
Mimblewimble

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

November 5, 2019

1 / 14

mailto:sarva@ee.iitb.ac.in


Mimblewimble

Mimblewimble, which prevents your opponent from accurately casting
their next spell.

Gilderoy Lockhart

• A tongue-tying curse from the Harry Potter universe
• A scalable cryptocurrency design with hidden amounts and

obscured transaction graph
• Brief history

• Aug 2016: “Tom Elvis Jedusor” posted an onion link to a text file
describing Mimblewimble on bitcoin-wizards IRC channel

• Oct 2016: Andrew Poelstra presents formalization of
Mimblewimble at Scaling Bitcoin 2016

• Oct 2016: “Ignotus Peverell” announces a project implementing the
Mimblewimble protocol called Grin

• Jul 2018: Another Mimblewimble implementation called BEAM
announced

• Jan 2019: BEAM launched on Jan 3, 2019 and Grin launched on
Jan 15, 2019

2 / 14



Mimblewimble Outputs
• Recall the structure of Monero outputs

• A public key P acting as destination address
• A Pedersen commitment C to the amount stored in the output
• A range proof proving the amount in C is in the right range

• Mimblewimble output structure
• A Pedersen commitment C where

C = kG + vH

where G and H are generators of an elliptic curve of prime order n
and the discrete logarithm of H wrt G is unknown

• A range proof proving the amount in C is in a range like
{0, 1, 2, . . . , 264 − 1}

• Features of Mimblewimble output variables
• The order n is typically a 256-bit prime, i.e. n ≈ 2256

• The scalar v ∈ Fn is the amount
• The scalar k ∈ Fn is the blinding factor (will play role of secret key)

3 / 14



Proving Statements About Commitments
• How to prove that C is a commitment to the zero amount without revealing

blinding factor?

Ans: If C = C(0, x) = xG, then give a digital signature verifiable by C as the
public key

If C is a commitment to a non-zero amount a, signature with C as public key will
mean discrete log of H is known

C = xG + aH = yG =⇒ H = a−1(y − x)G

• How to prove that C is a commitment to the an amount a without revealing
blinding factor?

Ans: If C = C(a, x) = xG + aH, then give a digital signature verifiable by
C − aH as the public key

• How to prove that two commitments C1 and C2 are commitments to the same
amount a without revealing blinding factors?

Ans:

C1 = C(a, x1) = x1G + aH

C2 = C(a, x2) = x2G + aH

Give a digital signature verifiable by C1 − C2 as the public key

4 / 14



Proving the Balance Condition
• Suppose C in

1 ,C
in
2 ,C

in
3 are commitments to input amounts

a1,a2,a3

• Suppose Cout
1 ,Cout

2 are commitments to output amounts b1,b2

• Suppose we want to prove

a1 + a2 + a3 = b1 + b2 + f

for some public f ≥ 0
• A digital signature with

C in
1 + C in

2 + C in
3 − Cout

1 − Cout
2 − fH

as public key is enough
• Almost enough! It only shows that

a1H + a2H + a3H = b1H + b2H + fH
=⇒ a1 + a2 + a3 = b1 + b2 + f mod n,

since nH = O (the identity of the elliptic curve group)
5 / 14



Preventing Exploitation of the Modular Balance
Condition

a1 + a2 + a3 = b1 + b2 + f mod n

• Example: a1 = 1,a2 = 1,a3 = 1 and b1 = n − 4,b2 = 6, f = 1
• Typically n ≈ 2256 and amounts are in a smaller range like
{0,1,2, . . . ,264 − 1}

• Proving that Cout
1 and Cout

2 commit to amounts in the range
{0,1,2, . . . ,264 − 1} solves the problem

• Each output should be accompanied by a range proof

6 / 14



Mimblewimble Transactions
• Each transaction has

• L input commitments C in
1 ,C in

2 , . . . ,C in
L

• M output commitments Cout
1 ,Cout

2 , . . . ,Cout
M with range proofs

• N transaction kernels
• A scalar koff ∈ Fn called the kernel offset

• Each transaction kernel has the following
• A scalar fi ∈ Fn representing a fee
• A curve point Xi = xi G called the kernel excess
• A Schnorr signature verifiable with Xi as the public key

• For f =
∑N

i=1 fi , the following equality is checked

M∑
i=1

Cout
i + fH −

L∑
i=1

C in
i =

N∑
i=1

Xi + koffG

• This ensures
L∑

i=1

v in
i =

M∑
i=1

vout
i + f and

M∑
i=1

kout
i −

L∑
i=1

k in
i =

N∑
i=1

xi + koff

• The offset koff is used to hide relationship between specific inputs and outputs of
a transaction during block creation

7 / 14



Schnorr Signature Algorithm

• Let G be a cyclic group of order q with generator G
• Let Hash : {0,1}∗ 7→ Zq be a cryptographic hash function
• Signer knows k ∈ Zq such that public key P = kG
• Signer:

1. On input m ∈ {0, 1}∗, chooses r ← Zq

2. Computes nonce public key R = rG
3. Computes e = Hash(R‖P‖m)
4. Computes s = r + ek mod q
5. Outputs (s,R) as signature for m

• Verifier
1. On input m and (s,R)
2. Computes e = Hash(R‖P‖m)
3. Signature valid if sG = R + eP

8 / 14



Schnorr Signature Aggregation

• Suppose Alice and Bob want to create a 2-of-2 multisignature on
a message

• Naïve signature aggregation
• Alice and Bob reveal public keys Pa,Pb and nonce keys Ra,Rb

• For e = Hash(Ra + Rb‖Pa + Pb‖m), Alice and Bob respectively
compute

sa = ra + eka

sb = rb + ekb

• Aggregate signature is (sa + sb,Ra + Rb) with aggregate public key
Pa + Pb

• Signature valid if (sa + sb)G = Ra + Rb + e (Pa + Pb)

• Key cancellation attack
• Bob can choose his public key and nonce key as P′b = Pb − Pa and

R′b = Rb − Ra

• A valid signature for Pa + P′b only requires knowing kb

• Solution: Ask Bob to show signature for public key P′b

9 / 14



Mimblewimble Transaction Construction
• Unlike other cryptocurrencies, sender and receiver have to interact to construct a

Mimblewimble transaction
• Interaction can be via email, chat, forum posts
• Suppose Alice owns unspent output Cin = kAG + vAH
• She wants to send vB coins to Bob where vB < vA

• She will be paying transaction fees f
• She wants the remaining vA − vB − f coins to be stored in a change output

Cchg = kCG + (vA − vB − f )H
• Bob wants his new output to have blinding factor kB , i.e. Cout = kBG + vBH
• Alice and Bob will exchange a data structure called a slate

• Step 1
• Alice adds Cin, amount vB , fees f to the slate
• She chooses kC

$←− Fn, calculates Cchg = kCG + (vA − vB − f )H and a
range proof

• She chooses kernel offset koff
$←− Fn and calculates the sender kernel

excess secret key as k ′A = kC − kA − koff
• koff and the sender kernel excess XA = k ′AG are added to the slate

• She chooses nonce rA
$←− Fn and adds the nonce public key RA = rAG to

the slate.
• Alice sends slate to Bob

10 / 14



Mimblewimble Transaction Construction
• Step 2

• Bob chooses kB
$←− Fn, calculates Cout = kBG + vBH and a range proof.

He adds Cout to the slate.
• He adds receiver kernel excess XB = kBG to the slate
• He chooses nonce rB

$←− Fn and adds the nonce public key RB = rBG to
the slate.

• Bob calculates the receiver Schnorr signature on message m as (sB ,RB)
where sB = rB + ekB and

e = Hash(RA + RB‖XA + XB‖m).

He adds the signature to the slate. It can be verified using the public key XB .
• Bob sends slate to Alice

• Step 3
• Alice verifies Bob’s signature (sB ,RB) by checking the equality

sBG = RB + eXB ,

• She calculates the sender Schnorr signature (sA,RA) on the same
message m as sA = rA + ek ′A

• She sets the transaction kernel excess to be equal to XA + XB .
• She sets the signature in the transaction kernel to be equal to

(sA + sB ,RA + RB).

11 / 14



Mimblewimble Transaction Construction
• Alice broadcasts transaction koff, Cin, Cout, Cchg, and the transaction kernel
• Kernel contains fee f , the kernel excess XA + XB , and the signature

(sA + sB ,RA + RB)

• Transaction satisfies

Cout + Cchg + fH − Cin

= kBG + vBH + kCG + (vA − vB − f )H + fH − kAG − vAH

= kBG + (kC − kA)G

= kBG + (kC − kA − koff)G + koffG

= kBG + k ′AG + koffG = XB + XA + koffG.

• Alice does not learn Bob’s blinding factor kB

• Bob learns neither change amount vA − vB − f nor blinding factor kC

12 / 14



Mimblewimble Scalability
• Cut-through

• Every Mimblewimble transaction satisfies

M∑
i=1

Cout
i + fH −

L∑
i=1

C in
i =

N∑
i=1

Xi + koffG

• Suppose T1 and T2 are waiting in the transaction mempool
• If an output of T1 is an input of T2, it can be removed if T1 and T2 are

included in the same block

• Pruning
• If an output in a previous block is spent, it can be removed from the block
• At any point, the following invariant holds∑

i∈UTXO

Ci − (all coins mined)H =
∑

j∈all kernels

Xj + koffG

• To verify the above equation, spent outputs are not needed

• Grin team estimate: Assuming 10 million transactions with 100,000 UTXOs
• 128 GB of Tx data, 1 GB proof data, 250 MB block headers
• After cut-through and pruning: UTXO size 520 MB, 1 GB proof data, 250

MB block headers

13 / 14



References
• Mimblewimble original paper

https://scalingbitcoin.org/papers/mimblewimble.txt

• A short history of Mimblewimble https://medium.com/beam-mw/
a-short-history-of-mimblewimble-from-hogwarts-to-mobile-wallets-2514a21debb

• Poelstra talk in BPASE 2017 https://cyber.stanford.edu/sites/g/
files/sbiybj9936/f/andrewpoelstra.pdf

• Grin GitHub repo https://github.com/mimblewimble/grin

• BEAM website https://beam.mw/

• Intro to Mimblewimble and Grin https:
//github.com/mimblewimble/grin/blob/master/doc/intro.md

• BEAM announcement
https://medium.com/beam-mw/introducing-beam-f35096a923ec

• Schnorr Signatures https://tlu.tarilabs.com/cryptography/
digital_signatures/introduction_schnorr_signatures.html

• Cut-through and pruning
https://tlu.tarilabs.com/protocols/grin-protocol-overview/
MainReport.html#cut-through-and-pruning

14 / 14

https://scalingbitcoin.org/papers/mimblewimble.txt
https://medium.com/beam-mw/a-short-history-of-mimblewimble-from-hogwarts-to-mobile-wallets-2514a21debb
https://medium.com/beam-mw/a-short-history-of-mimblewimble-from-hogwarts-to-mobile-wallets-2514a21debb
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/andrewpoelstra.pdf
https://cyber.stanford.edu/sites/g/files/sbiybj9936/f/andrewpoelstra.pdf
https://github.com/mimblewimble/grin
https://beam.mw/
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://medium.com/beam-mw/introducing-beam-f35096a923ec
https://tlu.tarilabs.com/cryptography/digital_signatures/introduction_schnorr_signatures.html
https://tlu.tarilabs.com/cryptography/digital_signatures/introduction_schnorr_signatures.html
https://tlu.tarilabs.com/protocols/grin-protocol-overview/MainReport.html#cut-through-and-pruning
https://tlu.tarilabs.com/protocols/grin-protocol-overview/MainReport.html#cut-through-and-pruning

