Zero-Knowledge Proofs of Knowledge

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 14, 2019

Proofs of Knowledge

- Proofs in which prover asserts knowledge of a secret
- Example
 - Let L_{iso} be the encoding of pairs of graphs which are isomorphic

 $L_{iso} = \{(G_1, G_2) \mid \exists \phi \text{ such that } \phi : G_1 \rightarrow G_2 \text{ is an isomorphism} \}$

- Prover claims to know a ϕ , instead of just claiming that $(G_1, G_2) \in L_{iso}$
- Zero-knowledge proofs are not necessarily proofs of knowledge
- · How to capture the notion of a machine knowing something?
- The "something" can be captured by a binary relation
 - Let $R \subset \{0,1\}^* \times \{0,1\}^*$ be a binary relation
 - The language L_R is given by

 $L_R = \{x \mid \exists w \text{ such that } (x, w) \in R\}$

• Any *w* such that (*x*, *w*) ∈ *R* is called a **witness** for the membership of *x* in *L*_{*R*}

Proof of Knowledge Definition

- Main idea: If a prover *P** claims to know a witness, then this witness should be extractable from *P**
- Definition: Let κ : {0, 1}* → [0, 1] be a function. A protocol (P, V) is a proof of knowledge for the relation R with knowledge error κ if
 - **Completeness:** If *P* and *V* follow the protocol on input *x* and private input *w* to *P* where $(x, w) \in R$, then *V* always accepts
 - Knowledge soundness: There exists a constant *c* > 0 and a PPT machine *K*, called the knowledge extractor, such that for every interactive prover *P*^{*} and every *x* ∈ *L*_R, the machine *K* satisfies the following condition:

Let $\epsilon(x)$ be the probability that *V* accepts on input *x* after interacting with P^* . If $\epsilon(x) > \kappa(x)$, then upon input *x* and oracle access to P^* , the machine *K* outputs a string *w* such that $(x, w) \in R$ with probability $\epsilon(x) - \kappa(x)$.

• The knowledge error is the probability of being able to convince a verifier without knowing *w*

Proof of Knowledge Alternative Definition

- Main idea: If a prover *P** claims to know a witness, then this witness should be extractable from *P**
- Definition: Let κ : {0, 1}* → [0, 1] be a function. A protocol (P, V) is a proof of knowledge for the relation R with knowledge error κ if
 - **Completeness:** If *P* and *V* follow the protocol on input *x* and private input *w* to *P* where $(x, w) \in R$, then *V* always accepts
 - Knowledge soundness: There exists a constant *c* > 0 and a probabilistic machine *K*, called the knowledge extractor, such that for every interactive prover *P*^{*} and every *x* ∈ *L_R*, the machine *K* satisfies the following condition:

Let $\epsilon(x)$ be the probability that *V* accepts on input *x* after interacting with P^* . If $\epsilon(x) > \kappa(x)$, then upon input *x* and oracle access to P^* , the machine *K* outputs a string *w* such that $(x, w) \in R$ within an **expected** number of steps bounded by

$$\frac{|x|^c}{\epsilon(x)-\kappa(x)}.$$

Schnorr Identification Scheme

- Let G be a cyclic group of order q with generator g
- Identity corresponds to knowledge of private key x where $h = g^x$
- A prover wants to prove that she knows *x* to a verifier without revealing it
 - 1. Prover picks $k \leftarrow \mathbb{Z}_q$ and sends initial message $I = g^k$
 - 2. Verifier sends a challenge $r \leftarrow \mathbb{Z}_q$
 - 3. Prover sends $s = rx + k \mod q$
 - 4. Verifier checks $g^s \cdot h^{-r} \stackrel{?}{=} I$
- The knowledge extractor K does the following
 - 1. After the initial message *I* from prover, *K* sends a challenge $r \in \mathbb{Z}_q$
 - 2. K receives the response s from prover
 - 3. K rewinds the protocol to the step when I was received
 - 4. *K* sends a challenge $r' \neq r$ and receives s' from the prover
 - 5. *K* extracts *x* from the pairs (r, s) and (r', s')
- This protocol is a PoK but not ZK!
- It is however HVZK

Zero-Knowledge Proof of Knowledge

- An interactive proof system is a ZKPoK if it satisfies:
 - Completeness: Honest prover convinces honest verifier
 - Zero-Knowledge: Malicious verifiers learn nothing more than statement validity
 - Knowledge soundness: Ensures prover knows witness

ZKPoK for Quadratic Residuosity

- Interactive protocol for QR of $x = w^2$ modulo N = pq
 - *P* picks $r \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and sends $y = r^2$ to *V*
 - V picks a bit $b \leftarrow \{0, 1\}$ and sends b to P
 - If b = 0, P sends z = r. If b = 1, P sends z = wr
 - If b = 0, V checks $z^2 = y$. If b = 1, V checks $z^2 = xy$
- We already proved completeness and zero-knowledge. Only need to show knowledge soundness
- The knowledge extractor K does the following
 - 1. After the initial message y from prover, K sends the challenge bit b = 0
 - 2. *K* receives the response z_0 from prover
 - 3. K rewinds the protocol to the step when y was received
 - 4. *K* sends challenge bit b = 1 and receives z_1 from the prover
 - 5. K extracts w as $\frac{z_1}{z_0}$

ZKPoK for Graph Isomorphism

- An isomorphism ϕ between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ exists
- Prover and verifier execute the following protocol
 - Prover picks a random permutation π from the set of permutations of V₂
 - Prover calculates $F = \{(\pi(u), \pi(v) \mid (u, v) \in E_2\}$ and sends the graph $G' = (V_2, F)$ to verifier
 - Verifier picks $\sigma \in \{1, 2\}$ randomly and sends it to prover
 - If σ = 2, then prover sends π to the verifier. Otherwise, it sends π ∘ φ to the verifier where (π ∘ φ) (ν) is defined as π (φ(ν))
 - If the received mapping is an isomorphism between G_σ and G', the verifier accepts. Otherwise, it rejects
- The knowledge extractor K does the following
 - 1. After the initial message G' from prover, K sends the challenge $\sigma = 1$
 - 2. *K* receives the response ψ_1 from prover
 - 3. K rewinds the protocol to the step when G' was received
 - 4. *K* sends challenge $\sigma = 2$ and receives ψ_2 from the prover
 - 5. *K* extracts an isomorphism as $\psi_2^{-1} \circ \psi_1$

References

- On Σ-protocols, Ivan Damgård, http://www.cs.au.dk/~ivan/Sigma.pdf
- Section 4.7 of Foundations of Cryptography, Volume I by Oded Goldreich
- Yehuda Lindell's lecture in the 9th BIU Winter School on Cryptography
 - https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
 - ZKPoKs http://cyber.biu.ac.il/wp-content/uploads/ 2018/08/WS-19-3-ZKPOK_D1-5.pdf
 - ZKPoKs https://www.youtube.com/watch?v=RvGsjnoYRRg