Ethereum Smart Contracts
Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

September 4, 2018


mailto:sarva@ee.iitb.ac.in

Ethereum Contracts

Contract = Collection of functions and state at a specific address
e Account state = [nonce, balance, storageRoot, codeHash]

Created by contract creation transactions
Contract logic is stored in EVM bytecode

Written in a high level language which compiles to bytecode
e Solidity https://solidity.readthedocs.io
e Vyper https://vyper.readthedocs.io
Anatomy of a contract
e State variables
e Functions
e Events

14


https://solidity.readthedocs.io
https://vyper.readthedocs.io

Currency Example



O©CoONOOOA~WN =

Currency Example

pragma solidity "70.4.7;

contract Coin {
address public minter;
mapping (address => uint) public balances;

event Sent (address from, address to, uint amount);

constructor () public
minter = msg.sender;

function mint (address receiver, uint amount) public
if (msg.sender != minter) return;
balances[receiver] += amount;

function send(address receiver, uint amount) public
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances|[receiver] += amount;
emit Sent (msg.sender, receiver, amount);

14



Currency Example Anatomy

o State variables

address public minter;

mapping (address => uint) public balances;

e Functions

constructor () public {..}
function mint (address receiver,

function send(address receiver,

e Events

event Sent (address from, address to,

uint amount)

uint amount)

public {..}

public {..}

uint amount) ;

14



Contract Creation and Currency Allotment

At contract creation, minter is initialized to creator

address public minter;

constructor () public ({
minter = msg.sender;

}

minter can call mint and allot currency to addresses

mapping (address => uint) public balances;

function mint (address receiver, uint amount) public {
if (msg.sender != minter) return;
balances[receiver] += amount;

}

Public functions form the contract interface (can be called via
message call)

Private functions and variables are only visible in original
contract, not in derived contracts

14



Currency Transfers

mapping (address => uint) public balances;
event Sent (address from, address to, uint amount);

function send(address receiver, uint amount) public {
if (balances[msg.sender] < amount) return;
balances [msg.sender] —= amount;
balances[receiver] += amount;
emit Sent (msg.sender, receiver, amount);

¢ Once allotted currency, address owners can transfer to others
¢ An event is emitted to enable light clients to find this log
e Remix Demo https://remix.ethereum.org

14


https://remix.ethereum.org

Open Auction



Open Auction

e Bids are known to everyone
o State variables
// Address of auction beneficiary

address public beneficiary;

// Auction end time in Unix time
uint public auctionEndTime;

// Current state of the auction.
address public highestBidder;
uint public highestBid;

// Allowed withdrawals of previous bids
mapping (address => uint) pendingReturns;

// Set to true at the end, disallows any change

bool ended;

e Events

event HighestBidIncreased (address bidder, uint amount);

event AuctionEnded (address winner,

uint amount) ;

14



Contract Creation

constructor (
uint _biddingTime,
address _beneficiary
) public {
beneficiary = _beneficiary;
auctionEndTime = now + _biddingTime;

e |nitialize beneficiary and auctionEndTime
o Contract creation transaction will take arguments as inputs

10/14



Making a Bid

function bid() public payable {

require (now <= auctionEndTime, "Auction already ended.");

require (msg.value > highestBid, "There already is a
higher bid.");

if (highestBid != 0) {
pendingReturns [highestBidder] += highestBid;
}
highestBidder = msg.sender;
highestBid = msg.value;
emit HighestBidIncreased (msg.sender, msg.value);

payable keyword allows Ether to be sent with message call
Check that auction is ongoing and new bid is highest bid

If new bid is higher, add old highest bid to pendingReturns list
Emit event notifying change in highest bid

11/14



Withdraw Losing Bids

function withdraw() public returns (bool) {

uint amount = pendingReturns[msg.sender];
if (amount > 0) {
pendingReturns [msg.sender] = 0;
if (!msg.sender.send (amount)) {
pendingReturns [msg.sender] = amount;

return false;
}
}

return true;

e Set balance of withdrawer to zero

o |f withdrawal fails, restore amount in pendingReturns and
return false

o If withdrawal succeeds, return t rue

12/14



Ending the Auction

function auctionEnd() public {

require (now >= auctionEndTime, "Auction not yet ended.");

require (!ended, "auctionEnd has already been called.");

ended = true;
emit AuctionEnded (highestBidder, highestBid);

beneficiary.transfer (highestBid) ;

Check that auctionEndTime has passed

Check that auctionEnd has not been called before
Emit event signaling end of auction

Transfer highest bid to beneficiary

13/14



References

e Solidity Documentation https://solidity.readthedocs.io
® Remix IDE https://remix.ethereum.org

14/14


https://solidity.readthedocs.io
https://remix.ethereum.org

	Currency Example
	Open Auction

