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zkSNARKs

e Arguments
o ZK proofs where soundness guarantee is required only against
PPT provers
e Noninteractive
e Proof consists of a single message from prover to verifier
e Succinct

e Proof size is O(1)
e Requires a trusted setup to generate a common reference string
e CRS size is linear in size of assertion being proved



Bilinear Pairings

Let G and Gr be two cyclic groups of prime order q
In practice, G is an elliptic curve group and Gr is subgroup of Fpn
LetG=(g),i.e. G={g" | a € Zg}
A symmetric pairing is an efficient map e: G x G— Gr
satisfying

1. Bilinearity: Vo, 8 € Zq, we have e(g*, g°) = e(g, g)**

2. Non-degeneracy: e(g, g) is not the identity in Gr

Finding discrete logs is assumed to be difficult in both groups
Pairings enable multiplication of secrets

Decisional Diffie-Hellman Problem: Given x, y, z chosen
uniformly from Z4 and g*, g¥, PPT adversary has to distinguish
between g* and g#

DDH problem is easy in G

Computation DH problem (computing g*¥ from g* and g¥) can be
difficult



Applications of Pairings

o Three-party Diffie Hellman key agreement

e Three parties Alice, Bob, Carol have private-public key pairs
(a7 ga)v (b7 gb)7 (Cv gc:) where G = <g>
Alice sends g? to the other two
Bob sends g° to the other two
Carol sends g° to the other two
Each party can compute common key
K = e(g.9)™ = e(g°,9°)% = e(g”. ¢°)° = e(9%, 9°)°
e BLS Signature Scheme
e Suppose H: {0,1}* — Gis a hash function
e Let (x,g") be a private-public key pair
o BLS signature on message mis o = (H(m))*
o Verifier checks that e(g, o) = e(g*, H(m))



Checking Polynomial Evaluation

Prover knows a polynomial p(x) € Fq4[x] of degree d

Verifier wants to check that prover computes gP(s) for some
randomly chosen s €

Verifier does not care which p(x) is used but cares about the
evaluation point s

Verifier sends gS', i=0,1,2,...,d to prover
If p(x) = 327, pix’, prover can compute g”® as

9 =ney (o)

But prover could have computed gP(!) for some t # s

Verifier also sends g“si, i=0,1,2,...,d for some randomly
chosen a € Fy

Prover can now compute g*P(¢)

Anyone can check that e(g®, gP(®)) = e(g*P®), g)

But why can’t the prover cheat by returning g°(® and g ?



Knowledge of Exponent Assumptions

Knowledge of Exponent Assumption (KEA)
e Let G be a cyclic group of prime order p with generator g and let
(RS Zp
e Given g, g“, suppose a PPT adversary can output ¢, ¢ such that
c=c"
e The only way he can do so is by choosing some 3 € Z, and setting
c=g°and ¢ = (g*)’
g-Power Knowledge of Exponent (g-PKE) Assumption
e Let G be a cyclic group of prime order p with a pairing
e:Gx G+ Gr
e Let G = (g) and «, s be randomly chosen from Z;
e Given g, gs,gsz, . ,gsq,g‘*,gf‘s,gasz, . ,g"‘sq, suppose a PPT
adversary can output ¢, ¢ such that ¢ = ¢
e The only way he can do so is by choosing some ap, a1, ...,aq € Zp
i\ @i N i\ @i
and setting ¢ = N7, (gs) and ¢ =Ny, (ga3>

Under the g-PKE assumption, the polynomial evaluation verifier
is convinced of the polynomial evaluation point

Prover can hide gP(®) by sending g#*P(s), g(5+p(s))



Quadratic Arithmetic Programs

e For afield F, an F-arithmetic circuit has inputs and outputs from [F
o Gates can perform addition and multiplication
Definition

A QAP Q over a field F contains three sets of m + 1 polynomials V = {vi(x)},
W = {wk(x)}, Y = {yk(x)}, for k € {0,1,..., m}, and a target polynomial t(x).

Suppose F : F" s F" where N = n + n’. We say that Q computes F if:

(c1,6,...,cn) € FN is a valid assignment of F’s inputs and outputs, if and only if
there exist coefficients (cy.1, - - ., cm) such that t(x) divides p(x) where

p(x) = <V0(X) +ZCka(X)> : (WO(X) +ZCka(X)> - <}’0(X) +ch}’k(x)> .
=

k=1 k=1
So there must exist polynomial h(x) such that h(x)t(x) = p(x).

o Arithmetic circuits can be mapped to QAPs efficiently

~



Schwartz-Zippel Lemma

Lemma

LetTF be any field. For any nonzero polynomial f € F[x] of degree d
and any finite subset S of IF,

d

Prif(s) =01 < g

when s is chosen uniformly from S.

e Suppose F is a finite field of order ~ 22%

e If sis chosen uniformly from F, then it is unlikely to be a root of
low-degree polynomials

e Equality of polynomials can be checked by evaluating them at
the same random point



Outline of zkSNARKSs

Prover wants to show he knows a valid input-output assignment for function F
A QAP for F is derived

Prover has to show he knows (¢, . .., cm) such that {(x) divides v(x)w(x) — y(x)

For a random s € T, verifier reveals g , g"«(s), gW(s)| g¥(s)  gt(s)
Prover calculates h(x) such that h(x)t(x) = v(x)w(x) — y(x)
Prover calculates g¥(s), gw(s) g¥(s) gh(s)

Verifier checks that ( 5) ))
e(g”®,g"®) h(s) t(s)
e@®.g) (6"9.)

For zero knowledge, prover picks random év, dw, dy in IF and reveals
govt(s)Tv(s) gowl(s)+w(s) gdyH(s)+¥(s) and an appropriate modification of gh'(s)

Proof size is independent of circuit size (a few 100 bytes)
Verification is of the order of milliseconds



ZCash CRS Generation in Brief

Involves n parties who need to generate g°, gsz, e ,gsd

The value of s should not be made public

Each party generates a random exponent s;

First party publishes g*t, gsf, e ,g37

Second party publishes g1, g5125§, . ,gsf'sg

Last party publishes g51%2sn . ,gS?Sg"'Sg

Desired s = s182--- 5y

Only one party is required to destroy its secret s; to keep s secret
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