Bitcoin Smart Contracts

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 26, 2019

Smart Contracts

- Computer protocols which help execution/enforcement of regular contracts
- Minimize trust between interacting parties
- Hypothetical example: Automatic fine for noise pollution
 - IITB hillside community hall parties use loudspeakers
 - · Party organizers pay bitcoin security deposit
 - If noise rules violated, deposit distributed to nearby residents
- Two actual examples
 - Escrow
 - Micropayments

Escrow Contract

Problem Setup

- Alice wants to buy a rare book from Bob
- Alice and Bob live in different cities
- · Bob promises to ship the book upon receiving Bitcoin payment
- Alice does not trust Bob
- Alice proposes an escrow contract involving a third party Carol

Escrow Contract

- Alice requests public keys from Bob and Carol
- Alice pays x bitcoins to a 2-of-3 multisig output

OP_2 <PubKeyA> <PubKeyB> <PubKeyC> OP_3 OP_CHECKMULTISIG

- · Bob ships book once Alice's transaction is confirmed
- Bitcoins can be spent if any two of the three provide signatures
- Any of the following scenarios can occur
 - Alice receives book. Alice and Bob sign.
 - Alice receives the book but refuses to sign. Bob provides proof of shipment to Carol. Bob and Carol sign.
 - Bob does not ship the book to Alice.
 Bob refuses to sign refund transaction.
 Alice and Carol sign.
- Escrow contract fails if Carol colludes with Alice or Bob
- Also proof of shipment is not proof of contents

Lock Times

Transaction Lock Time

Regular Transaction Format

nVersion
Number of Inputs N
Input 0
÷
Input N – 1
Number of Outputs M
Output 0
:
Output <i>M</i> – 1
nLockTime

 nLockTime is a 4-byte field which specifies the earliest time the transaction can be included in a block

$\texttt{nLockTime} \ Values$

- If $\texttt{nLockTime} < 5 \times 10^8,$ then it is interpreted as a block height
 - Transaction with nLockTime = 600,000 will not be included in any block with height < 600,000
- If $\texttt{nLockTime} \geq 5 \times 10^8,$ then it is interpreted as a Unix time
 - Unix time = Number of seconds since Jan 1, 1970 12:00AM UTC
 - Unix time of 1,514,797,200 = 9:00 AM on January 1, 2018
 - Transaction with Unix time lock time will not be included unless the median-time-past of the latest block exceeds the nLockTime value
 - The median-time-past of a block at height h is the median of the nTime values in the 11 blocks at heights h, h 1, ..., h 10.
 - The nTime field of a candidate block at height *N* must exceed the median-time-past of the block at *N* 1.
- What if we need block height $\geq 5 \times 10^8$ or Unix time < 5×10^8 ?
 - It would take 9,500 years to reach block height 5×10^8
 - Unix time of 5×10^8 is 12:53AM on Nov 5, 1985

Relative Lock Times

Input Format

hash
n
scriptSigLen
scriptSig
nSequence

- The 4-byte nSequence field is used to specify a relative lock time of an input
- Can have units which of either blocks or seconds
- Suppose the relative lock time of an input is k blocks
- If the output which is being unlocked by this input is in block K, then a transaction containing this input cannot be included in a block whose height is less than K + k
- · A similar condition holds for relative lock time in seconds

Relative Lock Time from nSequence Value

- Maximum relative lock time in blocks is $2^{16} 1 = 65,535$ blocks ≈ 1.25 years
- Maximum relative lock time in seconds is $(2^{16}-1)\times 512=33,553,920$ seconds ≈ 1.06 years

Micropayments

Problem Setup

- · Bitcoin transaction fees make small payments expensive
- Micropayments contract can aggregate small payments
- Alice offers proofreading and editing services online
- She accepts bitcoins as payments
- Clients email documents to Alice
- · Alice replies with typos and grammatical errors
- · Alice charges a fixed amount of bitcoins per edited page
- To avoid clients refusing payment, Alice uses micropayments contract
- Suppose Bob wants a 100 page document edited
- Alice charges 0.0001 BTC per page
- Bob expects to pay a maximum of 0.01 BTC to Alice

Micropayments Contract (1/3)

Creating Refund Transaction

- Bob requests a public key from Alice
- Bob creates a transaction t₁ which transfers 0.01 bitcoins to a 2-of-2 multisig output
- Bob does not broadcast t₁ on the network
- Bob creates a refund transaction t₂ which refunds the 0.01 BTC
- A relative lock time of *n* days is set on *t*₂
- Bob includes his signature in t₂ and sends it to Alice
- If Alice refuses to sign, Bob terminates the contract
- If Alice signs t₂ and gives it Bob, he has the refund transaction

Micropayments Contract (2/3)

Getting Paid for First Page Edits

- Bob broadcasts t₁ on the network
- Once t₁ is confirmed, he sends Alice his document
- Alice edits only the first page of the document
- She creates a transaction e₁ which unlocks t₁ and pays her 0.0001 BTC and 0.0099 BTC to Bob
- Alice signs e₁ and sends it to Bob along with the first page edits
 - If Bob refuses to sign e1, then
 - · Alice terminates the contract.
 - Bob broadcasts t₂ after lock time expires
 - If Bob signs e₁ and returns it to Alice, then Alice is guaranteed 0.0001 bitcoins if she broadcasts e₁ before lock time on t₂ expires.

Micropayments Contract (3/3)

Getting Paid for Second Page, Third Page ...

- Alice edits the second page of the document
- She creates a transaction e₂ which unlocks t₁ and pays her 0.0002 BTC and 0.0098 BTC to Bob
- Alice signs *e*₂ and sends it to Bob along with the second page edits
 - If Bob refuses to sign e₂, then Alice terminates the contract. Alice broadcasts e₁ and receives 0.0001 BTC.
 - If Bob signs e₂ and returns it to Alice, then Alice is guaranteed 0.0002 bitcoins if she broadcasts e₂ before lock time on t₂ expires.
- Alice continues sending edited pages along with transactions requesting cumulative payments
- She has to finish before the refund transaction lock time expires

Key Takeaways

- Smart contracts reduce the need for trust
- Bitcoin's scripting language enables some smart contracts
- Not powerful enough to express complex contracts

References

• Chapters 5, 6 of *An Introduction to Bitcoin*, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html