
Ethereum Blocks

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

September 3, 2019

1 / 23

mailto:sarva@ee.iitb.ac.in

Ethereum Block Header
Block = (Header, Transactions, Uncle Headers)

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed
timestamp
extraData
mixHash
nonce

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

2 / 23

Simple Fields in Block Header
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• parentHash = Keccak-256 hash of parent block header
• beneficiary = Destination address of block reward and transaction fees
• stateRoot = Root hash of world state trie after all transactions are applied
• transactionsRoot = Root hash of trie populated with all transactions in the block
• number = Number of ancestor blocks
• timestamp = Unix time at block creation
• extraData = Arbitrary data; Miners identify themselves in this field

3 / 23

gasLimit and gasUsed
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• gasUsed is the total gas used by all transactions in the block
• gasLimit is the maximum gas which can be used
• |gasLimit - parent.gasLimit| ≤ parent.gasLimit

1024

• Miner can choose to increase or decrease the gasLimit

4 / 23

logsBloom and receiptsRoot
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• Bloom filter = Probabilistic data structure for set membership queries

• Query: Is x in the set? Response: “Maybe” or “No”

• receiptsRoot is the root hash of transaction receipts trie

• Each transaction receipt contains Bloom filter of addresses and “topics”

• logBloom is the OR of all transaction receipt Bloom filters

• Light clients can efficiently retrieve only transactions of interest

5 / 23

Mining

Ethash Mining Algorithm

• An epoch lasts 30,000 blocks
• Epoch index EI = block_number / 30000
• At an epoch beginning

• A list called cache of size ≈ 224 + EI × 217 bytes is created
• A list called dataset of size ≈ 230 + EI × 223 bytes is created

• The dataset is also called the DAG (directed acyclic graph)

Block Number Epoch Cache Size DAG Size Start Date
30000 1 16 MB 1 GB 17 Oct, 2015

3840000 128 32 MB 2 GB 21 Jul, 2017
7680000 256 48 MB 3 GB 30 Apr, 2019

192000000 640 96 MB 6 GB 25 Aug, 2024

Source: https://investoon.com/tools/dag_size

• Mining nodes need to store full dataset (ASIC resistance)
• Light nodes store cache and recalculate specific dataset items

7 / 23

https://investoon.com/tools/dag_size

Cache Generation
• The cache is initialized by repeatedly hashing a seed (deriving from the block

headers)
• Two rounds of a function called randmemohash are applied

1 HASH_BYTES = 64
2 CACHE_ROUNDS = 3
3
4 def mkcache(cache_size, seed):
5 n = cache_size // HASH_BYTES
6
7 # Sequentially produce the initial dataset
8 o = [sha3_512(seed)]
9 for i in range(1, n):

10 o.append(sha3_512(o[-1]))
11
12 # Use a low-round version of randmemohash
13 for _ in range(CACHE_ROUNDS):
14 for i in range(n):
15 v = o[i][0] % n
16 o[i] = sha3_512(map(xor, o[(i-1+n) % n], o[v]))
17
18 return o

8 / 23

Dataset Generation
1 HASH_BYTES = 64
2 WORD_BYTES = 4
3 DATASET_PARENTS = 256
4
5 FNV_PRIME = 0x01000193
6
7 def fnv(v1, v2):
8 return ((v1 * FNV_PRIME) ^ v2) % 2**32
9

10 def calc_dataset_item(cache, i):
11 n = len(cache)
12 r = HASH_BYTES // WORD_BYTES
13 # initialize the mix
14 mix = copy.copy(cache[i % n])
15 mix[0] ^= i
16 mix = sha3_512(mix)
17 # fnv it with a lot of random cache nodes based on i
18 for j in range(DATASET_PARENTS):
19 cache_index = fnv(i ^ j, mix[j % r])
20 mix = map(fnv, mix, cache[cache_index % n])
21 return sha3_512(mix)

9 / 23

Ethash Mining Algorithm
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• Cache calculation involves hashing previous cache elements pseudorandomly

• Every dataset element involves hashing 256 pseudorandom cache elements

• Mining loop takes partial header hash, nonce, and dataset as input

• 128 dataset elements are used to create 256-bit mixHash

Mining output = Keccak256 (Keccak512(HdrHash‖nonce)‖mixHash)

10 / 23

Mining Difficulty
parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
mixHash
nonce

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

• Proof of work is valid if mixhash and nonce lead to

Keccak256 (Keccak512(HdrHash‖nonce)‖mixHash) ≤
2256

difficulty

• Partial validation of PoW in block can be done without DAG or cache

11 / 23

Uncle Incentivization

Uncle Blocks

• Block = (Block Header, Transactions List, Uncle Header List)
• ommersHash in block header is hash of uncle header list
• Problem: Low inter-block time leads to high stale rate

• Stale blocks do not contribute to network security

• Solution: Reward stale block miners and also miners who
include stale block headers

• Rewarded stale blocks are called uncles or ommers
• Transactions in uncle blocks are invalid
• Only a fraction of block reward goes to uncle creator; no

transaction fees

• Greedy Heaviest Observed Subtree (GHOST) protocol proposed
by Sompolinsky and Zohar in December 2013

• Ethereum uses a simpler version of GHOST

13 / 23

GHOST Protocol

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

• A policy for choosing the main chain in case of forks
• Given a block tree T , the protocol specifies GHOST(T) as the

block representing the main chain
• Mining nodes calculate GHOST(T) locally and mine on top of it
• Heaviest subtree rooted at fork is chosen

14 / 23

GHOST Protocol

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

function CHILDRENT (B)
return Set of blocks with B as immediate parent

end function
function SUBTREET (B)

return Subtree rooted at B
end function
function GHOST(T)

B ← Genesis Block
while True do

if CHILDRENT (B) = ∅ then return B and exit
elseB ← argmaxC∈CHILDRENT (B) |SUBTREET (C)|
end if

end while
end function

15 / 23

GHOST Protocol Example

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

• Suppose an attacker secretly constructs the chain 1A, 2A,. . . , 6A
• All other blocks are mined by honest miners
• Honest miners’ efforts are spread over multiple forks
• Longest chain rule gives 0,1B,2D,3F,4C,5B as main chain

• Shorter than attacker’s chain

• GHOST rule gives 0,1B,2C,3D,4B as main chain

16 / 23

Main Chain Selection and Uncle Rewards
• Chain with maximum total difficulty is chosen

• Total difficulty is sum of block difficulty values

• Uncles contribute to difficulty since Oct 2017 (Byzantium)
• A uncle block of a given block satisfies the following

• Cannot be a direct ancestor of given block
• Cannot already be included as an uncle block in the past
• Has to be the child of given block’s ancestor at depth 2 to 7

• Mining reward
• Block reward = 3 ETH, Nephew reward = 3

32 ETH
• Total reward to block miner is

Block reward + NumUncles × Nephew reward

• NumUncles can be at most 2
• Uncle miner gets

Block reward × (8 + UncleHeight − BlockHeight)
8

17 / 23

Difficulty Adjustment

Difficulty Adjustment Algorithm Evolution

Frontier Release, July 2015

1 MIN_DIFF = 131072
2
3 def calc_difficulty(parent, timestamp):
4 offset = parent.difficulty // 2048
5 sign = 1 if timestamp - parent.timestamp < 13 else -1
6 return int(max(parent.difficulty + offset * sign, MIN_DIFF))

• If difference between current timestamp and parent’s timestamp
is less than 13 seconds, difficulty is increased

• Otherwise, difficulty is decreased
• Quantum of change is 1

2048 of parent block’s difficulty
• Difficulty is not allowed to go below a fixed minimum

19 / 23

Difficulty Adjustment Algorithm Evolution

Patch to Frontier Release, August 2015

1 MIN_DIFF = 131072
2 EXPDIFF_PERIOD = 100000
3 EXPDIFF_FREE_PERIODS = 2
4
5 def calc_difficulty(parent, timestamp):
6 offset = parent.difficulty // 2048
7 sign = 1 if timestamp - parent.timestamp < 13 else -1
8 o = int(max(parent.difficulty + offset * sign, MIN_DIFF))
9 period_count = (parent.number + 1) // EXPDIFF_PERIOD

10 if period_count >= EXPDIFF_FREE_PERIODS:
11 o = max(o + 2**(period_count - EXPDIFF_FREE_PERIODS),

MIN_DIFF)
12 return o

• Difficulty time bomb was added to force move to proof-of-stake
• Bomb term added to every block’s difficulty double every 100,000

blocks
• Ice age = Blocks too difficult to find

20 / 23

Ethereum Difficulty Chart

Image credit: https://etherscan.io/chart/difficulty

• Byzantium release (Oct 2017) delayed ice age by approximately 42 million
seconds to account for PoS transition delays

• Other tweaks also done to target mean block time of 15 seconds
21 / 23

https://etherscan.io/chart/difficulty

Blockchain Forks
• Temporary Forks

• When two miners mine a block at almost the same time
• Soft forks and hard forks

• Caused by changes to the consensus rules
• Consensus rules = Rules determining validity of blocks and

transactions
• Soft forks

• Backward compatible rule changes
• Nodes which do not upgrade still consider blocks produced under

new rules valid
• Example: Block size limit reduced to 500 KB from 1 MB

• Sub-500 KB blocks produced by upgraded miners will be considered
valid by non-upgraded nodes

• Blocks with size larger than 500 KB produced by non-upgraded
miners will be rejected by upgraded nodes

• Soft fork success requires nodes controlling a majority of the
hashpower to upgrade to new rules

• Hard forks
• Not backward compatible rule changes
• Hard fork success requires all nodes to upgrade

22 / 23

References
• Yellow paper https://ethereum.github.io/yellowpaper/paper.pdf
• Light client protocol

https://github.com/ethereum/wiki/wiki/Light-client-protocol

• Ethash https://github.com/ethereum/wiki/wiki/Ethash

• Randmemohash http://www.hashcash.org/papers/memohash.pdf

• GHOST paper https://eprint.iacr.org/2013/881
• Uncle calculations https://github.com/ethereum/pyethereum/blob/

develop/ethereum/pow/consensus.py

• Ethereum difficulty chart https://etherscan.io/chart/difficulty
• Byzantium difficulty adjustment https:

//blog.ethereum.org/2017/10/12/byzantium-hf-announcement/

• Article on forks
www.mycryptopedia.com/hard-fork-soft-fork-explained/

23 / 23

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Ethash
http://www.hashcash.org/papers/memohash.pdf
https://eprint.iacr.org/2013/881
https://github.com/ethereum/pyethereum/blob/develop/ethereum/pow/consensus.py
https://github.com/ethereum/pyethereum/blob/develop/ethereum/pow/consensus.py
https://etherscan.io/chart/difficulty
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
www.mycryptopedia.com/hard-fork-soft-fork-explained/

	Mining
	Uncle Incentivization
	Difficulty Adjustment

