
Elliptic Curve Cryptography in Bitcoin

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

August 8, 2019

1 / 31

mailto:sarva@ee.iitb.ac.in

Group Theory Recap

Groups

Definition
A set G with a binary operation ? defined on it is called a group if
• the operation ? is associative,
• there exists an identity element e ∈ G such that for any a ∈ G

a ? e = e ? a = a,

• for every a ∈ G, there exists an element b ∈ G such that

a ? b = b ? a = e.

Example

• Modulo n addition on Zn = {0,1,2, . . . ,n − 1}

3 / 31

Cyclic Groups

Definition
A finite group is a group with a finite number of elements. The order
of a finite group G is its cardinality.

Definition
A cyclic group is a finite group G such that each element in G
appears in the sequence

{g,g ? g,g ? g ? g, . . .}

for some particular element g ∈ G, which is called a generator of G.

Examples
• For an integer n ≥ 1, Zn = {0,1,2, . . . ,n − 1}

• Operation is addition modulo n
• Zn is cyclic with generator 1

• For an integer n ≥ 2, Z∗n = {i ∈ Zn \ {0} | gcd(i ,n) = 1}
• Operation is multiplication modulo n
• Z∗

n is cyclic if n is a prime

4 / 31

Subgroups

• Definition: If G is a group, a nonempty subset H ⊆ G is a
subgroup of G if H itself forms a group under the same operation
associated with G.

• Example: Consider the subgroups of Z6 = {0,1,2,3,4,5}.
• Lagrange’s Theorem: If H is a subgroup of a finite group G,

then |H| divides |G|.
• Example: Check the cardinalities of the subgroups of Z6.
• Corollary: If a group has prime order, then every non-identity

element is a generator.

5 / 31

Elliptic Curves Over Real Numbers

Elliptic Curves over Reals
The set E of real solutions (x , y) of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 6= 0.

−2 2

−4

−2

2

4

y2 = x3 − x + 2

−2 2

−4

−2

2

4

y2 = x3 − 2x

7 / 31

Point Addition (1/3)

P

Q
R′

R

P = (x1, y1),Q = (x2, y2)

x1 6= x2

P + Q = R

R = (x3, y3)

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

8 / 31

Point Addition (2/3)

P

Q

O
P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = −y2

P + Q = O

9 / 31

Point Addition (3/3)

P

R′

R

P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = y2 6= 0
P + Q = R

R = (x3, y3)

x3 =

(
3x2

1 + a
2y1

)2

− 2x1

y3 =

(
3x2

1 + a
2y1

)
(x1 − x3)− y1

10 / 31

Elliptic Curves Over Finite Fields

Fields

Definition
A set F together with two binary operations + and ∗ is a field if
• F is an abelian group under + whose identity is called 0
• F ∗ = F \ {0} is an abelian group under ∗ whose identity is called

1
• For any a,b, c ∈ F

a ∗ (b + c) = a ∗ b + a ∗ c

Definition
A finite field is a field with a finite cardinality.

12 / 31

Prime Fields

• Fp = {0,1,2, . . . ,p − 1} where p is prime
• + and ∗ defined on Fp as

x + y = x + y mod p,
x ∗ y = xy mod p.

• F5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

∗ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

• In fields, division is multiplication by multiplicative inverse

x
y
= x ∗ y−1

13 / 31

Characteristic of a Field

Definition
Let F be a field with multiplicative identity 1. The characteristic of F is
the smallest integer p such that

1 + 1 + · · ·+ 1 + 1︸ ︷︷ ︸
p times

= 0

Examples

• F2 has characteristic 2
• F5 has characteristic 5
• R has characteristic 0

Theorem
The characteristic of a finite field is prime

14 / 31

Elliptic Curves over Finite Fields
For char(F) 6= 2,3, the set E of solutions (x , y) in F 2 of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 6= 0.

0 2 4 6 8 10

0

2

4

6

8

10

x

y

y2 = x3 + 10x + 2 over F11

0 2 4 6 8 10

0

2

4

6

8

10

x

y

y2 = x3 + 9x over F11

15 / 31

Point Addition for Finite Field Curves

• Point addition formulas derived for reals are used
• Example: y2 = x3 + 10x + 2 over F11

+ O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)
O O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)

(3,2) (3,2) (6,6) O (6,5) (8,0) (3,9) (5,10) (5,1)
(3,9) (3,9) O (6,5) (8,0) (6,6) (5,1) (3,2) (5,10)
(5,1) (5,1) (6,5) (8,0) (6,6) O (5,10) (3,9) (3,2)
(5,10) (5,10) (8,0) (6,6) O (6,5) (3,2) (5,1) (3,9)
(6,5) (6,5) (3,9) (5,1) (5,10) (3,2) (8,0) O (6,6)
(6,6) (6,6) (5,10) (3,2) (3,9) (5,1) O (8,0) (6,5)
(8,0) (8,0) (5,1) (5,10) (3,2) (3,9) (6,6) (6,5) O

• The set E ∪ O is closed under addition
• In fact, its a group

16 / 31

Bitcoin’s Elliptic Curve: secp256k1
• y2 = x3 + 7 over Fp where

p = FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

• E ∪ O has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

• Private key is k ∈ {1,2, . . . ,n − 1}
• Public key is kP where P = (x , y)

x =79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798,

y =483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A6855419 9C47D08F FB10D4B8.

17 / 31

Point Multiplication using Double-and-Add

• Point multiplication: kP calculation from k and P
• Let k = k0 + 2k1 + 22k2 + · · ·+ 2mkm where ki ∈ {0,1}
• Double-and-Add algorithm

• Set N = P and Q = O
• for i = 0, 1, . . . ,m

• if ki = 1, set Q ← Q + N
• Set N ← 2N

• Return Q

18 / 31

Why ECC?
• For elliptic curves E(Fq), best DL algorithms are exponential in

n = dlog2 qe
CEC(n) = 2n/2

• In F∗p, best DL algorithms are sub-exponential in N = dlog2 pe
• Lp(v , c) = exp

(
c(log p)v (log log p)(1−v)

)
with 0 < v < 1

• Using GNFS method, DLs can be found in Lp(1/3, c0) in F∗p

CCONV (N) = exp
(

c0N1/3 (log (N log 2))2/3
)

• Best algorithms for factorization have same asymptotic
complexity

• For similar security levels

n = βN1/3 (log (N log 2))2/3

• Key size in ECC grows slightly faster than cube root of
conventional key size
• 173 bits instead of 1024 bits, 373 bits instead of 4096 bits

19 / 31

Elliptic Curve Digital Signature Algorithm

Digital Signatures

• Digital signatures prove that the signer knows private key

(Message, Signature)Signer

Message

Signer’s
Private Key

Verifier
Decision on

Signature Validity

Signer’s
Public Key

21 / 31

Schnorr Identification Scheme

• Let G be a cyclic group of order q with generator g
• Identity corresponds to knowledge of private key x where h = gx

• A prover wants to prove that she knows x to a verifier without
revealing it

1. Prover picks k ← Zq and sends initial message I = gk

2. Verifier sends a challenge r ← Zq

3. Prover sends s = rx + k mod q
4. Verifier checks gs · h−r ?

= I
• Passive eavesdropping does not reveal x for uniform r

• (I, r) is uniform on G × Zq and s = logg(I · h
r)

• Transcripts with same distribution can be simulated without
knowing x

• Choose r , s uniformly from Zq and set I = gs · h−r

• We can prove that a prover which generates correct proofs must
know x by constructing an extractor for x
• Section 19.1 of Boneh-Shoup

22 / 31

Schnorr Signature Algorithm

• Based on the Schnorr identification scheme
• Let G be a cyclic group of order q with generator g
• Let H : {0,1}∗ 7→ Zq be a cryptographic hash function
• Signer knows x ∈ Zq such that public key h = gx

• Signer:
1. On input m ∈ {0, 1}∗, chooses k ← Zq

2. Sets I := gk

3. Computes r := H(I,m)
4. Computes s = rx + k mod q
5. Outputs (r , s) as signature for m

• Verifier
1. On input m and (r , s)
2. Compute I := gs · h−r

3. Signature valid if H(I,m)
?
= r

• Example of Fiat-Shamir transform
• Patented by Claus Schnorr in 1988

23 / 31

Digital Signature Algorithm
• Part of the Digital Signature Standard issued by NIST in 1994
• Based on the following identification protocol

1. Suppose prover knows x ∈ Zq such that public key h = gx

2. Prover chooses k ← Z∗
q and sends I := gk

3. Verifier chooses uniform α, r ∈ Zq and sends them
4. Prover sends s :=

[
k−1 · (α+ xr) mod q

]
as response

5. Verifier accepts if s 6= 0 and

gαs−1
· hrs−1 ?

= I

• Digital Signature Algorithm
1. Let H : {0, 1}∗ 7→ Zq be a cryptographic hash function
2. Let F : G 7→ Zq be a function, not necessarily CHF
3. Signer:

3.1 On input m ∈ {0, 1}∗, chooses k ← Z∗
q and sets r := F (gk)

3.2 Computes s :=
[
k−1 · (H(m) + xr)

]
mod q

3.3 If r = 0 or s = 0, choose k again
3.4 Outputs (r , s) as signature for m

4. Verifier
4.1 On input m and (r , s) with r 6= 0, s 6= 0 checks

F
(

gH(m)s−1
hrs−1) ?

= r

24 / 31

ECDSA in Bitcoin
• Signer: Has private key k and message m

1. Compute e = SHA-256(SHA-256(m))
2. Choose a random integer j from F∗

n

3. Compute jP = (x , y)
4. Calculate r = x mod n. If r = 0, go to step 2.
5. Calculate s = j−1(e + kr) mod n. If s = 0, go to step 2.
6. Output (r , s) as signature for m

• Verifier: Has public key kP, message m, and signature (r , s)
1. Calculate e = SHA-256(SHA-256(m))
2. Calculate j1 = es−1 mod n and j2 = rs−1 mod n
3. Calculate the point Q = j1P + j2(kP)
4. If Q = O, then the signature is invalid.
5. If Q 6= O, then let Q = (x , y) ∈ F2

p. Calculate t = x mod n. If t = r ,
the signature is valid.

• As n is a 256-bit integer, signatures are 512 bits long
• As j is randomly chosen, ECDSA output is random for same m

25 / 31

Transaction Malleability

Transaction ID

nVersion
Number of Inputs N
hash
n
scriptSigLen
scriptSig
nSequence

...
hash
n
scriptSigLen
scriptSig
nSequence
Number of Outputs M
nValue
scriptPubkeyLen
scriptPubkey

...
nValue
scriptPubkeyLen
scriptPubkey
nLockTime

Regular Transaction

Input 0

Input N − 1

Output 0

Output M − 1

Double
SHA-256

Hash
Tx ID

27 / 31

Refund Protocol

• Alice wants to teach Bob about transactions
• Bob does not own any bitcoins
• Alice decides to transfer some bitcoins to Bob
• Alice does not trust Bob
• She wants to ensure refund

28 / 31

Refund Protocol

Input unlocking
x bitcoins from
Alice’s UTXO

Output locked by
2-of-2 multisig

challenge script

Transaction t1
with TXID i1

Input with hash = i1 and
n = 0 unlocking the

2-of-2 multisig output in t1

Output returning
funds to Alice

Transaction t2

Input 0

Output 0

Input 0

Output 0

Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig 5. Broadcast t1

t1 confirmation

6. Broadcast t2

t2 confirmation

29 / 31

Exploiting Transaction Malleability
Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig

5. Broadcast t1

5. Broadcast t1

6. Broadcast t ′1

t′1 confirmation

• If (r , s) is a valid ECDSA signature, so is (r ,n − s)
• The t ′1 transaction cannot be spent by t2
• SegWit = Segregated Witness

• Activated in August 2017
• Solves problems arising from transaction malleability

30 / 31

References

• Sections 10.3, 11.4, 12.5 of Introduction to Modern
Cryptography, J. Katz, Y. Lindell, 2nd edition

• Section 19.1 of A Graduate Course in Applied Cryptography,
D. Boneh, V. Shoup, www.cryptobook.us

• Chapters 2, 5 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

31 / 31

www.cryptobook.us
www.ee.iitb.ac.in/~sarva/bitcoin.html

	Group Theory Recap
	Elliptic Curves Over Real Numbers
	Elliptic Curves Over Finite Fields
	Elliptic Curve Digital Signature Algorithm
	Transaction Malleability

