
Ethereum Smart Contracts

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

September 4, 2018

1 / 14

mailto:sarva@ee.iitb.ac.in


Ethereum Contracts
• Contract = Collection of functions and state at a specific address

• Account state = [nonce, balance, storageRoot, codeHash]

• Created by contract creation transactions
• Contract logic is stored in EVM bytecode
• Written in a high level language which compiles to bytecode

• Solidity https://solidity.readthedocs.io
• Vyper https://vyper.readthedocs.io

• Anatomy of a contract
• State variables
• Functions
• Events

2 / 14

https://solidity.readthedocs.io
https://vyper.readthedocs.io


Currency Example



Currency Example
1 pragma solidity ^0.4.7;
2
3 contract Coin {
4 address public minter;
5 mapping (address => uint) public balances;
6
7 event Sent(address from, address to, uint amount);
8
9 constructor() public {

10 minter = msg.sender;
11 }
12
13 function mint(address receiver, uint amount) public {
14 if (msg.sender != minter) return;
15 balances[receiver] += amount;
16 }
17
18 function send(address receiver, uint amount) public {
19 if (balances[msg.sender] < amount) return;
20 balances[msg.sender] -= amount;
21 balances[receiver] += amount;
22 emit Sent(msg.sender, receiver, amount);
23 }
24 }

4 / 14



Currency Example Anatomy

• State variables

address public minter;
mapping (address => uint) public balances;

• Functions

constructor() public {..}

function mint(address receiver, uint amount) public {..}

function send(address receiver, uint amount) public {..}

• Events

event Sent(address from, address to, uint amount);

5 / 14



Contract Creation and Currency Allotment

• At contract creation, minter is initialized to creator

address public minter;

constructor() public {
minter = msg.sender;

}

• minter can call mint and allot currency to addresses

mapping (address => uint) public balances;

function mint(address receiver, uint amount) public {
if (msg.sender != minter) return;
balances[receiver] += amount;

}

• Public functions form the contract interface (can be called via
message call)

• Private functions and variables are only visible in original
contract, not in derived contracts

6 / 14



Currency Transfers
mapping (address => uint) public balances;

event Sent(address from, address to, uint amount);

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances[receiver] += amount;
emit Sent(msg.sender, receiver, amount);

}

• Once allotted currency, address owners can transfer to others
• An event is emitted to enable light clients to find this log
• Remix Demo https://remix.ethereum.org

7 / 14

https://remix.ethereum.org


Open Auction



Open Auction
• Bids are known to everyone
• State variables

// Address of auction beneficiary
address public beneficiary;

// Auction end time in Unix time
uint public auctionEndTime;

// Current state of the auction.
address public highestBidder;
uint public highestBid;

// Allowed withdrawals of previous bids
mapping(address => uint) pendingReturns;

// Set to true at the end, disallows any change
bool ended;

• Events
event HighestBidIncreased(address bidder, uint amount);
event AuctionEnded(address winner, uint amount);

9 / 14



Contract Creation
constructor(

uint _biddingTime,
address _beneficiary

) public {
beneficiary = _beneficiary;
auctionEndTime = now + _biddingTime;

}

• Initialize beneficiary and auctionEndTime

• Contract creation transaction will take arguments as inputs

10 / 14



Making a Bid
function bid() public payable {

require(now <= auctionEndTime, "Auction already ended.");

require(msg.value > highestBid, "There already is a
higher bid.");

if (highestBid != 0) {
pendingReturns[highestBidder] += highestBid;

}
highestBidder = msg.sender;
highestBid = msg.value;
emit HighestBidIncreased(msg.sender, msg.value);

}

• payable keyword allows Ether to be sent with message call
• Check that auction is ongoing and new bid is highest bid
• If new bid is higher, add old highest bid to pendingReturns list
• Emit event notifying change in highest bid

11 / 14



Withdraw Losing Bids
function withdraw() public returns (bool) {

uint amount = pendingReturns[msg.sender];
if (amount > 0) {

pendingReturns[msg.sender] = 0;

if (!msg.sender.send(amount)) {
pendingReturns[msg.sender] = amount;
return false;

}
}
return true;

}

• Set balance of withdrawer to zero
• If withdrawal fails, restore amount in pendingReturns and

return false

• If withdrawal succeeds, return true

12 / 14



Ending the Auction
function auctionEnd() public {

require(now >= auctionEndTime, "Auction not yet ended.");
require(!ended, "auctionEnd has already been called.");

ended = true;
emit AuctionEnded(highestBidder, highestBid);

beneficiary.transfer(highestBid);
}

• Check that auctionEndTime has passed
• Check that auctionEnd has not been called before
• Emit event signaling end of auction
• Transfer highest bid to beneficiary

13 / 14



References
• Solidity Documentation https://solidity.readthedocs.io

• Remix IDE https://remix.ethereum.org

14 / 14

https://solidity.readthedocs.io
https://remix.ethereum.org

	Currency Example
	Open Auction

