Bitcoin

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 30, 2019

What is Bitcoin?

- Cryptocurrency
- Open source
- Decentralized network

Cryptocurrency Transaction Workflow

Cryptocurrency Network

Decentralization Challenges

- Counterfeiting
- Currency creation rules
- Double spending
 - Alice pays Bob n digicoins for a cake
 - Alice uses the same n digicoins to pay Charlie for a book

Solution without a central coordinator?

Double Spending

- Familiar to academics
- Submitting same paper to two conferences
- **Possible solution** Reviewers google paper contents to find duplicates
- Solution fails if
 - · Conferences accepting papers at same time
 - Conference proceedings not published/indexed

Better solution

A single public database to store all submissions to all conferences

The Blockchain

Blockchain: A public database to store all transactions which is replicated by many network nodes

How are the blocks linked?

Bitcoin Block and Header Formats

• Hash = Output of cryptographic hash function

Block Header

nVersion	
hashPrevBlock	
hashMerkleRoot	
nTime	
nBits	
nNonce	

4 bytes 32 bytes 32 bytes 4 bytes 4 bytes 4 bytes

Cryptographic Hash Functions

- · Easy to compute but difficult to invert
- Collision-resistant
- Pseudorandom outputs
- SHA-256 = NIST approved CHF with 256-bit outputs

Input	SHA-256 Output
july0	171c9f5053d5d675d1d1ed477c908e98498e6751ae392a78807c3cd6ad6975fa
july1	7d8033d140d8b8db8324753a25c5e32ee4faa9c4e306bddb317907be51cd8a24
july2	bda0b2ab2c7d654589b32f46a548cba27b7371f27b070ddd7d3b87122a078f06
july3	dfa3569a46b1a13c24c9f385da140f4763a3fbb70f8eebe0f29ba535145d32ca
july4	27d39d26edc54c11cc78d17bf0dd294413300dd004127fa6dcff368ea74bb87c
july5	a0ebd3e23823fc291b090abd2eb1403912be6b72398f3bf4e92c4ec555902d53
july6	dc7d6bcc266af402e53b9fb978b6579940bb97743f6e975a988cb20d903e0c5f
july7	984906fbbaa7dbad2ee01a81df7a237bfdb63aeb06b4cf97a89fc004542c1dab
july8	7be4d491b73a4797304980070d5b5fb5c7fd6921e70efc7ce38023c50664803d
july9	e8c4af8895bcddb9cea3e3e1e8a08e090690bb55fd6617da5aa0873f27e218ee

• Hex digits: 0 = 0000, 1 = 0001, 2 = 0010,..., a = 1010, b =

1011, $c = 1100, \ldots, e = 1110, f = 1111$

 At a billion outputs per second, 78 billion years required to calculate 2¹⁰⁰ outputs

Hashcash

- A database you own where anyone in the world can add entries? Your email inbox
- Hashcash was proposed in 1997 to prevent spam
- Protocol
 - Suppose an email client wants to send email to an email server
 - Client and server agree upon a cryptographic hash function H
 - Email server sends the client a challenge string c
 - Client needs to find a string r such that H(c||r) begins with k zeros

- The r is considered proof-of-work (PoW); difficult to generate but easy to verify
- Demo

Difficulty Increases with k

• Let hash function output length n be 4 bits

• Since *H* has pseudorandom outputs, probability of success in a single trial is

$$\frac{2^{n-k}}{2^n} = \frac{1}{2^k}$$

Bitcoin Mining

- Mining = Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

- Threshold encodes a 256-bit value like 0x 00 ··· 00 FFFFF ··· FFFFF
- Miner who can find Nonce such that

SHA256(SHA256(Version Number $\| \cdots \|$ Nonce)) \leq Threshold.

Candidate Block Header

16 times

48 times

can add a new block

$$\mathsf{Pr}\left[\mathsf{SHA256d} ext{ output} \leq T
ight] pprox rac{T+1}{2^{256}}$$

Why should anyone mine blocks?

- Successful miner gets rewarded in bitcoins
- Every block contains a **coinbase transaction** which creates 12.5 bitcoins
- Each miner specifies his own address as the destination of the new coins
- Every miner is competing to solve their own PoW puzzle
- Miners also collect the transaction fees in the block

Mining Farms

- Mining farms have thousands of mining rigs
- Each mining rig has dozens of mining chips
- Each chip has dozens of SHA256 mining cores
- · Farms are located in places with cheap power and cooling

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

- Miners compete to solve the search puzzle and broadcast solutions
- Unsuccessful miners abandon their current candidate blocks and start work on new ones

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce
- Eventually the network will converge and achieve consensus
- This is called proof-of-work (PoW) consensus

How often are new blocks created?

Once every 10 minutes

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

- Every 2016 blocks, the target T is recalculated
- Let t_{sum} = Number of seconds taken to mine last 2016 blocks

$$\textit{T}_{new} = \frac{\textit{t}_{sum}}{2016 \times 10 \times 60} \times \textit{T}$$

- Recall that probability of success in single trial is <u>7+1</u> <u>2256</u>
- If $t_{\text{SUM}} = 2016 \times 8 \times 60$, then $T_{\text{NeW}} = \frac{4}{5}T$
- If $t_{SUM} = 2016 \times 12 \times 60$, then $T_{NEW} = \frac{6}{5}T$

Bitcoin Blockchain Explorers

- · Web interfaces to view current blockchain state
 - https://www.blockstream.info
 - https://www.blockchain.com/explorer
- Demo checklist
 - List of transactions (coinbase, regular)
 - Address generation in https://www.bitaddress.org
 - Brainwallet generation at https://brainwalletx.github.io

Bitcoin Supply

- The block subsidy was initially 50 BTC per block
- Halves every 210,000 blocks \approx 4 years
- Became 25 BTC in Nov 2012 and 12.5 BTC in July 2016
- Total Bitcoin supply is 21 million

The last bitcoin will be mined in 2140

Tamper Resistance

• Suppose Alice wants to modify block B_N

• Alice works on A_N branch; other miners work on B_N branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current Bitcoin network hashrate ≈ 78 EH/s = 78×10^{18} H/s
- One mining unit costing \$350 gives 16 TH/s
- Controlling 50% of hashrate = Controlling 853 million USD worth of hardware

Bitcoin Hashrate

Data source: https://www.blockchain.com/charts/hash-rate

Key Takeaways

- Bitcoin's blockchain prevents double spending and tampering
- · Secure only if nobody controls 50% or more of network hashrate
- Mining difficulty adjusted to regulate coin supply
- Miners incentivized by block reward
- Block subsidy halves every four years to cap total coin supply

Blockstream Satellite

Image credit: https://blockstream.com/satellite/

- Blockstream Satellite network broadcasts the Bitcoin blockchain for free
- No Internet required to receive blocks (verify payments in Bitcoin)

How Blockstream Satellite Works?

Image credit: https://blockstream.com/satellite/

- Ground stations (teleports) participate in the Bitcoin network and transmit blocks to geosynchronous satellites
- Satellites receive the blocks and broadcast them across the Earth
- Anyone in the coverage area with a small satellite antenna and an inexpensive USB receiver can receive these blocks
- Anyone can verify large payments in remote areas

Bitcoin Testnet Transactions

- · Each cryptocurrency has a mainnet and one or more testnets
- Bitcoin Testnet https://live.blockcypher.com/btc-testnet/
- Testnet Address Generator https: //bitcoinpaperwallet.com/bitcoinpaperwallet/ generate-wallet.html?design=alt-testnet
- Testnet faucet 1

https://coinfaucet.eu/en/btc-testnet/

- Testnet faucet 2 https://bitcoinfaucet.uol.net
- Mycelium Testnet Wallet Mobile App

References

- Chapter 4 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html
- Bitcoin Charts https://www.blockchain.com/charts
- Bitmain Mining Rigs https://shop.bitmain.com
- Blockstream Satellite

https://blockstream.com/satellite/