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Group Theory Recap



Groups
Definition
A set G with a binary operation = defined on it is called a group if

o the operation x is associative,
o there exists an identity element e € G such that forany ae G

axe=exa=a,
o for every a € G, there exists an element b € G such that

axb=bxa=e.

Example
e Modulo n additionon Z, = {0,1,2,...,n— 1}



Cyclic Groups

Definition
A finite group is a group with a finite number of elements. The order
of a finite group G is its cardinality.

Definition
A cyclic group is a finite group G such that each element in G
appears in the sequence

{9.9%9.9x9%9,.. .}
for some particular element g € G, which is called a generator of G.

Example
Ze = {0,1,2,3,4,5} is a cyclic group with a generator 1



Znand Z,

For anintegern>1,Z,={0,1,2,...,n—1}
e Operation is addition modulo n
e Znis cyclic with generator 1
For aninteger n > 2, Z} = {i € Z, \ {0} | gcd(i,n) =1}
e Operation is multiplication modulo n
e |Zy] =n—1ifnisaprime
e Z is cyclic if nis a prime
Definition: If G is a cyclic group of order g with generator g,
then for h € G the unique x € Z4 which satisfies g* = h is called
the discrete logarithm of h with respect to g.
Finding DLs is easy in Z,
Finding DLs is hard in Z},
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Cryptography based on the Discrete Logarithm
Problem



Diffie-Hellman Protocol

e Alice and Bob wish to generate a shared secret key using a
public channel

1.

5.

Alice runs a group generation algorithm to get (G, q, g) where G is
a cyclic group of order g with generator g.

2. Alice chooses a uniform x € Zq and computes ha = g*.
3.
4. Bob chooses a uniform y € Z4 and computes hg = g”. He sends

Alice sends (G, g, g, ha) to Bob.

he to Alice. He also computes kg = H.
Alice computes ks = h§.

By construction, ky = kg.
e An adversary capable of finding DLs in G can learn the key



El Gamal Encryption

Suppose Bob wants to send Alice an encrypted message
Alice publishes her public key (G, q, g, h)

e Gis a cyclic group of order g with generator g
o h= g~* where x € Zq is Alice’s secret key

Encryption: For message m € G, Bob chooses a uniform
Y € Zq and outputs ciphertext

(¢, 0 - m).
Decryption: From ciphertext (cy, ¢2), Alice recovers

ﬁ’)I:Cg-CrX
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Schnorr Identification Scheme

Let G be a cyclic group of order g with generator g
Identity corresponds to knowledge of private key x where h = g*

A prover wants to prove that she knows x to a verifier without
revealing it

1. Prover picks k « Zq and sends initial message / = g*

2. Verifier sends a challenge r < Zq

3. Prover sends s = rx + k mod q

4. Verifier checks g - h™" = |
Passive eavesdropping does not reveal x

e (/,r)is uniformon G x Zq and s = log,(/- y")

o Transcripts with same distribution can be simulated without

knowing x

e Choose r, s uniformly from Zq and set I = g°- h™"
If a cheating prover can generate two responses, he can implicity
compute discrete logarithm

e Section 19.1 of Boneh-Shoup
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Digital Signatures



Digital Signatures

o Digital signatures prove that the signer knows private key
¢ Interactive protocols are not feasible in practice

Message
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Schnorr Signature Algorithm

Based on the Schnorr identification scheme

Let G be a cyclic group of order g with generator g
Let H: {0,1}* — Z4 be a cryptographic hash function
Signer knows x € Zq such that public key h = g*

Signer:
1. Oninput m € {0,1}", chooses k « Zq
2. Sets | :=g*

3. Computes r := H(Il, m)
4. Computes s = rx + k mod q
5. Outputs (r, s) as signature for m

Verifier

1. Oninput mand (r,s)

2. Compute | :=g°-h™"

3. Signature valid if H(I, m) < r
Example of Fiat-Shamir transform
Patented by Claus Schnorr in 1988
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Digital Signature Algorithm

e Part of the Digital Signature Standard issued by NIST in 1994
e Based on the following identification protocol

Suppose prover knows x € Zgq such that public key h = g*
Prover chooses k « Zj and sends / := g*

Verifier chooses uniform a, r € Zq and sends them

Prover sends s := [k~ - (. + xr) mod q] as response

Verifier accepts if s # 0 and

SARE A

—1 -1 2

gaS . hrs I

e Digital Signature Algorithm

1. Let H:{0,1}* — Z4 be a cryptographic hash function

2. Let F: G — Zq be a function, not necessarily CHF
3. Signer:

3.1 Oninput m € {0,1}*, chooses k « Zj and sets r := F(g")
3.2 Computes s := [k~" - (H(m) + xr)] mod q
3.3 Ifr=0o0rs =0, choose k again
3.4 Outputs (r, s) as signature for m
4. Verifier

4.1 Oninput mand (r, s) with r # 0, s # 0 checks
F <gH(rn)s’1 hrs*1) r,
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Elliptic Curves Over Real Numbers



Elliptic Curves over Reals

The set E of real solutions (x, y) of
v =x®4+ax+b

along with a “point of infinity” ©. Here 4a° + 27b% # 0.
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Point Addition (1/3)

P=(x1,5), Q= (xe, y2)

X1 # Xz
P+Q=R

R= (X37YS)

Xo — X4

V3= <y2—y1) (x1 —Xx3) — 1
R _

X2

| 2
§ XS:(Yz—}ﬁ) X%

X1
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Point Addition (2/3)

P:(X17Y1)aQ:(X27Y2)
X1 =X, 1= —)e
P+Q=0

0<«>h<3
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Point Addition (3/3)

P= (X17y1)aQ: (X27Y2)
X1 =X, y1=Y2 #0
P+Q=R
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Elliptic Curves Over Finite Fields



Fields

Definition
A set F together with two binary operations + and x is a field if
e F is an abelian group under + whose identity is called 0
e [* = F\ {0} is an abelian group under x whose identity is called

e Forany a,b,ce F

ax(b+c)=axb+axc

Definition
A finite field is a field with a finite cardinality.
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Prime Fields

F, ={0,1,2,...,p— 1} where pis prime
+ and * defined on [, as

X+y=x+ymodp,
X xy = xy mod p.

Fs

- O BN
N = O~ WW
WN = O HDd
[eNeoNoNoNelle)
P OODN—=O =
W= NODMN
NP =2 WOoWw

O~ WN ==
A WN = O *

AN = OH
A OWON—= OO

N WhOoO I~

In fields, division is multiplication by multiplicative inverse

{—X*y_1
y
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Characteristic of a Field

Definition
Let F be a field with multiplicative identity 1. The characteristic of F is
the smallest integer p such that

141+ +1+1=0

p times

Examples

e [F5> has characteristic 2
e [F5 has characteristic 5
e R has characteristic 0

Theorem
The characteristic of a finite field is prime
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Elliptic Curves over Finite Fields
For char(F) # 2,3, the set E of solutions (x, y) in F? of

v =x®t+ax+b

along with a “point of infinity” ©. Here 4a° 4 27b% # 0.

10

y? = x3 +10x + 2 over Fy1

10 . . ° |
L]
8, -
L]

6, -

4 . 8

2 L3 8

L] L] L]

o e 8
Il Il Il Il Il Il
0 2 4 6 8 10

y? = x3 + 9x over Fyq
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Point Addition for Finite Field Curves

Point addition formulas derived for reals are used
Example: y? = x3 + 10x + 2 over Fyq

T 0 (32 (39 (51) (510) (6,5 (66) (8,0)

0 0 (B2 (39 (51) (5,10) (6,5 (6,6) (8,0)
(3.2) | 32 (66) O (65 (8,0 (3,9 (510) (5.1)
(39 | 390 O (85 (80 (66) (51) (3,2) (510)
(5.1) | (51) (6,5 (8,0) (6,6) O (510) (3,9) (3,2
(5,10) | (5,10) (8,0) (6,6) ©O (65 (3,2) (51) (3,9
(6,5) | (6,5) (3,9 (51) (5,10) (3,2) (80 O  (6,6)
(6,6) | (6,6) (510) (3,2) (3,9 (51) ©  (8,0) (6,5
(8,0) | (8,0) (51) (5.10) (3,2) (3.9) (6,6) (6,5 O

The set E U O is closed under addition
In fact, its a group
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Bitcoin’s Elliptic Curve: secp256k1

y? = x3 + 7 over F, where

p =FFFFFFEFF

48 hexadecimal digits

FFFFFFFE FEFFFFFFE FFFFFC2F

:2256723272972872772672471

E U O has cardinality n where

= FFFFFFFF FFFFFFFE FEFFFFFFE FEFFEFFFE
BAAEDCE6 AF48A03B BFD25E8C D0364141

Private key is k € {1,2,...,n—1}
Public key is kP where P = (x, y)

X =79BE667E F9DCBBAC
029BFCDB 2DCE28D9
y =483ADA77 26A3C465
FD17B448 A6855419

55A06295
59F2815B
5DA4FBFC
9C47D08F

CE870B07
16F81798,
OE1108A8
FB10D4BS.
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Point Multiplication using Double-and-Add

e Point multiplication: kP calculation from k and P
o Let k = ko + 2Ky + 22ky + - - - + 2™k, where k; € {0,1}
e Double-and-Add algorithm

e SetN=Pand Q=0

o fori=0,1,....m
o ifki=1,setQ+ Q+ N
o Set N «+— 2N

e Return Q
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Why ECC?

For elliptic curves E(F), best DL algorithms are exponential in

n = [log, ql
Cec(n) = 2"?

In I, best DL algorithms are sub-exponential in N = [log, p]
o Ly(v,c) =exp (c(log p)"(loglog p)“*")) with0 < v < 1
Using GNFS method, DLs can be found in Ly(1/3, co) in

Cconv(N) = exp (coN1 /3 (log (Nlog 2))2/3)

Best algorithms for factorization have same asymptotic
complexity

For similar security levels
n= BN/ (log (Nlog2))??

Key size in ECC grows slightly faster than cube root of
conventional key size
e 173 bits instead of 1024 bits, 373 bits instead of 4096 bits
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ECDSA in Bitcoin

Signer: Has private key k and message m

ok wn -~

Compute e = SHA-256(SHA-256(m))

Choose a random integer j from Z

Compute jP = (x,¥)

Calculate r = x mod n. If r = 0, go to step 2.

Calculate s = j~"(e + kr) mod n. If s =0, go to step 2.
Output (r, s) as signature for m

Verifier: Has public key kP, message m, and signature (r, s)

1.

S A

Calculate e = SHA-256(SHA-256(m))

Calculate jy = es™" mod nand j» = rs~' mod n

Calculate the point Q = ji P + j2(kP)

If Q = O, then the signature is invalid.

If Q# O, thenlet Q = (x,y) € F5. Calculate t = x mod n. If t = r,
the signature is valid.

As nis a 256-bit integer, signatures are 512 bits long
As j is randomly chosen, ECDSA output is random for same m
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