
Ethereum Transactions

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

August 29, 2019

1 / 18

mailto:sarva@ee.iitb.ac.in

World State and Transactions
• World state consists of a trie storing key/value pairs

• For accounts, key is 20-byte account address
• Account value is [nonce, balance, storageRoot, codeHash]

• Transactions cause state transitions
• σt = Current state, σt+1 = Next state, T = Transaction

σt+1 = Υ(σt ,T)

• Transactions are included in the blocks
• Given genesis block state and blockchain, current state can be

reconstructed

2 / 18

Ethereum Transaction Format
nonce

gasprice
startgas

to
value

init/data
v
r
s

≤ 32 bytes
≤ 32 bytes
≤ 32 bytes

1 or 20 bytes
≤ 32 bytes
≥ 0 bytes
≥ 1 bytes
32 bytes
32 bytes

• Ethereum transactions are of two types
• Contract creation
• Message calls

• Contract creation transactions have EVM code in init field
• Execution of init code returns a body which will be installed

• Message calls specify a function and its inputs in data field
• Transfer of ether between EOAs is considered a message call

• Sender can insert arbitrary info in data field

3 / 18

nonce
nonce

gasprice
startgas

to
value

init/data
v
r
s

≤ 32 bytes
≤ 32 bytes
≤ 32 bytes

1 or 20 bytes
≤ 32 bytes
≥ 0 bytes
≥ 1 bytes
32 bytes
32 bytes

• Number of transactions sent by the sender address
• Prevents transaction replay
• First transaction has nonce equal to 0

4 / 18

gasprice and startgas
nonce

gasprice
startgas

to
value

init/data
v
r
s

≤ 32 bytes
≤ 32 bytes
≤ 32 bytes

1 or 20 bytes
≤ 32 bytes
≥ 0 bytes
≥ 1 bytes
32 bytes
32 bytes

• Each operation in a transaction execution costs some gas
• gasprice = Number of Wei to be paid per unit of gas used during

transaction execution
• startgas = Maximum gas that can be consumed during

transaction execution
• gasprice*startgas Wei are deducted from sender’s account
• Any unused gas is refunded to sender’s account at same rate

• Any unrefunded Ether goes to miner

5 / 18

Fee Schedule

• A tuple of 31 values which define gas costs of operations
• Partial fee schedule (full schedule in Appendix G of yellow paper)

Name Value Description
Gbase 2 Paid for operations in set Wbase.
Gverylow 3 Paid for operations in set Wverylow .
Glow 5 Paid for operations in set Wlow.
Gmid 8 Paid for operations in set Wmid .
Ghigh 10 Paid for operations in set Whigh.

Gcall 700 Paid for a CALL operation.

Gtransaction 21000 Paid for every transaction.
Gtxdatazero 4 Paid for every zero byte of data or code for a transaction.
Gtxdatanonzero 68 Paid for every non-zero byte of data or code for a transaction.

Gtxcreate 32000 Paid by all contract-creating transactions
Gcodedeposit 200 Paid per byte for a CREATE operation

Gselfdestruct 5000 Amount of gas to pay for a SELFDESTRUCT operation.
Rselfdestruct 24000 Refund given for self-destructing an account.

Gsha3 30 Paid for each SHA3 operation.

6 / 18

to and value
nonce

gasprice
startgas

to
value

init/data
v
r
s

≤ 32 bytes
≤ 32 bytes
≤ 32 bytes

1 or 20 bytes
≤ 32 bytes
≥ 0 bytes
≥ 1 bytes
32 bytes
32 bytes

• For contraction creation transaction, to is empty
• RLP encodes empty byte array as 0x80
• Contract address = Right-most 20 bytes of Keccak-256 hash of
RLP([senderAddress, nonce])

• For message calls, to contains the 20-byte address of recipient
• value is the number of Wei being transferred to recipient

• In message calls, the receiving contract should have payable
functions

7 / 18

Recursive Length Prefix Encoding

Recursive Length Prefix Encoding (1/3)

• Applications may need to store complex data structures
• RLP encoding is a method for serialization of such data
• Value to be serialized is either a byte array or a list of values

• Examples: “abc”, [“abc”, [“def”, “ghi”], [“”]]

RLP(x) =

{
Rb(x) if x is a byte array
Rl (x) otherwise

• BE stands for big-endian representation of a positive integer

BE(x) = (b0,b1, ...) : b0 6= 0 ∧ x =

n<‖b‖∑
n=0

bn · 256‖b‖−1−n

9 / 18

Recursive Length Prefix Encoding (2/3)

• Byte array encoding

Rb(x) =


x if ‖x‖ = 1 ∧ x[0] < 128
(128 + ‖x‖) · x else if ‖x‖ < 56(
183 +

∥∥BE(‖x‖)
∥∥) · BE(‖x‖) · x else if

∥∥BE(‖x‖)
∥∥ ≤ 8

• (a) · (b) · c = (a,b, c)

• Examples
• Encoding of 0xaabbcc = 0x83aabbcc
• Encoding of empty byte array = 0x80
• Encoding of 0x80 = 0x8180
• Encoding of “Lorem ipsum dolor sit amet, consectetur adipisicing

elit” = 0xb8, 0x38, ’L’, ’o’, ’r’, ’e’, ’m’, ’ ’, . . . , ’e’, ’l’, ’i’, ’t’

• Length of byte array is assumed to be less than 2568

• First byte can be at most 191

10 / 18

Recursive Length Prefix Encoding (3/3)

• List encoding of x = [x0,x1, . . .]

Rl (x) =

{
(192 + ‖s(x)‖) · s(x) if ‖s(x)‖ < 56(
247 +

∥∥BE(‖s(x)‖)
∥∥) · BE(‖s(x)‖) · s(x) otherwise

s(x) = RLP(x0) · RLP(x1)...

• Examples
• Encoding of empty list [] = 0xc0
• Encoding of list containing empty list [[]] = 0xc1 0xc0
• Encoding of [[], [[]], [[], [[]]]] = 0xc7, 0xc0, 0xc1, 0xc0, 0xc3,

0xc0, 0xc1, 0xc0
• First byte of RLP encoded data specifies its type

• 0x00, . . . , 0x7f =⇒ byte
• 0x80, . . . , 0xbf =⇒ byte array
• 0xc0, . . . , 0xff =⇒ list

Reference: https://github.com/ethereum/wiki/wiki/RLP

11 / 18

https://github.com/ethereum/wiki/wiki/RLP

Recovering Sender Address from a Transaction

v,r,s
nonce

gasprice
startgas

to
value

init/data
v
r
s

≤ 32 bytes
≤ 32 bytes
≤ 32 bytes

1 or 20 bytes
≤ 32 bytes
≥ 0 bytes
≥ 1 bytes
32 bytes
32 bytes

• (r, s) is the ECDSA signature on hash of remaining Tx fields
• Note that the sender’s address is not a header field
• v enables recovery of sender’s public key

13 / 18

secp256k1 Revisited

• Ethereum uses the same curve as Bitcoin for signatures
• y2 = x3 + 7 over Fp where

p = FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

• E ∪ O has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

• Private key is k ∈ {1,2, . . . ,n − 1}
• Public key is kP where P is the base point of secp256k1
• Note that p ≈ 2256 and n > 2256 − 2129

14 / 18

Public Key Recovery in ECDSA
• Signer: Has private key k and message m

1. Compute e = H(m)
2. Choose a random integer j from Z∗

n

3. Compute jP = (x , y)
4. Calculate r = x mod n. If r = 0, go to step 2.
5. Calculate s = j−1(e + kr) mod n. If s = 0, go to step 2.
6. Output (r , s) as signature for m

• Verifier: Has public key kP, message m, and signature (r , s)

1. Calculate e = H(m)
2. Calculate j1 = es−1 mod n and j2 = rs−1 mod n
3. Calculate the point Q = j1P + j2(kP)
4. If Q = O, then the signature is invalid.
5. If Q 6= O, then let Q = (x , y) ∈ F2

p. Calculate t = x mod n. If t = r ,
the signature is valid.

• If Q = (x , y) was available, then

kP = j−1
2 (Q − j1P)

• But we only have r = x mod n where x ∈ Fp

15 / 18

Recovery ID

• Since p < 2256 and n > 2256 − 2129, four possible choices for
(x , y) given r

• Recall that (x , y) on the curve implies (x ,−y) on the curve
• Recovery ID encodes the four possibilities

Rec ID x y
0 r even
1 r odd
2 r + n even
3 r + n odd

• For historical reasons, recovery id is in range 27, 28, 29, 30
• Prior to Spurious Dragon hard fork at block 2,675,000 v was

either 27 or 28
• Chances of 29 or 30 is less than 1 in 2127

• v was not included in transaction hash for signature generation

16 / 18

Chain ID

• In EIP 155, transaction replay attack protection was proposed
• Chain IDs were defined for various networks

CHAIN_ID Chain
1 Ethereum mainnet
3 Ropsten

61 Ethereum Classic mainnet
62 Ethereum Classic testnet

• After block 2,675,000, Tx field v equals 2 × CHAIN_ID + 35 or 2
× CHAIN_ID + 36

• Transaction hash for signature generation included CHAIN_ID
• Transactions with v equal to 27 to 28 still valid but insecure

against replay attack

17 / 18

References
• Yellow paper https://ethereum.github.io/yellowpaper/paper.pdf
• Pyethereum https://github.com/ethereum/pyethereum

• Pyrlp https://github.com/ethereum/pyrlp

• Spurious Dragon hard fork https://blog.ethereum.org/2016/11/18/
hard-fork-no-4-spurious-dragon/

• EIP 155: Simple replay attack protection https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

18 / 18

https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/pyethereum
https://github.com/ethereum/pyrlp
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

	Recursive Length Prefix Encoding
	Recovering Sender Address from a Transaction

