Bitcoin

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 30, 2019

What is Bitcoin?

- Cryptocurrency
- Open source
- Decentralized network

Cryptocurrency Transaction Workflow

Decentralization Challenges

- Counterfeiting
- Currency creation rules
- Double spending
- Alice pays Bob n digicoins for a cake
- Alice uses the same n digicoins to pay Charlie for a book

Solution without a central coordinator?

Double Spending

- Familiar to academics
- Submitting same paper to two conferences
- Possible solution Reviewers google paper contents to find duplicates
- Solution fails if
- Conferences accepting papers at same time
- Conference proceedings not published/indexed
- Better solution

A single public database to store all submissions to all conferences

The Blockchain

Blockchain: A public database to store all transactions which is replicated by many network nodes

How are the blocks linked?

Bitcoin Block and Header Formats

Block Header	Version Number
	Hash of Previous
Number of	Block Header
Transactions n	Hash of
Coinbase	Transactions
Transaction	Timestamp
Regular	Threshold
Transaction 1	Nonce
Regular Transaction 2	
引	Block Header Fields
Regular Transaction $n-1$	

- Hash = Output of cryptographic hash function

Block Header

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

4 bytes
32 bytes
32 bytes
4 bytes
4 bytes
4 bytes

Previous Block Header

nVersion	
hashPrevBlock	
hashMerkleRoot	
nTime	
nBits	
nNonce	nVersion Double SHA-256
	hashPrevBlock hashMerkleRoot nTime nBits nNonce

Cryptographic Hash Functions

- Easy to compute but difficult to invert
- Collision-resistant
- Pseudorandom outputs
- SHA-256 = NIST approved CHF with 256-bit outputs

Input	SHA-256 Output
july0	171c9f5053d5d675d1d1ed477c908e98498e6751ae392a78807c3cd6ad6975fa
july1	7d8033d140d8b8db8324753a25c5e32ee4faa9c4e306bddb317907be51cd8a24
july2	bda0b2ab2c7d654589b32f46a548cba27b7371f27b070ddd7d3b87122a078f06
july3	dfa3569a46b1a13c24c9f385da140f4763a3fbb70f8eebe0f29ba535145d32ca
july4	27d39d26edc54c11cc78d17bf0dd294413300dd004127fa6dcff368ea74bb87c
july5	a0ebd3e23823fc291b090abd2eb1403912be6b72398f3bf4e92c4ec555902d53
july6	dc7d6bcc266af402e53b9fb978b6579940bb97743f6e975a988cb20d903e0c5f
july7	984906fbbaa7dbad2ee01a81df7a237bfdb63aeb06b4cf97a89fc004542c1dab
july8	7be4d491b73a4797304980070d5b5fb5c7fd6921e70efc7ce38023c50664803d
july9	e8c4af8895bcddb9cea3e3e1e8a08e090690bb55fd6617da5aa0873f27e218ee

- Hex digits: $0=0000,1=0001,2=0010, \ldots, a=1010, b=$ $1011, c=1100, \ldots, e=1110, f=1111$
- At a billion outputs per second, 78 billion years required to calculate 2^{100} outputs

Hashcash

- A database you own where anyone in the world can add entries? Your email inbox
- Hashcash was proposed in 1997 to prevent spam
- Protocol
- Suppose an email client wants to send email to an email server
- Client and server agree upon a cryptographic hash function H
- Email server sends the client a challenge string c
- Client needs to find a string r such that $H(c \| r)$ begins with k zeros

3. Search for r

4. Verify that $H(c \| r)$ begins with k zeros

- The r is considered proof-of-work (PoW); difficult to generate but easy to verify
- Demo

Difficulty Increases with k

- Let hash function output length n be 4 bits

- Since H has pseudorandom outputs, probability of success in a single trial is

$$
\frac{2^{n-k}}{2^{n}}=\frac{1}{2^{k}}
$$

Bitcoin Mining

- Mining = Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

- Threshold encodes a 256 -bit value like $0 \times \underbrace{00 \ldots 00}_{16 \text { times }} \underbrace{\text { FFFFF ...FFFFF }}_{48 \text { times }}$
- Miner who can find Nonce such that

SHA256(SHA256($\underbrace{\text { Version Number }\|\cdots\| \text { Nonce }}_{\text {Candidate Block Header }})) \leq$ Threshold.
can add a new block

Mining is Hard

Target value T	Fraction of SHA256d outputs $\leq T$
$0 \times \underbrace{\text { FFFF FFFF } \ldots \text { FFFF }}_{63 \text { times }}$	$\frac{1}{2}$
$0 \times 0 \underbrace{F F F F}_{63 \text { times }}$ FFFF \cdots FFFF	$\frac{1}{16}$
$0 \times \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF } \ldots \text { FFFFF }}_{48 \text { times }}$	$\frac{1}{2^{64}}$

$$
\operatorname{Pr}[\text { SHA } 256 d \text { output } \leq T] \approx \frac{T+1}{2^{256}}
$$

Why should anyone mine blocks?

- Successful miner gets rewarded in bitcoins
- Every block contains a coinbase transaction which creates 12.5 bitcoins
- Each miner specifies his own address as the destination of the new coins
- Every miner is competing to solve their own PoW puzzle
- Miners also collect the transaction fees in the block

Mining Farms

- Mining farms have thousands of mining rigs
- Each mining rig has dozens of mining chips
- Each chip has dozens of SHA256 mining cores
- Farms are located in places with cheap power and cooling

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

- Miners compete to solve the search puzzle and broadcast solutions
- Unsuccessful miners abandon their current candidate blocks and start work on new ones

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce
- Eventually the network will converge and achieve consensus
- This is called proof-of-work (PoW) consensus

How often are new blocks created?

- Once every 10 minutes

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- Every 2016 blocks, the target T is recalculated
- Let $t_{\text {sum }}=$ Number of seconds taken to mine last 2016 blocks

$$
T_{\text {new }}=\frac{t_{\text {sum }}}{2016 \times 10 \times 60} \times T
$$

- Recall that probability of success in single trial is $\frac{T+1}{2^{256}}$
- If $t_{\text {sum }}=2016 \times 8 \times 60$, then $T_{\text {new }}=\frac{4}{5} T$
- If $t_{\text {sum }}=2016 \times 12 \times 60$, then $T_{\text {new }}=\frac{6}{5} T$

Bitcoin Blockchain Explorers

- Web interfaces to view current blockchain state
- https://www.blockstream.info
- https://www.blockchain.com/explorer
- Demo checklist
- List of transactions (coinbase, regular)
- Address generation in https://www.bitaddress.org
- Brainwallet generation at https://brainwalletx.github.io

Bitcoin Supply

- The block subsidy was initially 50 BTC per block
- Halves every 210,000 blocks ≈ 4 years
- Became 25 BTC in Nov 2012 and 12.5 BTC in July 2016
- Total Bitcoin supply is 21 million

- The last bitcoin will be mined in 2140

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current Bitcoin network hashrate $\approx 78 \mathrm{EH} / \mathrm{s}=78 \times 10^{18} \mathrm{H} / \mathrm{s}$
- One mining unit costing $\$ 350$ gives 16 TH/s
- Controlling 50% of hashrate $=$ Controlling 853 million USD worth of hardware

Bitcoin Hashrate

Key Takeaways

- Bitcoin's blockchain prevents double spending and tampering
- Secure only if nobody controls 50% or more of network hashrate
- Mining difficulty adjusted to regulate coin supply
- Miners incentivized by block reward
- Block subsidy halves every four years to cap total coin supply

Blockstream Satellite

Image credit: https://blockstream.com/satellite/

- Blockstream Satellite network broadcasts the Bitcoin blockchain for free
- No Internet required to receive blocks (verify payments in Bitcoin)

How Blockstream Satellite Works?

Image credit: https://blockstream.com/satellite/

- Ground stations (teleports) participate in the Bitcoin network and transmit blocks to geosynchronous satellites
- Satellites receive the blocks and broadcast them across the Earth
- Anyone in the coverage area with a small satellite antenna and an inexpensive USB receiver can receive these blocks
- Anyone can verify large payments in remote areas

Bitcoin Testnet Transactions

- Each cryptocurrency has a mainnet and one or more testnets
- Bitcoin Testnet
https://live.blockcypher.com/btc-testnet/
- Testnet Address Generator https:
//bitcoinpaperwallet.com/bitcoinpaperwallet/ generate-wallet.html?design=alt-testnet
- Testnet faucet 1
https://coinfaucet.eu/en/btc-testnet/
- Testnet faucet 2 https://bitcoinfaucet.uo1.net
- Mycelium Testnet Wallet Mobile App

References

- Chapter 4 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html
- Bitcoin Charts https://www.blockchain.com/charts
- Bitmain Mining Rigs https://shop.bitmain.com
- Blockstream Satellite
https://blockstream.com/satellite/

