1. (3 points) Let G be a cyclic group of prime order q and generator g, i.e. $G = \langle g \rangle$. Let $h \in G$ be another generator of G such that the discrete logarithm of h with respect to g is not known. In multiplicative notation, a Pedersen commitment to a value $\beta \in \mathbb{Z}_q$ with randomizer $\alpha \in \mathbb{Z}_q$ is given by $u = g^{\alpha}h^{\beta}$. The pair $(\alpha, \beta) \in \mathbb{Z}_q^2$ is called the *representation* of the group element u with respect to generators g and h. Suppose a prover wants to convince a verifier that it knows the representation of $u \in G$. Prove that the following protocol is **honest-verifier zero-knowledge** and a **proof of knowledge** for the relation

$$\mathcal{R} = \left\{ (u, (\alpha, \beta)) \in G \times \mathbb{Z}_q^2 \mid u = g^{\alpha} h^{\beta} \right\}.$$

- (i) Prover picks $\alpha_t \stackrel{\$}{\leftarrow} \mathbb{Z}_q, \beta_t \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and sets $u_t = g^{\alpha_t} h^{\beta_t}$.
- (ii) Prover sends u_t to the verifier.
- (iii) Verifier picks $c \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and sends c to the prover.
- (iv) Prover computes $\alpha_z = \alpha_t + \alpha c$, $\beta_z = \beta_t + \beta c$ and sends α_z, β_z to the verifier.
- (v) Verifier checks that $g^{\alpha_z} h^{\beta_z} = u_t u^c$.
- 2. (3 points) In the zero-knowledge proof of graph 3-coloring given below, the prover uses a commitment scheme com which is perfectly binding and computationally hiding, like the El Gamal commitment scheme. What can go wrong if the prover uses a computationally binding and perfectly hiding commitment scheme, like the Pedersen commitment scheme?
 - Common input: A simple 3-colorable graph G = (V, E) where |V| = n and $V = \{1, 2, ..., n\}$
 - Prover has a 3-coloring of G given by $\psi: V \to \{1, 2, 3\}$ such that $\psi(u) \neq \psi(v)$ for all $(u, v) \in E$
 - Interactive proof
 - 1. Prover selects a random permutation $\pi : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ and sets $\phi(v) = \pi(\psi(v))$
 - 2. Prover computes commitments $c_v = \operatorname{com}(\phi(v))$ for all $v \in V$ and sends c_1, c_2, \ldots, c_n to verifier
 - 3. Verifier selects an edge $(u, v) \in E$ and sends it to prover
 - 4. Prover opens the commitments of the colors $\phi(u)$ and $\phi(v)$
 - 5. Verifier checks commitment openings and if $\phi(u) \neq \phi(v)$
- 3. (4 points) Let G be a cyclic group of prime order p with a non-degenerate bilinear pairing $e: G \times G \mapsto G_T$ and $G = \langle g \rangle$. Suppose the q-power knowledge of exponent assumption holds in G.
 - Bob chooses s randomly from \mathbb{F}_p^* and sends $g, g^s, g^{s^2}, \ldots, g^{s^q}$ to Alice.
 - For a polynomial $f(x) = \sum_{i=0}^{d} f_i x^i$ with $f_i \in \mathbb{F}_p$ known only to Alice, she computes

$$u = g^{f(s)} = \prod_{i=0}^d \left(g^{s^i}\right)^{f_i}$$

and sends u to Bob. Assume $d \leq q$.

• Alice wants to convince Bob that u is of the form $g^{f(s)}$ where f(x) is a polynomial which has remainder r(x) when divided by a polynomial t(x). The polynomials r(x) and t(x) are public while Alice wants to keep f(x) secret.

Describe a procedure using pairings that Alice can use to convince Bob. Specify what further information does Alice need from Bob to execute the procedure.