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Group Theory Recap



Groups

Definition
A set G with a binary operation ? defined on it is called a group if
• the operation ? is associative,
• there exists an identity element e ∈ G such that for any a ∈ G

a ? e = e ? a = a,

• for every a ∈ G, there exists an element b ∈ G such that

a ? b = b ? a = e.

Example

• Modulo n addition on Zn = {0,1,2, . . . ,n − 1}
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Cyclic Groups

Definition
A finite group is a group with a finite number of elements. The order
of a finite group G is its cardinality.

Definition
A cyclic group is a finite group G such that each element in G
appears in the sequence

{g,g ? g,g ? g ? g, . . .}

for some particular element g ∈ G, which is called a generator of G.

Example
Z6 = {0,1,2,3,4,5} is a cyclic group with a generator 1
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Zn and Z∗n
• For an integer n ≥ 1, Zn = {0,1,2, . . . ,n − 1}

• Operation is addition modulo n
• Zn is cyclic with generator 1

• For an integer n ≥ 2, Z∗n = {i ∈ Zn \ {0} | gcd(i ,n) = 1}
• Operation is multiplication modulo n
• |Z∗

n | = n − 1 if n is a prime
• Z∗

n is cyclic if n is a prime

• Definition: If G is a cyclic group of order q with generator g,
then for h ∈ G the unique x ∈ Zq which satisfies gx = h is called
the discrete logarithm of h with respect to g.

• Finding DLs is easy in Zn

• Finding DLs is hard in Z∗n
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Cryptography based on the Discrete Logarithm
Problem



Diffie-Hellman Protocol
• Alice and Bob wish to generate a shared secret key using a

public channel
1. Alice runs a group generation algorithm to get (G, q, g) where G is

a cyclic group of order q with generator g.
2. Alice chooses a uniform x ∈ Zq and computes hA = gx .
3. Alice sends (G, q, g, hA) to Bob.
4. Bob chooses a uniform y ∈ Zq and computes hB = gy . He sends

hB to Alice. He also computes kB = hy
A.

5. Alice computes kA = hx
B .

By construction, kA = kB.
• An adversary capable of finding DLs in G can learn the key
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El Gamal Encryption

• Suppose Bob wants to send Alice an encrypted message
• Alice publishes her public key 〈G,q,g,h〉

• G is a cyclic group of order q with generator g
• h = gx where x ∈ Zq is Alice’s secret key

• Encryption: For message m ∈ G, Bob chooses a uniform
y ∈ Zq and outputs ciphertext

〈gy ,hy ·m〉.

• Decryption: From ciphertext 〈c1, c2〉, Alice recovers

m̂ := c2 · c−x
1
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Schnorr Identification Scheme

• Let G be a cyclic group of order q with generator g
• Identity corresponds to knowledge of private key x where h = gx

• A prover wants to prove that she knows x to a verifier without
revealing it

1. Prover picks k ← Zq and sends initial message I = gk

2. Verifier sends a challenge r ← Zq

3. Prover sends s = rx + k mod q
4. Verifier checks gs · h−r ?

= I
• Passive eavesdropping does not reveal x

• (I, r) is uniform on G × Zq and s = logg(I · y
r )

• Transcripts with same distribution can be simulated without
knowing x

• Choose r , s uniformly from Zq and set I = gs · h−r

• If a cheating prover can generate two responses, he can implicity
compute discrete logarithm
• Section 19.1 of Boneh-Shoup
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Digital Signatures



Digital Signatures

• Digital signatures prove that the signer knows private key
• Interactive protocols are not feasible in practice

(Message, Signature)Signer

Message

Signer’s
Private Key

Verifier
Decision on

Signature Validity

Signer’s
Public Key
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Schnorr Signature Algorithm

• Based on the Schnorr identification scheme
• Let G be a cyclic group of order q with generator g
• Let H : {0,1}∗ 7→ Zq be a cryptographic hash function
• Signer knows x ∈ Zq such that public key h = gx

• Signer:
1. On input m ∈ {0, 1}∗, chooses k ← Zq

2. Sets I := gk

3. Computes r := H(I,m)
4. Computes s = rx + k mod q
5. Outputs (r , s) as signature for m

• Verifier
1. On input m and (r , s)
2. Compute I := gs · h−r

3. Signature valid if H(I,m)
?
= r

• Example of Fiat-Shamir transform
• Patented by Claus Schnorr in 1988
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Digital Signature Algorithm
• Part of the Digital Signature Standard issued by NIST in 1994
• Based on the following identification protocol

1. Suppose prover knows x ∈ Zq such that public key h = gx

2. Prover chooses k ← Z∗
q and sends I := gk

3. Verifier chooses uniform α, r ∈ Zq and sends them
4. Prover sends s :=

[
k−1 · (α+ xr) mod q

]
as response

5. Verifier accepts if s 6= 0 and

gαs−1
· hrs−1 ?

= I

• Digital Signature Algorithm
1. Let H : {0, 1}∗ 7→ Zq be a cryptographic hash function
2. Let F : G 7→ Zq be a function, not necessarily CHF
3. Signer:

3.1 On input m ∈ {0, 1}∗, chooses k ← Z∗
q and sets r := F (gk )

3.2 Computes s :=
[
k−1 · (H(m) + xr)

]
mod q

3.3 If r = 0 or s = 0, choose k again
3.4 Outputs (r , s) as signature for m

4. Verifier
4.1 On input m and (r , s) with r 6= 0, s 6= 0 checks

F
(

gH(m)s−1
hrs−1) ?

= r
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Elliptic Curves Over Real Numbers



Elliptic Curves over Reals
The set E of real solutions (x , y) of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 6= 0.
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y2 = x3 − 2x
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Point Addition (1/3)

P

Q
R′

R

P = (x1, y1),Q = (x2, y2)

x1 6= x2

P + Q = R

R = (x3, y3)

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1
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Point Addition (2/3)

P

Q

O
P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = −y2

P + Q = O
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Point Addition (3/3)

P

R′

R

P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = y2 6= 0
P + Q = R

R = (x3, y3)

x3 =

(
3x2

1 + a
2y1

)2

− 2x1

y3 =

(
3x2

1 + a
2y1

)
(x1 − x3)− y1
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Elliptic Curves Over Finite Fields



Fields

Definition
A set F together with two binary operations + and ∗ is a field if
• F is an abelian group under + whose identity is called 0
• F ∗ = F \ {0} is an abelian group under ∗ whose identity is called

1
• For any a,b, c ∈ F

a ∗ (b + c) = a ∗ b + a ∗ c

Definition
A finite field is a field with a finite cardinality.
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Prime Fields

• Fp = {0,1,2, . . . ,p − 1} where p is prime
• + and ∗ defined on Fp as

x + y = x + y mod p,
x ∗ y = xy mod p.

• F5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

∗ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

• In fields, division is multiplication by multiplicative inverse

x
y
= x ∗ y−1
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Characteristic of a Field

Definition
Let F be a field with multiplicative identity 1. The characteristic of F is
the smallest integer p such that

1 + 1 + · · ·+ 1 + 1︸ ︷︷ ︸
p times

= 0

Examples

• F2 has characteristic 2
• F5 has characteristic 5
• R has characteristic 0

Theorem
The characteristic of a finite field is prime
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Elliptic Curves over Finite Fields
For char(F ) 6= 2,3, the set E of solutions (x , y) in F2 of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 6= 0.
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y2 = x3 + 10x + 2 over F11
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y2 = x3 + 9x over F11
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Point Addition for Finite Field Curves

• Point addition formulas derived for reals are used
• Example: y2 = x3 + 10x + 2 over F11

+ O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)
O O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)

(3,2) (3,2) (6,6) O (6,5) (8,0) (3,9) (5,10) (5,1)
(3,9) (3,9) O (6,5) (8,0) (6,6) (5,1) (3,2) (5,10)
(5,1) (5,1) (6,5) (8,0) (6,6) O (5,10) (3,9) (3,2)
(5,10) (5,10) (8,0) (6,6) O (6,5) (3,2) (5,1) (3,9)
(6,5) (6,5) (3,9) (5,1) (5,10) (3,2) (8,0) O (6,6)
(6,6) (6,6) (5,10) (3,2) (3,9) (5,1) O (8,0) (6,5)
(8,0) (8,0) (5,1) (5,10) (3,2) (3,9) (6,6) (6,5) O

• The set E ∪ O is closed under addition
• In fact, its a group
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Bitcoin’s Elliptic Curve: secp256k1
• y2 = x3 + 7 over Fp where

p = FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

• E ∪ O has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

• Private key is k ∈ {1,2, . . . ,n − 1}
• Public key is kP where P = (x , y)

x =79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798,

y =483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A6855419 9C47D08F FB10D4B8.
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Point Multiplication using Double-and-Add

• Point multiplication: kP calculation from k and P
• Let k = k0 + 2k1 + 22k2 + · · ·+ 2mkm where ki ∈ {0,1}
• Double-and-Add algorithm

• Set N = P and Q = O
• for i = 0, 1, . . . ,m

• if ki = 1, set Q ← Q + N
• Set N ← 2N

• Return Q
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Why ECC?
• For elliptic curves E(Fq), best DL algorithms are exponential in

n = dlog2 qe
CEC(n) = 2n/2

• In F∗p, best DL algorithms are sub-exponential in N = dlog2 pe
• Lp(v , c) = exp

(
c(log p)v (log log p)(1−v)

)
with 0 < v < 1

• Using GNFS method, DLs can be found in Lp(1/3, c0) in F∗p

CCONV (N) = exp
(

c0N1/3 (log (N log 2))2/3
)

• Best algorithms for factorization have same asymptotic
complexity

• For similar security levels

n = βN1/3 (log (N log 2))2/3

• Key size in ECC grows slightly faster than cube root of
conventional key size
• 173 bits instead of 1024 bits, 373 bits instead of 4096 bits
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ECDSA in Bitcoin
• Signer: Has private key k and message m

1. Compute e = SHA-256(SHA-256(m))
2. Choose a random integer j from Z∗

n

3. Compute jP = (x , y)
4. Calculate r = x mod n. If r = 0, go to step 2.
5. Calculate s = j−1(e + kr) mod n. If s = 0, go to step 2.
6. Output (r , s) as signature for m

• Verifier: Has public key kP, message m, and signature (r , s)
1. Calculate e = SHA-256(SHA-256(m))
2. Calculate j1 = es−1 mod n and j2 = rs−1 mod n
3. Calculate the point Q = j1P + j2(kP)
4. If Q = O, then the signature is invalid.
5. If Q 6= O, then let Q = (x , y) ∈ F2

p. Calculate t = x mod n. If t = r ,
the signature is valid.

• As n is a 256-bit integer, signatures are 512 bits long
• As j is randomly chosen, ECDSA output is random for same m
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