1. (3 points) Let G be a cyclic group of prime order q and generator g, i.e. $G=\langle g\rangle$. Let $h \in G$ be another generator of G such that the discrete logarithm of h with respect to g is not known. In multiplicative notation, a Pedersen commitment to a value $\beta \in \mathbb{Z}_{q}$ with randomizer $\alpha \in \mathbb{Z}_{q}$ is given by $u=g^{\alpha} h^{\beta}$. The pair $(\alpha, \beta) \in \mathbb{Z}_{q}^{2}$ is called the representation of the group element u with respect to generators g and h. Suppose a prover wants to convince a verifier that it knows the representation of $u \in G$. Prove that the following protocol is honest-verifier zero-knowledge and a proof of knowledge for the relation

$$
\mathcal{R}=\left\{(u,(\alpha, \beta)) \in G \times \mathbb{Z}_{q}^{2} \mid u=g^{\alpha} h^{\beta}\right\}
$$

(i) Prover picks $\alpha_{t} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}, \beta_{t} \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$ and sets $u_{t}=g^{\alpha_{t}} h^{\beta_{t}}$.
(ii) Prover sends u_{t} to the verifier.
(iii) Verifier picks $c \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}$ and sends c to the prover.
(iv) Prover computes $\alpha_{z}=\alpha_{t}+\alpha c, \beta_{z}=\beta_{t}+\beta c$ and sends α_{z}, β_{z} to the verifier.
(v) Verifier checks that $g^{\alpha_{z}} h^{\beta_{z}}=u_{t} u^{c}$.
2. (3 points) In the zero-knowledge proof of graph 3-coloring given below, the prover uses a commitment scheme com which is perfectly binding and computationally hiding, like the El Gamal commitment scheme. What can go wrong if the prover uses a computationally binding and perfectly hiding commitment scheme, like the Pedersen commitment scheme?

- Common input: A simple 3-colorable graph $G=(V, E)$ where $|V|=n$ and $V=\{1,2, \ldots, n\}$
- Prover has a 3-coloring of G given by $\psi: V \rightarrow\{1,2,3\}$ such that $\psi(u) \neq \psi(v)$ for all $(u, v) \in E$
- Interactive proof

1. Prover selects a random permutation $\pi:\{1,2,3\} \rightarrow\{1,2,3\}$ and sets $\phi(v)=\pi(\psi(v))$
2. Prover computes commitments $c_{v}=\operatorname{com}(\phi(v))$ for all $v \in V$ and sends $c_{1}, c_{2}, \ldots, c_{n}$ to verifier
3. Verifier selects an edge $(u, v) \in E$ and sends it to prover
4. Prover opens the commitments of the colors $\phi(u)$ and $\phi(v)$
5. Verifier checks commitment openings and if $\phi(u) \neq \phi(v)$
6. (4 points) Let G be a cyclic group of prime order p with a non-degenerate bilinear pairing $e: G \times G \mapsto$ G_{T} and $G=\langle g\rangle$. Suppose the q-power knowledge of exponent assumption holds in G.

- Bob chooses s randomly from \mathbb{F}_{p}^{*} and sends $g, g^{s}, g^{s^{2}}, \ldots, g^{s^{q}}$ to Alice.
- For a polynomial $f(x)=\sum_{i=0}^{d} f_{i} x^{i}$ with $f_{i} \in \mathbb{F}_{p}$ known only to Alice, she computes

$$
u=g^{f(s)}=\prod_{i=0}^{d}\left(g^{s^{i}}\right)^{f_{i}}
$$

and sends u to Bob. Assume $d \leq q$.

- Alice wants to convince Bob that u is of the form $g^{f(s)}$ where $f(x)$ is a polynomial which has remainder $r(x)$ when divided by a polynomial $t(x)$. The polynomials $r(x)$ and $t(x)$ are public while Alice wants to keep $f(x)$ secret.

Describe a procedure using pairings that Alice can use to convince Bob. Specify what further information does Alice need from Bob to execute the procedure.

