Mimblewimble

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

November 5, 2019

Mimblewimble

Mimblewimble, which prevents your opponent from accurately casting their next spell.

Gilderoy Lockhart

- A tongue-tying curse from the Harry Potter universe
- A scalable cryptocurrency design with hidden amounts and obscured transaction graph
- Brief history
- Aug 2016: "Tom Elvis Jedusor" posted an onion link to a text file describing Mimblewimble on bitcoin-wizards IRC channel
- Oct 2016: Andrew Poelstra presents formalization of Mimblewimble at Scaling Bitcoin 2016
- Oct 2016: "Ignotus Peverell" announces a project implementing the Mimblewimble protocol called Grin
- Jul 2018: Another Mimblewimble implementation called BEAM announced
- Jan 2019: BEAM launched on Jan 3, 2019 and Grin launched on Jan 15, 2019

Mimblewimble Outputs

- Recall the structure of Monero outputs
- A public key P acting as destination address
- A Pedersen commitment C to the amount stored in the output
- A range proof proving the amount in C is in the right range
- Mimblewimble output structure
- A Pedersen commitment C where

$$
C=k G+v H
$$

where G and H are generators of an elliptic curve of prime order n and the discrete logarithm of H wrt G is unknown

- A range proof proving the amount in C is in a range like $\left\{0,1,2, \ldots, 2^{64}-1\right\}$
- Features of Mimblewimble output variables
- The order n is typically a 256 -bit prime, i.e. $n \approx 2^{256}$
- The scalar $v \in \mathbb{F}_{n}$ is the amount
- The scalar $k \in \mathbb{F}_{n}$ is the blinding factor (will play role of secret key)

Proving Statements About Commitments

- How to prove that C is a commitment to the zero amount without revealing blinding factor?

Ans: If $C=C(0, x)=x G$, then give a digital signature verifiable by C as the public key

If C is a commitment to a non-zero amount a, signature with C as public key will mean discrete log of H is known

$$
C=x G+a H=y G \Longrightarrow H=a^{-1}(y-x) G
$$

- How to prove that C is a commitment to the an amount a without revealing blinding factor?

Ans: If $C=C(a, x)=x G+a H$, then give a digital signature verifiable by $C-\mathrm{aH}$ as the public key

- How to prove that two commitments C_{1} and C_{2} are commitments to the same amount a without revealing blinding factors?

Ans:

$$
\begin{aligned}
& C_{1}=C\left(a, x_{1}\right)=x_{1} G+a H \\
& C_{2}=C\left(a, x_{2}\right)=x_{2} G+a H
\end{aligned}
$$

Give a digital signature verifiable by $C_{1}-C_{2}$ as the public key

Proving the Balance Condition

- Suppose $C_{1}^{\text {in }}, C_{2}^{\text {in }}, C_{3}^{\text {in }}$ are commitments to input amounts a_{1}, a_{2}, a_{3}
- Suppose $C_{1}^{\text {out }}, C_{2}^{\text {out }}$ are commitments to output amounts b_{1}, b_{2}
- Suppose we want to prove

$$
a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+f
$$

for some public $f \geq 0$

- A digital signature with

$$
C_{1}^{\text {in }}+C_{2}^{\text {in }}+C_{3}^{\text {in }}-C_{1}^{\text {out }}-C_{2}^{\text {out }}-f H
$$

as public key is enough

- Almost enough! It only shows that

$$
\begin{array}{r}
a_{1} H+a_{2} H+a_{3} H=b_{1} H+b_{2} H+f H \\
\Longrightarrow \\
a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+f \bmod n
\end{array}
$$

since $n H=\mathcal{O}$ (the identity of the elliptic curve group)

Preventing Exploitation of the Modular Balance Condition

$$
a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+f \bmod n
$$

- Example: $a_{1}=1, a_{2}=1, a_{3}=1$ and $b_{1}=n-4, b_{2}=6, f=1$
- Typically $n \approx 2^{256}$ and amounts are in a smaller range like $\left\{0,1,2, \ldots, 2^{64}-1\right\}$
- Proving that $C_{1}^{\text {out }}$ and $C_{2}^{\text {out }}$ commit to amounts in the range $\left\{0,1,2, \ldots, 2^{64}-1\right\}$ solves the problem
- Each output should be accompanied by a range proof

Mimblewimble Transactions

- Each transaction has
- L input commitments $C_{1}^{\text {in }}, C_{2}^{\text {in }}, \ldots, C_{L}^{\text {in }}$
- M output commitments $C_{1}^{\text {out }}, C_{2}^{\text {out }}, \ldots, C_{M}^{\text {out }}$ with range proofs
- N transaction kernels
- A scalar $k_{\text {off }} \in \mathbb{F}_{n}$ called the kernel offset
- Each transaction kernel has the following
- A scalar $f_{i} \in \mathbb{F}_{n}$ representing a fee
- A curve point $X_{i}=x_{i} G$ called the kernel excess
- A Schnorr signature verifiable with X_{i} as the public key
- For $f=\sum_{i=1}^{N} f_{i}$, the following equality is checked

$$
\sum_{i=1}^{M} C_{i}^{\text {out }}+f H-\sum_{i=1}^{L} C_{i}^{\text {in }}=\sum_{i=1}^{N} X_{i}+k_{\mathrm{off}} G
$$

- This ensures

$$
\sum_{i=1}^{L} v_{i}^{\text {in }}=\sum_{i=1}^{M} v_{i}^{\text {out }}+f \quad \text { and } \quad \sum_{i=1}^{M} k_{i}^{\text {out }}-\sum_{i=1}^{L} k_{i}^{\text {in }}=\sum_{i=1}^{N} x_{i}+k_{\mathrm{off}}
$$

- The offset $k_{\text {off }}$ is used to hide relationship between specific inputs and outputs of a transaction during block creation

Schnorr Signature Algorithm

- Let \mathcal{G} be a cyclic group of order q with generator G
- Let Hash : $\{0,1\}^{*} \mapsto \mathbb{Z}_{q}$ be a cryptographic hash function
- Signer knows $k \in \mathbb{Z}_{q}$ such that public key $P=k G$
- Signer:

1. On input $m \in\{0,1\}^{*}$, chooses $r \leftarrow \mathbb{Z}_{q}$
2. Computes nonce public key $R=r G$
3. Computes $e=\operatorname{Hash}(R\|P\| m)$
4. Computes $s=r+e k \bmod q$
5. Outputs (s, R) as signature for m

- Verifier

1. On input m and (s, R)
2. Computes $e=\operatorname{Hash}(R\|P\| m)$
3. Signature valid if $s G=R+e P$

Schnorr Signature Aggregation

- Suppose Alice and Bob want to create a 2-of-2 multisignature on a message
- Naïve signature aggregation
- Alice and Bob reveal public keys P_{a}, P_{b} and nonce keys R_{a}, R_{b}
- For $e=\operatorname{Hash}\left(R_{a}+R_{b}\left\|P_{a}+P_{b}\right\| m\right)$, Alice and Bob respectively compute

$$
\begin{aligned}
& s_{a}=r_{a}+e k_{a} \\
& s_{b}=r_{b}+e k_{b}
\end{aligned}
$$

- Aggregate signature is ($s_{a}+s_{b}, R_{a}+R_{b}$) with aggregate public key $P_{a}+P_{b}$
- Signature valid if $\left(s_{a}+s_{b}\right) G=R_{a}+R_{b}+e\left(P_{a}+P_{b}\right)$
- Key cancellation attack
- Bob can choose his public key and nonce key as $P_{b}^{\prime}=P_{b}-P_{a}$ and $R_{b}^{\prime}=R_{b}-R_{a}$
- A valid signature for $P_{a}+P_{b}^{\prime}$ only requires knowing k_{b}
- Solution: Ask Bob to show signature for public key P_{b}^{\prime}

Mimblewimble Transaction Construction

- Unlike other cryptocurrencies, sender and receiver have to interact to construct a Mimblewimble transaction
- Interaction can be via email, chat, forum posts
- Suppose Alice owns unspent output $C_{\text {in }}=k_{A} G+v_{A} H$
- She wants to send v_{B} coins to Bob where $v_{B}<v_{A}$
- She will be paying transaction fees f
- She wants the remaining $v_{A}-v_{B}-f$ coins to be stored in a change output $C_{\text {chg }}=k_{C} G+\left(v_{A}-v_{B}-f\right) H$
- Bob wants his new output to have blinding factor k_{B}, i.e. $C_{\text {out }}=k_{B} G+v_{B} H$
- Alice and Bob will exchange a data structure called a slate
- Step 1
- Alice adds $C_{\text {in }}$, amount v_{B}, fees f to the slate
- She chooses $k_{C} \stackrel{\$}{\leftarrow} \mathbb{F}_{n}$, calculates $C_{\text {chg }}=k_{C} G+\left(v_{A}-v_{B}-f\right) H$ and a range proof
- She chooses kernel offset $k_{\text {off }} \stackrel{\$}{\leftarrow} \mathbb{F}_{n}$ and calculates the sender kernel excess secret key as $k_{A}^{\prime}=k_{C}-k_{A}-k_{\text {off }}$
- $k_{\text {off }}$ and the sender kernel excess $X_{A}=k_{A}^{\prime} G$ are added to the slate
- She chooses nonce $r_{A} \stackrel{\$}{\leftarrow} \mathbb{F}_{n}$ and adds the nonce public key $R_{A}=r_{A} G$ to the slate.
- Alice sends slate to Bob

Mimblewimble Transaction Construction

- Step 2
- Bob chooses $k_{B} \stackrel{\$}{\leftarrow} \mathbb{F}_{n}$, calculates $C_{\text {out }}=k_{B} G+v_{B} H$ and a range proof. He adds $C_{\text {out }}$ to the slate.
- He adds receiver kernel excess $X_{B}=k_{B} G$ to the slate
- He chooses nonce $r_{B} \stackrel{\$}{\leftarrow} \mathbb{F}_{n}$ and adds the nonce public key $R_{B}=r_{B} G$ to the slate.
- Bob calculates the receiver Schnorr signature on message m as $\left(s_{B}, R_{B}\right)$ where $s_{B}=r_{B}+e k_{B}$ and

$$
e=\operatorname{Hash}\left(R_{A}+R_{B}\left\|X_{A}+X_{B}\right\| m\right)
$$

He adds the signature to the slate. It can be verified using the public key X_{B}.

- Bob sends slate to Alice
- Step 3
- Alice verifies Bob's signature $\left(s_{B}, R_{B}\right)$ by checking the equality

$$
s_{B} G=R_{B}+e X_{B},
$$

- She calculates the sender Schnorr signature $\left(s_{A}, R_{A}\right)$ on the same message m as $s_{A}=r_{A}+e k_{A}^{\prime}$
- She sets the transaction kernel excess to be equal to $X_{A}+X_{B}$.
- She sets the signature in the transaction kernel to be equal to $\left(s_{A}+s_{B}, R_{A}+R_{B}\right)$.

Mimblewimble Transaction Construction

- Alice broadcasts transaction $k_{\text {off }}, C_{\text {in }}, C_{\text {out }}, C_{\text {chg }}$, and the transaction kernel
- Kernel contains fee f, the kernel excess $X_{A}+X_{B}$, and the signature $\left(s_{A}+s_{B}, R_{A}+R_{B}\right)$
- Transaction satisfies

$$
\begin{aligned}
& C_{\text {out }}+C_{\text {chg }}+f H-C_{\text {in }} \\
& =k_{B} G+v_{B} H+k_{C} G+\left(v_{A}-v_{B}-f\right) H+f H-k_{A} G-v_{A} H \\
& =k_{B} G+\left(k_{C}-k_{A}\right) G \\
& =k_{B} G+\left(k_{C}-k_{A}-k_{\text {off }}\right) G+k_{\text {off }} G \\
& =k_{B} G+k_{A}^{\prime} G+k_{\text {off }} G=X_{B}+X_{A}+k_{\text {off }} G .
\end{aligned}
$$

- Alice does not learn Bob's blinding factor k_{B}
- Bob learns neither change amount $v_{A}-v_{B}-f$ nor blinding factor k_{C}

Mimblewimble Scalability

- Cut-through
- Every Mimblewimble transaction satisfies

$$
\sum_{i=1}^{M} C_{i}^{\text {out }}+f H-\sum_{i=1}^{L} C_{i}^{\text {in }}=\sum_{i=1}^{N} X_{i}+k_{\text {off }} G
$$

- Suppose T_{1} and T_{2} are waiting in the transaction mempool
- If an output of T_{1} is an input of T_{2}, it can be removed if T_{1} and T_{2} are included in the same block
- Pruning
- If an output in a previous block is spent, it can be removed from the block
- At any point, the following invariant holds

$$
\sum_{i \in \mathrm{UTXO}} C_{i}-(\text { all coins mined }) H=\sum_{j \in \mathrm{all} \text { kernels }} X_{j}+k_{\mathrm{off}} G
$$

- To verify the above equation, spent outputs are not needed
- Grin team estimate: Assuming 10 million transactions with 100,000 UTXOs
- 128 GB of Tx data, 1 GB proof data, 250 MB block headers
- After cut-through and pruning: UTXO size 520 MB, 1 GB proof data, 250 MB block headers

References

- Mimblewimble original paper
https://scalingbitcoin.org/papers/mimblewimble.txt
- A short history of Mimblewimble https://medium.com/beam-mw/ a-short-history-of-mimblewimble-from-hogwarts-to-mobile-wallets-2
- Poelstra talk in BPASE 2017 https: / cyber.stanford.edu/sites/g/ files/sbiybj9936/f/andrewpoelstra.pdf
- Grin GitHub repo https://github.com/mimblewimble/grin
- BEAM website https://beam.mw/
- Intro to Mimblewimble and Grin https :
//github.com/mimblewimble/grin/blob/master/doc/intro.md
- BEAM announcement
https://medium.com/beam-mw/introducing-beam-f35096a923ec
- Schnorr Signatures https://tlu.tarilabs.com/cryptography/ digital_signatures/introduction_schnorr_signatures.html
- Cut-through and pruning
https://tlu.tarilabs.com/protocols/grin-protocol-overview/ MainReport.html\#cut-through-and-pruning

