Ethereum
Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

August 21, 2018

mailto:sarva@ee.iitb.ac.in

Ethereum

e A blockchain platform for building decentralized applications
e Application code and state is stored on a blockchain
¢ Transactions cause code execution and update state, emit events,
and write logs
e Frontend web interfaces can respond to events and read logs

e Most popular platform for creating new tokens (ICOs)

e Each ICO implements a ERC-20 token contract (link)
e Investments in ICOs was about $7 billion in 2017
e About $12 billion in H1 of 2018
e Other applications
Ethereum Name Service (https://ens.domains/)
Cryptokitties (https://www.cryptokitties.co/)
Fomo3D (https://fomo3d.hostedwiki.co/)
Decentralized exchanges (https://idex.market)

21

https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://ens.domains/
https://www.cryptokitties.co/
https://fomo3d.hostedwiki.co/
https://idex.market

Ethereum History

Proposed by then 19 y.o. Vitalik Buterin in 2013
VB visited the Mastercoin team in Oct 2013
Released the Ethereum white paper in Dec 2013
Bitcointalk announcement on Jan 24th, 2014

A presale in July-Aug 2014 collected 31,591 BTC worth 18
million USD in return for 60,102,216 ETH

About 12 million ETH created to pay early contributors and setup
non-profit foundation

Ethereum notable releases

Release 1.0: Frontier on 30 July, 2015

Release 2.0: Homestead on 14 March, 2016

Release 2.1: DAO Hard Fork on 20 July, 2016
Release 3.0: Metropolis phase 1, Byzantium on 16 Oct, 2017

e Support for zkSNARKs

Release 3.1: Metropolis phase 2, Constantinople, expected in 2018
o Release 4.0: Serenity, TBA

e Move from proof-of-work to proof-of-stake

Bitcoin vs Ethereum

Bitcoin

Ethereum

Specification
Consensus
Contract Language
Block interval
Block size limit
Difficulty adjustment
Currency supply

Currency units

Bitcoin Core client
SHA256 PoW
Script
10 minutes
approx 4 MB
After 2016 blocks
Fixed to 21 million

1 BTC = 108 satoshi

Ethereum yellow paper
Ethash PoW (later PoS)
EVM bytecode
14 to 15 seconds’
11 KB to 34 KB (Aug 2017 to Aug 2018)?
After every block
Variable (101 million in Aug 2018)3

1 ETH = 108 Wei

Thttps://etherscan.io/chart/blocktime
2https://etherscan.io/chart/blocksize
Shttps://etherscan.io/chart/ethersupplygrowth

21

https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocksize
https://etherscan.io/chart/ethersupplygrowth

Ethereum Specification

e Specified in the Ethereum yellow paper by Gavin Wood
o Implemented in Go, C++, Python, Rust

o Yellow paper models Ethereum as a transaction-based state
machine

e o; = State attime t, T = Transaction, T = Transaction-level
state-transition function

Ot = T(UU T)

e B = Block (series of transactions and other stuff), I = Block-level
state-transition function

Ot = H(Ut,B)
B:(...7(T07T17_”)7...)

e O = Block finalization state-transition function

MN(e,B)=Q(B;T(T(o, To), T1)...)

21

Ethereum World State

World state consists of accounts
Account types
o Externally owned accounts: Controlled by private keys
e Contract accounts: Controlled by contract code
Account state

e nonce: Number of transactions sent or contract-creations made
e balance: Number of Wei owned by this account

o storageRoot: Root hash of storage Merkle Patricia trie

e codeHash: Hash of EVM code if contract account

Mapping between account addresses and states is stored in
state database
Each account has a 20-byte address
o EOA address = Right-most 20 bytes of Keccak-256 hash of public
ke
o Coyntract address = Right-most 20 bytes of Keccak-256 hash of
RLP([senderAddress, nonce])

21

Keccak-256

Cryptographic hash function used by Ethereum

NIST announced competition for new hash standard in 2006
Keccak declared winner in 2012

In August 2015, FIPS 202 “SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions” was approved
Ethereum adopted Keccak-256 but NIST changed the padding
scheme

Keccak-256 and SHAS3-256 give different outputs for the same
message

® https://ethereum.stackexchange.com/questions/550/
which-cryptographic-hash-function-does-ethereum-use

https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use
https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use

Transactions

Two types

e Contract creation
e Message calls

Contract creation transactions create new contracts on the
blockchain

e Destination address is null
e EVM code for account initialization is specified

Message call transactions call methods in an existing contract
¢ Input data to contract methods is specified

Transaction execution modifies the state database

21

©CoOoONOOOTA~WN =

Storage Contract

pragma solidity 70.4.0;

contract SimpleStorage {
uint storedData;

function set (uint x) public {
storedData = x;

}

function get () public view returns (uint) {
return storedData;
}
}

https://solidity.readthedocs.io/en/v0.4.24/
introduction-to-smart-contracts.htmlf#storage

21

https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html#storage
https://solidity.readthedocs.io/en/v0.4.24/introduction-to-smart-contracts.html#storage

Recursive Length Prefix Encoding

Recursive Length Prefix Encoding (1/3)

Applications may need to store complex data structures
RLP encoding is a method for serialization of such data
Value to be serialized is either a byte array or a list of values
e Examples: “abc”, [“abe”, [“def”, “ghi”], [1]
Ry(x) if x is a byte array
Ri(x) otherwise

RLP(X) =

BE stands for big-endian representation of a positive integer

n<||b]|
BE(X) = (bo,br,...) b #0AXx= > b,-256/00~1~"

n=0

11/21

Recursive Length Prefix Encoding (2/3)

Byte array encoding

X if |x|]=1AXx[0] <128
Ro(x) = { (1284 |x|)-x elseif |x| <56
(183 + |[BE(|Ix[))||) - BE([IX]|) - x else if ||BE(|x|)|| < 8

(a)-(b)-c=(ab,c)
Examples

Encoding of Oxaabbcc = 0x83aabbcc

Encoding of empty byte array = 0x80

Encoding of 0x80 = 0x8180

Encoding of “Lorem i |psum dolor sit amet consectetur adipisicing
elit” = 0xb8, 0x38, ’L’, '0’, r,’e’,’'m’, ", ..., e, I, T, 't

Length of byte array is assumed to be Iess than 2568
First byte can be at most 191

12/21

Recursive Length Prefix Encoding (3/3)

e List encoding of x = [Xg, X1, ..]

R — 419241091 s() it [ls(x)|| <56
: (247 + |[BE(|s(X)|)||) - BE(Is(X)|]) - 5(x) otherwise
s(X) = RLP(Xo) - RLP(X1)...

o Examples

e Encoding of empty list [] = 0xcO
e Encoding of list containing empty list[[]] = Oxc1 0xcO
e Encodingof [[LI[1I[][[111]=0xc7, 0xcO, Oxc1, 0xcO, Oxc3,
0xc0, Oxc1, 0xcO
o First byte of RLP encoded data specifies its type
e 0x00, ..., 0x7f = byte
e 0x80, ..., 0xbf = byte array
e 0xcO, ..., Oxff — list

Reference: https://github.com/ethereum/wiki/wiki/RLP

13/21

https://github.com/ethereum/wiki/wiki/RLP

Merkle Patricia Trie

Merkle Trie

A trie is a search tree with string keys
Example: Trie with hexadecimal string keys
e Every node is of the form [io, i1, . . . , i15, value]
e Consider key-value pairs: (‘do’, ‘verb’), (‘dog’, ‘puppy’), (‘doge’,
‘coin’), (‘horse’, ‘stallion’)
e What is the corresponding radix tree?
Merkle tries are a cryptographically secure data structure used to
store key-value bindings
¢ Instead of pointers, the hash of a node is used for lookup in a
database
e Location of node in database is at key Hash (RLP (node))

O(log N) Merkle proofs showing the existence of a leaf in a trie
with given root hash

15/21

O©oOoO~NOOThWN

Merkle Trie Update

Update value at path in a trie with root hash equal to
node_hash

def update (node_hash, path, wvalue):
Get the node with key node_hash from database
If it does not exist, create a new NULL node
curnode = db.get (node_hash) if node else [NULL]=x17
newnode = curnode.copy ()

if path == ’’:
If end of path is reached, insert value in current
node
newnode [-1] = value
else:
Update node indexed by first path nibble and proceed
newindex = update (curnode[path[0]], path[l:], value)
Update hash value of node indexed by first path
nibble
newnode [path[0]] = newindex

Insert database entry with hash-node key-value pair

db.put (hash (newnode), newnode)
return hash (newnode)

Source: https://github.com/ethereum/wiki/wiki/Patricia-Tree

16/21

https://github.com/ethereum/wiki/wiki/Patricia-Tree

Merkle Patricia Trie

Merkle tries are inefficient due to large number of empty nodes

PATRICIA = Practical Algorithm To Retrieve Information Coded in
Alphanumeric
Node which is an only child is merged with its parent
A node in a Merkle Patricia trie is either
e NULL
e Branch: A 17-item node [y, i1, . . ., i15, value]
e Leaf: A 2-item node [encodedPath, value]
e Extension: A 2-item node [encodedPath, key]
In leaf nodes, encodedPath completes the remainder of a path
to the target value
In extension nodes
e encodedPath species partial path to skip
e key specifies location of next node in database
Two requirements

o Need some way to distinguish between leaf and extension nodes
e encodedPath is a nibble array which needs to be byte array

Hex-Prefix Encoding

o Efficient method to encode nibbles into a byte array
o Also stores an additional flag ¢
o Let x = [x[0],x[1],...,] be a sequence of nibbles

HP(X, 1) = (161(2), 16x[0] + x[1], 16x[2] + (3], ...) if [|x[| is even
T (8(() + 1) + x[0], 16x[1] + x[2], 16X[3] + X[4], ..) o.w.

) = {2 if t+£0

0 otherwise

¢ High nibble of first byte has two bits of information

o Lowest bit encodes oddness of length
e Second-lowest bit encodes the flag

e Low nibble of first byte is zero if length is even and equal to first
nibble otherwise

18/21

Hex-Prefix Encoding of Trie Paths

e First nibble of encodedPath
Hex | Bits | Node Type | Path Length

0 0000 | extension even
1 0001 | extension odd
2 0010 leaf even
3 0011 leaf odd

e Examples

e [0,f,1,¢,b,8,value] — '20 Of 1c b8’
f,1,c, b,8,value] — '3f 1c b8’
,2,3,4,5,..] 1123 45
1,2,3,4

o [
° [1
e [0,1,2,3,4,5,...] 000123 45’

Example Merkle Patricia Trie

o Key-value pairs: (‘do’, ‘verb’), (‘dog’, ‘puppy’), (‘doge’, ‘coin’),
(‘horse’, ‘stallion’)

e Hex keys and their values

64 6f : ‘verb’

64 6f 67 : ‘puppy’

64 6f 67 65 : ‘coin’

68 6f 72 73 65 : ‘stallion’

e Trie

rootHash [<16>, hashA]

hashA [<>, <>, <>, <>, hashB, <>, <>, <>, hashC, <>, <>, <>, <>, <>, <>, <>, <>]
hashC [<20 6f 72 73 65>, 'stallion’]

hashB [<00 6f>, hashD]

hashD [<>, <>, <>, <>, <>, <>, hashE, <>, <>, <>, <>, <>, <>, <>, <>, <>, 'verb’]
hashE [<17>, hashF]

hashF [<>, <>, <>, <>, <>, <>, hashG, <>, <>, <>, <>, <>, <>, <>, <>, <>, 'puppy’ |

hashG [<35>, 'coin’]

20/21

References

White paper https://github.com/ethereum/wiki/wiki/White-Paper
Ethereum Wikipedia Article https://en.wikipedia.org/wiki/Ethereum

A Prehistory of the Ethereum Protocol
https://vitalik.ca/general/2017/09/14/prehistory.html

Ethereum announcement on Bitcointalk
https://bitcointalk.org/index.php?topic=428589.0

History of Ethereum http://ethdocs.org/en/latest/introduction/
history-of-ethereum.html

The DAO Wikipedia Article
https://en.wikipedia.org/wiki/The_DAO_ (organization)

Releases https://github.com/ethereum/wiki/wiki/Releases
Yellow paper https://ethereum.github.io/yellowpaper/paper.pdf

Merkle Patricia Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree

21/21

https://github.com/ethereum/wiki/wiki/White-Paper
https://en.wikipedia.org/wiki/Ethereum
https://vitalik.ca/general/2017/09/14/prehistory.html
https://bitcointalk.org/index.php?topic=428589.0
http://ethdocs.org/en/latest/introduction/history-of-ethereum.html
http://ethdocs.org/en/latest/introduction/history-of-ethereum.html
https://en.wikipedia.org/wiki/The_DAO_(organization)
https://github.com/ethereum/wiki/wiki/Releases
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/wiki/wiki/Patricia-Tree

	Recursive Length Prefix Encoding
	Merkle Patricia Trie

