Monero Transactions

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 23, 2019

Transactions in Monero

- Suppose Alice wants to spend coins from an address P she owns
- Alice assembles a list $\left\{P_{0}, P_{1}, \ldots, P_{n-1}\right\}$ where $P_{j}=P$ for exactly one j
- Alice knows x_{j} such that $P_{j}=x_{j} G$
- Key image of P_{j} is $I=x_{j} H_{p}\left(P_{j}\right)$ where H_{p} is a point-valued hash function
- Distinct public keys will have distinct key images
- A linkable ring signature over $\left\{P_{0}, P_{1}, \ldots, P_{n-1}\right\}$ will have the key image / of P_{j}
- Signature proves Alice one of the private keys
- Double spending is detected via duplicate key images
- One cannot say if a Monero address belongs to the UTXO set or not

Linkable Spontaneous Anonymous Group Signatures

- Consider an elliptic curve group E with cardinality L and base point G
- Let $x_{i} \in \mathbb{Z}_{L}^{*}, i=0,1, \ldots, n-1$ be private keys with public keys $P_{i}=x_{i} G$
- Suppose a signer knows only x_{j} and not any of x_{i} for $i \neq j$
- The key image corresponding to P_{j} is $I=x_{j} H_{p}\left(P_{j}\right)$
- For a given message m, the signer generates the LSAG signature as follows:

1. Picks $\alpha, s_{i}, i \neq j$ randomly from \mathbb{Z}_{L}
2. Computes $L_{j}=\alpha G, R_{j}=\alpha H_{p}\left(P_{j}\right)$, and $c_{j+1}=H_{s}\left(m, L_{j}, R_{j}\right)$
3. Increasing j modulo n, computes

$$
\begin{aligned}
L_{j+1} & =s_{j+1} G+c_{j+1} P_{j+1} \\
R_{j+1} & =s_{j+1} H_{p}\left(P_{j+1}\right)+c_{j+1} l \\
c_{j+2} & =H_{s}\left(m, L_{j+1}, R_{j+1}\right) \\
\vdots & \\
L_{j-1} & =s_{j-1} G+c_{j-1} P_{j-1} \\
R_{j-1} & =s_{j-1} H_{p}\left(P_{j-1}\right)+c_{j-1} l \\
c_{j} & =H_{s}\left(m, L_{j-1}, R_{j-1}\right)
\end{aligned}
$$

4. Computes $s_{j}=\alpha-c_{j} x_{j} \Longrightarrow L_{j}=s_{j} G+c_{j} P_{j}, R_{j}=s_{j} H_{p}\left(P_{j}\right)+c_{j} l$
5. The ring signature is $\sigma=\left(I, c_{0}, s_{0}, s_{1}, \ldots, s_{n-1}\right)$

- Verifier computes L_{j}, R_{j}, remaining c_{j} 's, and checks that $H_{s}\left(m, L_{n-1}, R_{n-1}\right)=c_{0}$
- Signatures with duplicate key images / will be rejected

LSAG Structure

- Rationale for choice of key image $I=x_{j} H_{p}\left(P_{j}\right)$
- By collision resistance of H_{p}, I is unique for a given P_{j}
- I does not reveal P_{j} as x_{j} is unknown to observers
- Discrete log of $H_{p}\left(P_{j}\right)$ is unknown
- Comparison with regular ring signature calculation

$$
\begin{array}{rlrl}
L_{j+1} & =s_{j+1} G+c_{j+1} P_{j+1} & L_{j+1} & =s_{j+1} G+c_{j+1} P_{j+1} \\
R_{j+1} & =s_{j+1} H_{p}\left(P_{j+1}\right)+c_{j+1} l & & \\
c_{j+2} & =H_{s}\left(m, L_{j+1}, R_{j+1}\right) & c_{j+2} & =H_{s}\left(m, L_{j+1}\right) \\
\vdots & & \vdots \\
L_{j-1} & =s_{j-1} G+c_{j-1} P_{j-1} & L_{j-1} & =s_{j-1} G+c_{j-1} P_{j-1} \\
R_{j-1} & =s_{j-1} H_{p}\left(P_{j-1}\right)+c_{j-1} l & & \\
c_{j} & =H_{s}\left(m, L_{j-1}, R_{j-1}\right) & c_{j} & =H_{s}\left(m, L_{j-1}\right)
\end{array}
$$

Multilayered LSAG Signatures

- Consider a transaction which unlocks funds in m one-time addresses
- Each LSAG signature is of the form $\sigma=\left(I, c_{0}, s_{0}, s_{1}, \ldots, s_{n-1}\right)$ where n is the ring size
- m LSAG signatures will take space $\mathcal{O}(m(n+2))$
- MLSAG signatures occupy space $\mathcal{O}(m(n+1))$
- MLSAG signatures are ring signatures over a set of n key-vectors
- Consider an $m \times n$ matrix of public keys

$$
\left[\begin{array}{cccccc}
P_{0}^{1} & P_{1}^{1} & \cdots & P_{\pi}^{1} & \cdots & P_{n-1}^{1} \\
P_{0}^{2} & P_{1}^{2} & \cdots & P_{\pi}^{2} & \cdots & P_{n-1}^{2} \\
\vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
P_{0}^{m} & P_{1}^{m} & \cdots & P_{\pi}^{m} & \cdots & P_{n-1}^{m}
\end{array}\right]
$$

where the signer knows x_{π}^{j} such that $P_{\pi}^{j}=x_{\pi}^{j} G$ for $j=1,2, \ldots, m$

- For $I_{j}=x_{\pi}^{j} H_{p}\left(P_{\pi}^{j}\right)$, the MLSAG signature has the form $\sigma=\left(I_{1}, \ldots, I_{m}, c_{0}, s_{0}^{1}, \ldots, s_{0}^{m}, s_{1}^{1}, \ldots, s_{1}^{m}, s_{n-1}^{1}, \ldots, s_{n-1}^{m}\right)$

Deanonymization using Commitments

- Consider a confidential transaction which has two inputs and one output
- Suppose the sender uses a ring of size 5

$$
\text { Public key matrix }=\left[\begin{array}{lllll}
P_{0}^{1} & P_{1}^{1} & P_{2}^{1} & P_{3}^{1} & P_{4}^{1} \\
P_{0}^{2} & P_{1}^{2} & P_{2}^{2} & P_{3}^{2} & P_{4}^{2}
\end{array}\right]
$$

and knows private keys for P_{2}^{1}, P_{2}^{2}

- Let input commitments be

$$
\left[\begin{array}{lllll}
\left(C_{\text {in }}\right)_{0}^{1} & \left(C_{\text {in }}\right)_{1}^{1} & \left(C_{\text {in }}\right)_{2}^{1} & \left(C_{\text {in }}\right)_{3}^{1} & \left(C_{\text {in }}\right)_{4}^{1} \\
\left(C_{\text {in }}\right)_{0}^{2} & \left(C_{\text {in }}\right)_{1}^{2} & \left(C_{\text {in }}\right)_{2}^{2} & \left(C_{\text {in }}^{2}\right)_{3}^{2} & \left(C_{\text {in }}\right)_{4}^{2}
\end{array}\right]
$$

- Let the output commitment be $C_{\text {out }}$ and fees be f
- Observer can identify the sender column by checking for each $k=0,1,2,3,4$ if

$$
\left(C_{\text {in }}\right)_{k}^{1}+\left(C_{\text {in }}\right)_{k}^{2}=C_{\text {out }}+f H
$$

- We need to prove that the commitments in a column add up without revealing the column

Monero RingCT

- Previously, to ensure $\left(C_{i n}\right)_{\pi}^{1}+\left(C_{i n}\right)_{\pi}^{2}=C_{\text {out }}+f H$, blinding factors need to be balanced

$$
\left(x_{\text {in }}\right)_{\pi}^{1}+\left(x_{\text {in }}\right)_{\pi}^{2}=x_{\text {out }}
$$

- Balancing needed only for third party verification of transactions
- For anonymization, we can set $\left(x_{i n}\right)_{\pi}^{1}+\left(x_{i n}\right)_{\pi}^{2}=x_{\text {out }}+z$ and communicate z to receiver using the shared secret
- How to enable third party verification?
- Solution: MLSAG using following public key matrix

$$
\left[\begin{array}{ccccc}
P_{0}^{1} & P_{1}^{1} & P_{2}^{1} & P_{3}^{1} & P_{4}^{1} \\
P_{0}^{2} & P_{1}^{2} & P_{2}^{2} & P_{3}^{2} & P_{4}^{2} \\
\sum_{j=1}^{2}\left(C_{\text {in }}\right)_{0}^{j}-C_{\text {out }}-f H & & \cdots & & \sum_{j=1}^{2}\left(C_{\text {in }}\right)_{4}^{j}-C_{\text {out }}-f H
\end{array}\right]
$$

- A signature verifiable using a public key in the last row implies knowledge of corresponding z

References

- Ring Confidential Transactions http://www.ledgerjournal.org/ojs/ index.php/ledger/article/view/34
- LSAG, Part 6 of Monero's Building Blocks Articles https://delfr.com/ wp-content/uploads/2018/04/Monero_Building_Blocks_Part6.pdf
- MLSAG, Part 7 of Monero's Building Blocks Articles https://delfr.com/ wp-content/uploads/2018/05/Monero_Building_Blocks_Part7.pdf
- RingCT, Part 9 of Monero's Building Blocks Articles https://delfr.com/ wp-content/uploads/2018/04/Monero_Building_Blocks_Part9.pdf

