction Malleability
Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig

5. Broadcast t1

5. Broadcast t1

6. Broadcast t ′1

t′1 confirmation

• If (r , s) is a valid ECDSA signature, so is (r ,n − s)
• The t ′1 transaction cannot be spent by t2
• SegWit = Segregated Witness
• Solves problems arising from transaction malleability

17 / 28



SegWit Standard Scripts

• Pay to Witness Public Key Hash (P2WPKH)
• Pay to Witness Script Hash (P2WSH)
• Both can be embedded in a P2SH template

• P2SH-P2WPKH
• P2SH-P2WSH

18 / 28



Pay to Witness Public Key Hash

scriptPubkey: OP_0 0x14 <PubKeyHash>,

scriptSig: (empty),
scriptWitness: <Signature> <Public Key>.

• Challenge script is 22 bytes long
• First byte indicates script version number
• scriptSig does not contain signatures
• scriptWitness is sent only to SegWit-capable nodes

19 / 28



P2WPKH Execution by pre-SegWit Nodes

<Empty Response Script> OP_0 0x14 <PubKeyHash>

OP_0 0x14 <PubKeyHash>

<Empty Array>
0x14 <PubKeyHash>

<PubKeyHash>
<Empty Array>

Stack StateRemaining Script

• P2WPKH outputs look like anyone-can-spend outputs to
pre-SegWit nodes

• SegWit-capable nodes take the response from scriptWitness
• If majority of hashpower follows SegWit rules, output is not

anyone-can-spend
20 / 28



TXID and WTXID Calculations

nVersion
Number of Inputs N

Input 0

...

Input N − 1

Number of Outputs M

Output 0

...

Output M − 1

nLockTime

Double
SHA-256

Hash

TXID

nVersion
Marker Byte = 0x00

Flag Byte = 0x01
Number of Inputs N

Input 0

...

Input N − 1

Number of Outputs M

Output 0

...

Output M − 1

Witness 0

...

Witness N − 1

nLockTime

Double
SHA-256

Hash

WTXID

Serialization for TXID
Calculation

Serialization for WTXID
Calculation

21 / 28



Witness Format
Number of

Stack Items n
Length in Bytes
of Stack Item 1

Stack Item 1

Length in Bytes
of Stack Item 2

Stack Item 2

...
Length in Bytes
of Stack Item n

Stack Item n

Witness i − 1

Witness i

Witness i + 1

22 / 28



WTXID Merkle Tree
h = H(h0‖h1)

h0 = H(h00‖h01)

h00 = All zeros
(32 bytes)

t0

h01 = WTXID
of t1

t1

h1 = H(h10‖h11)

h10 = TXID
of t2

t2

h11 = WTXID
of t3

t3

• WTXID of coinbase transaction is fixed to all zeros
• For non-SegWit transactions, WTXID = TXID
• Witness root hash is stored in a coinbase null data output

OP_RETURN 0x24 0xAA21A9ED︸ ︷︷ ︸
Commitment

header

H(Witness root hash‖Witness reserved value)︸ ︷︷ ︸
Commitment hash (32 bytes)

23 / 28



SegWit Coinbase Transaction

nVersion
Number of Inputs = 1

Dummy Input

Number of Outputs = 2

Output 0
(P2PKH output)

Output 1
(Null data output)

Witness 0

nLockTime

nValue = 0
scriptPubkeyLen = 0x26
scriptPubkey = OP_RETURN 0x24
0xAA21A9ED <32-byte Commitment Hash>

Number of
Stack Items = 0x01

Length in Bytes
of Stack Item 1 = 0x20

Stack Item 1 = 32-byte
witness reserved value

Witness Commitment
Output

Witness Structure
Storing Reserved Value

Coinbase Transaction
Format

24 / 28



SegWit Block Size Increase

• Before SegWit, the maximum block size was 1 MB = 106 bytes
• Let base size be block size using pre-SegWit serialization of

transactions
• Let total size be block size using pre-SegWit serialization of

transactions
• Define the block weight as follows

Block Weight = 3× Base Size + Total Size.

• SegWit imposes the restriction

Block Weight ≤ 4 MB = 4× 106 bytes

• As total size = base size + witness size, we get

Base Size +
Witness Size

4
≤ 1 MB.

• Base size cannot exceed 1 MB irrespective of witness size

25 / 28



Key Takeaways

• SegWit introduced to solve the transaction malleability issue
• Backward compatibility requirement resulted in complicated

design
• Successful deployment required the majority of the hashpower to

follow SegWit rules

26 / 28



References

• Chapters 5, 6 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

27 / 28

www.ee.iitb.ac.in/~sarva/bitcoin.html


Bitcoin Learning Resources

• Code https://github.com/bitcoin/bitcoin/

• Reddit https://www.reddit.com/r/Bitcoin/
• Forum https://bitcointalk.org/

• IRC https://en.bitcoin.it/wiki/IRC_channels

• Books
• Princeton book http://bitcoinbook.cs.princeton.edu/
• Mastering Bitcoin, Andreas Antonopoulos

• Notes
• https://www.ee.iitb.ac.in/~sarva/bitcoin.html

28 / 28

https://github.com/bitcoin/bitcoin/
https://www.reddit.com/r/Bitcoin/
https://bitcointalk.org/
https://en.bitcoin.it/wiki/IRC_channels
http://bitcoinbook.cs.princeton.edu/
https://www.ee.iitb.ac.in/~sarva/bitcoin.html

	Smart Contracts
	Escrow Contract
	Micropayments
	SegWit for Safer Contracts

