Zero Knowledge Proofs

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in
Department of Electrical Engineering Indian Institute of Technology Bombay

September 30, 2019

Gartner Hype Cycle for Identity

Gartner.

Source: https://twitter.com/IdentityMonk/status/ 1158564314577612800

Zero Knowledge Proofs

- Proofs that yield nothing beyond the validity of an assertion
- Examples of assertions
- I know the discrete log of a group element wrt a generator
- I know an isomorphism between two graphs G_{1}, G_{2}
- Proofs are a sequence of statements each of which is an axiom or follows from axioms via derivation rules
- Traditional proofs do not have explicit provers and verifiers
- ZKPs involve explicit interaction between prover and verifier
- Prover and verifier will be modeled as algorithms or machines
- Verifier is assumed to be probabilistic polynomial-time (PPT)
- Prover may or may not be PPT

Examples of Interactive Proofs

- Proving that two chalks have different colours to a colour-blind verifier
- Proof of Quadratic Residuosity
- For a positive integer N, x is called a quadratic residue modulo N if

$$
x=w^{2} \bmod N \text { for some } w
$$

- Suppose $N=p q$ for distinct primes p and q with $|p|=|q|=n$.
- Without knowing the factorization of N, the best algorithms for checking $x \in Q R_{N}$ run in $\exp \left(\mathcal{O}\left(n^{\frac{1}{3}}\right)\right)$ steps
- Using the factorization of $N, x \in Q R_{N}$ can be checked in time which is polynomial in n
- Proof of Quadratic Non-Residuosity
- Exhaustive checking is not feasible
- Use an idea similar to the chalks example
- More details on the last two examples

08/WS-19-1-ZK-intro.pdf

Knowledge vs Information

- In information theory, entropy is used to quantify information
- Entropy of a discrete random variable X defined over an alphabet \mathcal{X} is

$$
H(X)=-\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

- Knowledge is related to computational difficulty, whereas information is not
- Suppose Alice and Bob know Alice's public key
- Alice sends her private key to Bob
- Bob has not gained new information (in the information-theoretic sense)
- But Bob now knows a quantity he could not have calculated by himself
- Knowledge is related to publicly known objects, whereas information relates to private objects
- Suppose Alice tosses a fair coin and sends the outcome to Bob
- Bob gains one bit of information (in the information-theoretic sense)
- We say Bob has not gained any knowledge as he could have tossed a coin himself

Modeling Assertions and Proofs

- The complexity class $\mathcal{N} \mathcal{P}$ captures the asymmetry between proof generation and verification
- A language is a subset of $\{0,1\}^{*}$
- Each language $L \in \mathcal{N P}$ has a polynomial-time verification procedure for proofs of statements " $x \in L$ "
- Example: L is the encoding of pairs of finite isomorphic graphs
- Let $R \subset\{0,1\}^{*} \times\{0,1\}^{*}$ be a relation
- R is said to be polynomial-time-recognizable if the assertion " $(x, y) \in R$ " can be checked in time poly $(|x|,|y|)$
- Each $L \in \mathcal{N P}$ is given by a PTR relation R_{L} such that

$$
L=\left\{x \mid \exists y \text { such that }(x, y) \in R_{L}\right\}
$$

and $(x, y) \in R_{L}$ only if $|y| \leq \operatorname{poly}(|x|)$

- Any y for which $(x, y) \in R_{L}$ is a proof of the assertion " $x \in L$ "

Interactive Proof Systems

- Let $\langle A, B\rangle(x)$ denote the output of B when interacting with A on common input x
- Output 1 is interpreted as "accept" and 0 is interpreted as "reject"

Definition

A pair of interactive machines (P, V) is called an interactive proof system for a language L if machine V is polynomial-time and the following conditions hold:

- Completeness: For every $x \in L$,

$$
\operatorname{Pr}[\langle P, V\rangle(x)=1] \geq \frac{2}{3}
$$

- Soundness: For every $x \notin L$ and every interactive machine B,

$$
\operatorname{Pr}[\langle B, V\rangle(x)=1] \leq \frac{1}{3}
$$

- Remarks
- Soundness condition refers to any possible prover while completeness condition refers only to the prescribed prover
- Prescribed prover is allowed to fail with probability $\frac{1}{3}$
- Arbitrary provers are allowed to succeed with probability $\frac{1}{3}$
- These probabilities can be made arbitrarily small by repeating the interaction

Generalized Interactive Proof Systems

Definition

Let $c, s: \mathbb{N} \rightarrow \mathbb{R}$ be functions satisfying $c(n)>s(n)+\frac{1}{p(n)}$ for some polynomial $p(\cdot)$. A pair of interactive machines (P, V) is called a generalized interactive proof system for a language L with completeness bound $c(\cdot)$ and soundness bound $s(\cdot)$ if machine V is polynomial-time and the following conditions hold:

- Completeness: For every $x \in L$,

$$
\operatorname{Pr}[\langle P, V\rangle(x)=1] \geq c(|x|)
$$

- Soundness: For every $x \notin L$ and every interactive machine B,

$$
\operatorname{Pr}[\langle B, V\rangle(x)=1] \leq s(|x|)
$$

The following three conditions are equivalent

- There exists an interactive proof system for L with completeness bound $\frac{2}{3}$ and soundness bound $\frac{1}{3}$
- For every polynomial $q(\cdot)$, there exists an interactive proof system for L with error probabilistic max $(1-c(|x|), s(|x|))$ bounded above by $2^{-q(|x|)}$
- There exists a polynomial $q(\cdot)$ and a generalized interactive proof system for the language L, with acceptance gap $c(|x|)-s(|x|)$ bounded below by $\frac{1}{q(|x|)}$.

Graph Isomorphism

- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijection $\pi: V_{1} \mapsto V_{2}$ such that $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

$$
\begin{array}{r}
\pi(a)=1, \pi(b)=6, \pi(c)=8, \pi(d)=3 \\
\pi(g)=5, \pi(h)=2, \pi(i)=4, \pi(j)=7
\end{array}
$$

Interactive Proof for Graph Non-Isomorphism

- Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijection $\pi: V_{1} \mapsto V_{2}$ such that $(u, v) \in E_{1} \Longleftrightarrow(\pi(u), \pi(v)) \in E_{2}$
- Graphs G_{1} and G_{2} are non-isomorphic if no such bijection exists
- Prover and verifier execute the following protocol
- Verifier picks $\sigma \in\{1,2\}$ randomly and a random permutation π from the set of all permutations over V_{σ}
- Verifier calculates $F=\left\{\left(\pi(u), \pi(v) \mid(u, v) \in E_{\sigma}\right\}\right.$ and sends the graph $G^{\prime}=\left(V_{\sigma}, F\right)$ to prover
- Prover finds $\tau \in\{1,2\}$ such that G^{\prime} is isomorphic to G_{τ} and sends τ to verifier
- If $\tau=\sigma$, verifier accepts claim. Otherwise, it rejects.
- Remarks
- Verifier is a PPT machine but no known PPT implementation for prover
- If G_{1} and G_{2} are not isomorphic, then verifier always accepts
- If G_{1} and G_{2} are isomorphic, then verifier rejects with probability at least $\frac{1}{2}$
- Acceptance gap is bounded from below by $\frac{1}{2}$

Zero Knowledge Interactive Proofs

- Consider an interactive proof system (P, V) for a language L
- In an interactive proof, we need to guard against a malicious prover
- To guarantee zero knowledge, we need to guard against a malicious verifier
- Recall that knowledge is related to computational difficulty
- Informal definition
- An interactive proof system is zero knowledge if whatever can be efficiently computed after interaction with P on input x can also be efficiently computed from x (without interaction)
- Formal definition (ideal)
- We say (P, V) is perfect zero knowledge if for every PPT interactive machine V^{*} there exists a PPT algorithm M^{*} such that for every $x \in L$ the random variables $\left\langle P, V^{*}\right\rangle(x)$ and $M^{*}(x)$ are identically distributed
- M^{*} is called a simulator for the interaction of V^{*} with P
- Unfortunately, the above definition is too strict
- A relaxed definition is used instead

Perfect Zero Knowledge

Definition

Let (P, V) be an interactive proof system for a language L. We say that (P, V) is perfect zero knowledge if for every PPT interactive machine V^{*} there exists a PPT algorithm M^{*} such that for every $x \in L$ the following two conditions hold:

1. With probability at most $\frac{1}{2}$, machine M^{*} outputs a special symbol \perp
2. Let $m^{*}(x)$ be the random variable describing the distribution of $M^{*}(x)$ conditioned on $M^{*}(x) \neq \perp$. Then the random variables $\left\langle P, V^{*}\right\rangle(x)$ and $m^{*}(x)$ are identically distributed

- Remarks
- M^{*} is called a perfect simulator for the interaction of V^{*} with P
- By repeated interactions, the probability that the simulator fails to generate the identical distribution can be made negligible
- Alternative formulation: Replace $\left\langle P, V^{*}\right\rangle(x)$ with view ${ }_{V^{*}}^{P}(x)$
- A verifier's view consists of messages it receives and any randomness it generates
- Simulator M^{*} has to change accordingly

ZK Proof for Graph Isomorphism

- An isomorphism ϕ between graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ exists
- Prover and verifier execute the following protocol
- Prover picks a random permutation π from the set of permutations of V_{2}
- Prover calculates $F=\left\{\left(\pi(u), \pi(v) \mid(u, v) \in E_{2}\right\}\right.$ and sends the graph $G^{\prime}=\left(V_{2}, F\right)$ to verifier
- Verifier picks $\sigma \in\{1,2\}$ randomly and sends it to prover
- If $\sigma=2$, then prover sends π to the verifier. Otherwise, it sends $\pi \circ \phi$ to the verifier where $(\pi \circ \phi)(v)$ is defined as $\pi(\phi(v))$
- If the received mapping is an isomorphism between G_{σ} and G^{\prime}, the verifier accepts. Otherwise, it rejects
- Remarks
- Verifier is a PPT machine. If ϕ is known to prover, it is a PPT machine
- If G_{1} and G_{2} are isomorphic, then verifier always accepts
- If G_{1} and G_{2} are not isomorphic, then verifier rejects with probability $\frac{1}{2}$
- The prover is perfect zero knowledge (to be argued)

Simulator for Graph Isomorphism Transcript

- For an arbitrary PPT verifier V^{*}, view $_{V^{*}}^{P}(x)=\left\langle G^{\prime}, \sigma, \psi\right\rangle$ where ψ is an isomorphism between G_{σ} and G^{\prime}
- The simulator M^{*} uses V^{*} as a subroutine
- On input $\left(G_{1}, G_{2}\right)$, simulator randomly picks $\tau \in\{1,2\}$ and generates a random isomorphic copy $G^{\prime \prime}$ of G_{τ}
- Note that $G^{\prime \prime}$ is identically distributed to G^{\prime}
- Simulator gives $G^{\prime \prime}$ to V^{*} and receives $\sigma \in\{1,2\}$ from it
- V^{*} is asking for an isomorphism from G_{σ} to $G^{\prime \prime}$
- If $\sigma=\tau$, then the simulator can provide the isomorphism $\pi: G_{\tau} \mapsto G^{\prime \prime}$
- If $\sigma \neq \tau$, then the simulator outputs \perp
- If the simulator does not output \perp, then $\left\langle G^{\prime \prime}, \tau, \pi\right\rangle$ is identically distributed to $\left\langle G^{\prime}, \sigma, \psi\right\rangle$

ZK Proof for Quadratic Residuosity

- Interactive protocol for QR of $x=w^{2}$ modulo $N=p q$
- P picks $r \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$ and sends $y=r^{2}$ to V
- V picks a bit $b \stackrel{\$}{\leftarrow}\{0,1\}$ and sends b to P
- If $b=0, P$ sends $z=r$. If $b=1, P$ sends $z=w r$
- If $b=0, V$ checks $z^{2}=y$. If $b=1, V$ checks $z^{2}=x y$
- If $x \in Q R_{N}$, then V always accepts
- We want to prove that if $x \notin Q R_{N}$, then for any P^{*}

$$
\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \leq \frac{1}{3}
$$

- Using the fact that $Q R_{N}$ is a group, we can argue that

$$
\operatorname{Pr}\left[\left\langle P^{*}, V\right\rangle(x)=1\right] \geq \frac{2}{3} \Longrightarrow x \in Q R_{N}
$$

- For an arbitrary PPT verifier V^{*}, $\operatorname{view}_{V^{*}}^{P}(x)=\langle y, b, z\rangle$ where $z^{2}=x^{b} y$
- To show the protocol is ZK , consider a simulator M^{*} which does the following
- M^{*} picks $z \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$ and $b \stackrel{\$}{\leftarrow}\{0,1\}$
- M^{*} sets $y=\frac{z^{2}}{x^{b}}$
- If $V^{*}(y)=b$, then M^{*} outputs $\langle y, b, z\rangle$. Otherwise, M^{*} outputs \perp

ZK Proof for Quadratic Non-Residuosity

- Interactive protocol for QNR of x modulo $N=p q$
- V picks $y \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{N}^{*}$ and a bit $b \stackrel{\$}{\leftarrow}\{0,1\}$
- If $b=0, V$ sends $z=y^{2}$. If $b=1, V$ sends $z=x y^{2}$
- If $z \in Q R_{N}, P$ sends $b^{\prime}=0$. If $z \in Q R_{N}, P$ sends $b^{\prime}=1$
- V accepts if $b^{\prime}=b$
- If $x \notin Q R_{N}$, then V always accepts. Otherwise, it rejects with probability $\frac{1}{2}$
- The above protocol is HVZK but not ZK!
- Consider a PPT verifier V^{*} which wants to find out if some $u \in \mathbb{Z}_{N}^{*}$ is in $Q R_{N}$
- By replacing x in the above protocol with u, verifier V^{*} can get information about u
- If the protocol was ZK , then there exists a PPT M^{*} which can get the same information without interacting with P
- This contradicts the non-existence of PPT algorithms for checking membership in $Q R_{N}$
- Solution: V has to prove that it either knows the square root of z or $z x^{-1}$ to P
- The number of interaction rounds increases from 2 to 4

ZK Proof for Quadratic Non-Residuosity

- ZK Interactive protocol for QNR of x modulo $N=p q$
- V picks $y \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$ and a bit $b \stackrel{\$}{\leftarrow}\{0,1\}$
- If $b=0, V$ sends $z=y^{2}$. If $b=1, V$ sends $z=x y^{2}$
- For $1 \leq j \leq m$,
- V picks $r_{j, 1}, r_{j, 2} \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*}$ and bit ${ }_{j} \stackrel{\$}{\leftarrow}\{0,1\}$
- V computes $\alpha_{j}=r_{j, 1}^{2}$ and $\beta_{j}=x r_{j, 2}^{2}$.
- If bit $_{j}=1, V$ sends pair ${ }_{j}=\left(\alpha_{j}, \beta_{j}\right)$. If bit $_{j}=0, V$ sends pair $_{j}=\left(\beta_{j}, \alpha_{j}\right)$.
- P sends V a bit string $\left[i_{1}, i_{2}, \ldots, i_{m}\right] \in\{0,1\}^{m}$
- V sends P the sequence $v_{1}, v_{2}, \ldots, v_{m}$
- If $i_{j}=0$, then $v_{j}=\left(r_{j, 1}, r_{j, 2}\right)$.
- If $i_{j}=1$, then $v_{j}=y r_{j, 1}$ if $b=0$. So V sends a square root of $z \alpha_{j}$
- If $i_{j}=1$, then $v_{j}=x y r_{j, 2}$ if $b=1$. So V sends a square root of $z \beta_{j}$
- P checks the following:
- If $i_{j}=0, P$ checks if $\left(r_{j, 1}^{2}, r_{j, 2}^{2} x\right)$ equals pair ${ }_{j}$, possibly with elements in the pair interchanged.
- If $i_{j}=1, P$ checks if $v_{j}^{2} z^{-1}$ is a member of pair ${ }_{j}$.
- If all checks pass and $z \in Q R_{N}, P$ sends $b^{\prime}=0$. If $z \in \overline{Q R}_{N}, P$ sends $b^{\prime}=1$
- V accepts if $b^{\prime}=b$

ZK Proofs for $\mathcal{N P}$

- Goal: To construct ZK proofs for every language in $\mathcal{N P}$
- Possible if we assume the existence of perfectly binding and computationally hiding commitment schemes
- Example: El Gamal commitment scheme
- Let G, H be generators of a group \mathcal{G} of order p
- Discrete logarithms are assumed to be hard to compute in \mathcal{G}
- G and H have unknown discrete logarithms wrt each other
- El Gamal commitment to a message $m \in \mathbb{Z}_{p}$ is given by

$$
\operatorname{Com}_{G, H}(m, r)=(r G, r H+m G)
$$

- In contrast, Pedersen commitments are perfectly hiding and computationally binding
- $\mathcal{N} \mathcal{P}$-complete languages $=$ "Hardest" $\mathcal{N} \mathcal{P}$ languages
- Examples: SAT, Graph 3-coloring
- Proof strategy
- Give a ZK proof of graph 3-coloring
- Since every $\mathcal{N} \mathcal{P}$ language can be reduced to graph 3-coloring, we are done

Graph 3-Coloring

- Assigning one of three colors to each vertex such that no two adjacent vertices have the same color

Image source: https://en.wikipedia.org/wiki/Graph_coloring

ZK Proof for Graph 3-Coloring

- Common input: A simple 3-colorable graph $G=(V, E)$ where $|V|=n$ and $V=\{1,2, \ldots, n\}$
- Prover has a 3-coloring of G given by $\psi: V \rightarrow\{1,2,3\}$ such that $\psi(u) \neq \psi(v)$ for all $(u, v) \in E$
- Interactive proof

1. Prover selects a random permutation $\pi:\{1,2,3\} \rightarrow\{1,2,3\}$ and sets $\phi(v)=\pi(\psi(v))$
2. Prover computes commitments $c_{v}=\operatorname{com}(\phi(v))$ for all $v \in V$ and sends $c_{1}, c_{2}, \ldots, c_{n}$ to verifier
3. Verifier selects an edge $(u, v) \in E$ and sends it to prover
4. Prover opens the commitments of the colors $\phi(u)$ and $\phi(v)$
5. Verifier checks commitment openings and if $\phi(u) \neq \phi(v)$

- Completeness: If G is 3 -colorable, verifier accepts with probability 1
- Soundness: If G is not 3 -colorable, there exists at least one edge with $\phi(u)=\phi(v)$ and the verifier rejects with probability at least $\frac{1}{|E|}$
- The acceptance gap is $\frac{1}{|E|}$ which is bounded below by $1 /\binom{n}{2}$
- Zero knowledge: For any V^{*}, consider a simulator M^{*} which independently selects n values $e_{1}, e_{2}, \ldots, e_{n}$ from $\{1,2,3\}$ and creates commitments to each of them. If the query edge from V^{*} is (u, v), then $e_{u} \neq e_{v}$ with probability $\frac{2}{3}$ and M^{*} opens the commitments. If $e_{u}=e_{V}, M^{*}$ outputs \perp.

References

- Sections 4.1, 4.2, 4.3, 4.4.2 of Foundations of Cryptography, Volume I by Oded Goldreich
- Alon Rosen's lecture in the 9th BIU Winter School on Cryptography
- https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
- ZKP intro

```
    https://www.youtube.com/watch?v=6uGimDYZPMw
```

- ZKP intro http://cyber.biu.ac.il/wp-content/uploads/ 2018/08/WS-19-1-ZK-intro.pdf
- ZK for NP
https://www.youtube.com/watch?v=cQ-BI1WWzjU
- ZK for NP http://cyber.biu.ac.il/wp-content/ uploads/2018/08/WS-19-2-ZK-for-NP.pdf
- Widgerson interview is in the first 8 minutes of https://www.youtube.com/watch?v=cAI7Iw_bkZs
- The Knowledge Complexity of Interactive Proof Systems, S. Goldwasser, S. Micali, C. Rackoff, 1989. https://doi.org/10.1137/0218012

