
Cryptographic Hash Functions

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

July 17, 2018

1 / 15

mailto:sarva@ee.iitb.ac.in

Cryptographic Hash Functions

• Important building block in cryptography
• Provide data integrity by construction of a short fingerprint or

message digest
• Map arbitrary length inputs to fixed length outputs

• For example, output length can be 256 bits
• Applications

• Password hashing
• Digital signatures on arbitrary length data
• Commitment schemes

2 / 15

Properties

• Let H : X 7→ Y denote a cryptographic hash function
• X and Y are subsets of {0,1}∗

• H(x) can be computed efficiently for all x ∈ X
• If H is considered secure, three problems are difficult to solve

• Preimage
• Given y ∈ Y, find x ∈ X such that H(x) = y

• Second Preimage
• Given x ∈ X , find x ′ ∈ X such that x ′ 6= x and H(x) = H(x ′)

• Collision
• Find x , x ′ ∈ X such that x ′ 6= x and H(x) = H(x ′)

• If |X | ≥ 2|Y|, then we have

Collision resistance =⇒ Second preimage resistance =⇒ Preimage resistance

(Proof in Section 4.2, Stinson, 3rd edition)

3 / 15

SHA-256

• SHA = Secure Hash Algorithm, 256-bit output length
• Accepts bit strings of length upto 264 − 1
• Announced in 2001 by NIST, US Department of Commerce
• Output calculation has two stages

• Preprocessing
• Hash Computation

• Preprocessing
1. The input M is padded to a length which is a multiple of 512
2. A 256-bit state variable H(0) is set to

H(0)
0 = 0x6A09E667, H(0)

1 = 0xBB67AE85,

H(0)
2 = 0x3C6EF372, H(0)

3 = 0xA54FF53A,

H(0)
4 = 0x510E527F, H(0)

5 = 0x9B05688C,

H(0)
6 = 0x1F83D9AB, H(0)

7 = 0x5BE0CD19.

4 / 15

SHA-256 Input Padding
• Let input M be l bits long

• Find smallest non-negative k such that

k + l + 65 = 0 mod 512

• Append k + 1 bits consisting of single 1 and k zeros
• Append 64-bit representation of l

• Example: M = 101010 with l = 6
• k = 441
• 64-bit representation of 6 is 000 · · · 00110
• 512-bit padded message

101010︸ ︷︷ ︸
M

1 00000 · · · 00000︸ ︷︷ ︸
441 zeros

00 · · · 00110︸ ︷︷ ︸
l

.

5 / 15

SHA-256 Hash Computation

1. Padded input is split into N 512-bit blocks M(1),M(2), . . . ,M(N)

2. Given H(i−1), the next H(i) is calculated using a function f

H(i) = f (M(i),H(i−1)), 1 ≤ i ≤ N.

H(i−1) f

M(i)

H(i)· · · · · ·H(1)fH(0)

M(1)

H(N−1) f H(N)

M(N)

3. f is called a compression function
4. H(N) is the output of SHA-256 for input M

6 / 15

SHA-256 Compression Function Building Blocks
• U, V , W are 32-bit words
• U ∧ V ,U ∨ V , U ⊕ V denote bitwise AND, OR, XOR
• U + V denotes integer sum modulo 232

• ¬U denotes bitwise complement
• For 1 ≤ n ≤ 32, the shift right and rotate right operations

SHRn(U) = 000 · · · 000︸ ︷︷ ︸
n zeros

u0u1 · · · u30−nu31−n,

ROTRn(U) = u31−n+1u31−n+2 · · · u30u31u0u1 · · · u30−nu31−n,

• Bitwise choice and majority functions

Ch(U,V ,W) = (U ∧ V)⊕ (¬U ∧W),

Maj(U,V ,W) = (U ∧ V)⊕ (U ∧W)⊕ (V ∧W),

• Let

Σ0(U) = ROTR2(U)⊕ ROTR13(U)⊕ ROTR22(U)

Σ1(U) = ROTR6(U)⊕ ROTR11(U)⊕ ROTR25(U)

σ0(U) = ROTR7(U)⊕ ROTR18(U)⊕ SHR3(U)

σ1(U) = ROTR17(U)⊕ ROTR19(U)⊕ SHR10(U)

7 / 15

SHA-256 Compression Function Calculation
• Maintains internal state of 64 32-bit words {Wj | j = 0, 1, . . . , 63}
• Also uses 64 constant 32-bit words K0,K1, . . . ,K63 derived from the first 64 prime

numbers 2, 3, 5, . . . , 307, 311

• f (M(i),H(i−1)) proceeds as follows

1. Internal state initialization

Wj =

{
M(i)

j 0 ≤ j ≤ 15,
σ1(Wj−2) + Wj−7 + σ0(Wj−15) + Wj−16 16 ≤ j ≤ 63.

2. Initialize eight 32-bit words

(A,B,C,D,E ,F ,G,H) =
(

H(i−1)
0 ,H(i−1)

1 , . . . ,H(i−1)
6 ,H(i−1)

7

)
.

3. For j = 0, 1, . . . , 63, iteratively update A,B, . . . ,H

T1 = H + Σ1(E) + Ch(E ,F ,G) + Kj + Wj

T2 = Σ0(A) + Maj(A,B,C)

(A,B,C,D,E ,F ,G,H) = (T1 + T2,A,B,C,D + T1,E ,F ,G)

4. Calculate H(i) from H(i−1)

(H(i)
0 ,H(i)

1 , . . . ,H(i)
7) =

(
A + H(i−1)

0 ,B + H(i−1)
1 , . . . ,H + H(i−1)

7

)
.

8 / 15

The Merkle-Damgård Transform

pad(M) = M1 M2 M3 M4

fh0 = IV f
h1

f
h2

f
h3

· · ·

Figure source: https://www.iacr.org/authors/tikz/

• The SHA-256 construction is an example of the MD transform
• Typical hash function design

• Construct collision-resistant compression function
• Extend the domain using MDT to get collision-resistant hash

function

9 / 15

https://www.iacr.org/authors/tikz/

Birthday Attacks for Finding Collisions

• Birthday Problem: Given Q people, what is the probability of two
of them having the same birthday?

• Suppose the size of Y is M. For SHA-256, M = 2256.
• If we calculate H for Q inputs, the probability of a collision is

1−
(

1− 1
M

)(
1− 2

M

)
· · ·
(

1− Q − 1
M

)
≈ 1− exp

−Q(Q − 1)
2M

• For success probability ε, the number of “queries” is

Q ≈
√

2M ln
1

1− ε

• For ε = 0.5, Q ≈ 1.17
√

M
• For SHA-256, Q ≈ 2128

10 / 15

Applications

• Virus fingerprinting
• Data deduplication
• Digital signatures on arbitrary length data
• Password hashing
• Commitment schemes

• A kind of digital envelope
• Allows one party to “commit” to a message m by sending a

commitment c to the counterparty
• Set c = H(m‖r) where r is a random n-bit string
• Hiding: c reveals nothing about m
• Binding: Infeasible for c to be opened to a different message m′

11 / 15

Merkle Trees

• Alternative to Merkle-Damgård transform for domain extension
• Suppose a client uploads multiple files to server
• Client wants to ensure file integrity at a later retrieval

h = H(h0 ‖ h1)

h0 = H(h00 ‖ h01)

h00 = H(f0)

f0

h01 = H(f1)

f1

h1 = H(h10 ‖ h11)

h10 = H(f2)

f2

h11 = H(f3)

f3

• For N files, O(log N) communication from server ensures
integrity

• The communication is called a Merkle proof

12 / 15

Hashcash

• Hashcash was proposed in 1997 to prevent spam
• Protocol

• Suppose an email client wants to send email to an email server
• Client and server agree upon a cryptographic hash function H
• Email server sends the client a challenge string c
• Client needs to find a string r such that H(c‖r) begins with k zeros

§ �

Email Client Email Server
1. Request to send email

2. Send challenge c and integer k

3. Search for r 4. Send response r and an email

5. Verify that H(c‖r)
begins with k zeros

• The r is considered proof-of-work (PoW); difficult to generate
but easy to verify

• Demo

13 / 15

Difficulty Increases with k

• Let hash function output length n be 4 bits

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary

Decimal

k = 3

k = 2

k = 1

• Since H has pseudorandom outputs, probability of success in a
single trial is

2n−k

2n =
1
2k

14 / 15

References

• Chapter 5 of Introduction to Modern Cryptography, J. Katz,
Y. Lindell, 2nd edition

• Chapter 4 of Cryptography: Theory and Practice, Douglas
R. Stinson, 3rd edition

• Chapter 8 of A Graduate Course in Applied Cryptography,
D. Boneh, V. Shoup, www.cryptobook.us

• Chapter 3 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

• Hashcash - A Denial of Service Counter-Measure, A. Back,
http://hashcash.org/papers/hashcash.pdf

15 / 15

www.cryptobook.us
www.ee.iitb.ac.in/~sarva/bitcoin.html
http://hashcash.org/papers/hashcash.pdf

