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Zero Knowledge Proofs

Proofs that yield nothing beyond the validity of an assertion
Examples of assertions

e | know the discrete log of a group element wrt a generator
e | know an isomorphism between two graphs Gy, Gz

Proofs are a sequence of statements each of which is an axiom
or follows from axioms via derivation rules

¢ Traditional proofs do not have explicit provers and verifiers
ZKPs involve explicit interaction between prover and verifier
Prover and verifier will be modeled as algorithms or machines

o Verifier is assumed to be probabilistic polynomial-time (PPT)
e Prover may or may not be PPT
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Examples of Interactive Proofs

¢ Proving that two chalks have different colours to a colour-blind
verifier
e Proof of Quadratic Residuosity
e For a positive integer N, x is called a quadratic residue modulo N if

x = w? mod N for some w

e Suppose N = pq for distinct primes p and g with |p| = |q| = n.
o Without knowing the factorization of N, the best algorithms for
checking x € QRy run in exp ((’)(n%)) steps
¢ Using the factorization of N, x € QRy can be checked in time
which is polynomial in n
e Proof of Quadratic Non-Residuosity
e Exhaustive checking is not feasible
e Use an idea similar to the chalks example
o More details on the last two examples
http://cyber.biu.ac.il/wp-content/uploads/2018/
08/WS-19-1-ZK-intro.pdf
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Knowledge vs Information

In information theory, entropy is used to quantify information

Entropy of a discrete random variable X defined over an
alphabet X is

— > p(x)log p(x

XeX

Knowledge is related to computational difficulty, whereas
information is not

Suppose Alice and Bob know Alice’s public key

Alice sends her private key to Bob

Bob has not gained new information (in the information-theoretic
sense)

But Bob now knows a quantity he could not have calculated by
himself

Knowledge is related to publicly known objects, whereas
information relates to private objects

e Bob gains one bit of information (in the information-theoretic sense)

Suppose Alice tosses a fair coin and sends the outcome to Bob

We say Bob has not gained any knowledge as he could have
tossed a coin himself
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Modeling Assertions and Proofs

The complexity class NP captures the asymmetry between
proof generation and verification

A language is a subset of {0,1}*

Each language L € NP has a polynomial-time verification
procedure for proofs of statements “x € L”

e Example: L is the encoding of pairs of finite isomorphic graphs
Let R c {0,1}* x {0,1}* be a relation

R is said to be polynomial-time-recognizable if the assertion
“(x,y) € R’ can be checked in time poly(|x|,|y|)

Each L € NP is given by a PTR relation R, such that
L ={x |3y such that (x,y) € R}

and (x, y) € R only if [y| < poly(|x|)
Any y for which (x, y) € Ry is a proof of the assertion “x € L”
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Interactive Proof Systems

e Let (A, B)(x) denote the output of B when interacting with A on common input x
e Output 1 is interpreted as “accept” and 0 is interpreted as “reject”
Definition
A pair of interactive machines (P, V) is called an interactive proof system for a
language L if machine V is polynomial-time and the following conditions hold:

e Completeness: For every x € L,

Pri(P,V)(x) =1] >

Wl N

e Soundness: For every x ¢ L and every interactive machine B,

Pr(B,V)() =11 < o

e Remarks

e Soundness condition refers to any possible prover while completeness
condition refers only to the prescribed prover

e Prescribed prover is allowed to fail with probability %

e Arbitrary provers are allowed to succeed with probability %

e These probabilities can be made arbitrarily small by repeating the
interaction
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Generalized Interactive Proof Systems

Definition

Let ¢, s : N — R be functions satisfying c(n) > s(n) + ﬁ for some polynomial p(-). A
pair of interactive machines (P, V) is called a generalized interactive proof system for
a language L with completeness bound c(-) and soundness bound s(-) if machine

V is polynomial-time and the following conditions hold:
e Completeness: For every x € L,

Pri(P, V)(x) = 1] = c(|xI)
e Soundness: For every x ¢ L and every interactive machine B,
Pr((B, V)(x) = 1] < s(|x])

The following three conditions are equivalent
e There exists an interactive proof system for L with completeness bound % and
soundness bound }

e For every polynomial q(+), there exists an interactive proof system for L with error
probabilistic max (1 — ¢(|x|), s(|x|)) bounded above by 2—a(IxI)

e There exists a polynomial q(-) and a generalized interactive proof system for the
language L, with acceptance gap c¢(|x|) — s(|x|) bounded below by m.



Graph Isomorphism

e Graphs Gy = (V4, Ey) and Go = (V», Ep) are isomorphic if there exists a
bijection 7 : V4 — Va such that (u,v) € E; <= (n(u),n(v)) € E

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

m(a) = 1,7(b) = 6,7(c) = 8, (d) = 3,
7(9) = 5.7(h) = 2,7(i) = 4, 7(j) = 7


https://en.wikipedia.org/wiki/Graph_isomorphism

Interactive Proof for Graph Non-lsomorphism

e Graphs Gy = (V4, Ey) and Go = (V», Ep) are isomorphic if there exists a
bijection 7 : V4 — Va such that (u,v) € E; <= (n(u),n(v)) € E

e Graphs G; and G, are non-isomorphic if no such bijection exists

e Prover and verifier execute the following protocol

e Verifier picks o € {1,2} randomly and a random permutation 7 from the set
of all permutations over V,,

e Verifier calculates F = {(w(u), n(v) | (u,Vv) € Es} and sends the graph
G' = (Vs, F) to prover

e Prover finds 7 € {1, 2} such that G’ is isomorphic to G, and sends 7 to
verifier

e |f 7 = o, verifier accepts claim. Otherwise, it rejects.

e Remarks

Verifier is a PPT machine but no known PPT implementation for prover
If Gy and Go are not isomorphic, then verifier always accepts
If Gy and G, are isomorphic, then verifier rejects with probability at least %

Acceptance gap is bounded from below by %
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Zero Knowledge Interactive Proofs

Consider an interactive proof system (P, V) for a language L

¢ In an interactive proof, we need to guard against a malicious prover
¢ To guarantee zero knowledge, we need to guard against a
malicious verifier

Recall that knowledge is related to computational difficulty
Informal definition

¢ An interactive proof system is zero knowledge if whatever can be
efficiently computed after interaction with P on input x can also
be efficiently computed from x (without interaction)

Formal definition (ideal)

o We say (P, V) is perfect zero knowledge if for every PPT
interactive machine V* there exists a PPT algorithm M* such that
for every x € L the random variables (P, V*)(x) and M*(x) are
identically distributed

e M* is called a simulator for the interaction of V* with P

Unfortunately, the above definition is too strict
A relaxed definition is used instead
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Perfect Zero Knowledge

Definition

Let (P, V) be an interactive proof system for a language L. We say that (P, V) is
perfect zero knowledge if for every PPT interactive machine V* there exists a PPT
algorithm M* such that for every x € L the following two conditions hold:

1. With probability at most % machine M* outputs a special symbol L

2. Let m*(x) be the random variable describing the distribution of M*(x)
conditioned on M*(x) #_L. Then the random variables (P, V*)(x) and m*(x) are
identically distributed

e Remarks
o M~ is called a perfect simulator for the interaction of V* with P
o By repeated interactions, the probability that the simulator fails to
generate the identical distribution can be made negligible
« Alternative formulation: Replace (P, V*)(x) with view}. (x)

o A verifier's view consists of messages it receives and any
randomness it generates
e Simulator M* has to change accordingly
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ZK Proof for Graph Isomorphism

e Anisomorphism ¢ between graphs G; = (Vi, Eq) and Go = ( Vs, Ey) exists

e Prover and verifier execute the following protocol

e Prover picks a random permutation 7 from the set of permutations of V;
e Prover calculates F = {(w(u),w(v) | (u,v) € Ex} and sends the graph

G’ = (Vo, F) to verifier

e Verifier picks o € {1,2} randomly and sends it to prover
e |f o = 2, then prover sends = to the verifier. Otherwise, it sends 7 o ¢ to the

verifier where (7 o ¢) (v) is defined as = (¢(v))
If the received mapping is an isomorphism between G, and G, the verifier
accepts. Otherwise, it rejects

e Remarks

Verifier is a PPT machine. If ¢ is known to prover, it is a PPT machine
If Gy and G are isomorphic, then verifier always accepts

If Gy and Go are not isomorphic, then verifier rejects with probability 15
The prover is perfect zero knowledge (to be argued)
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Simulator for Graph Isomorphism Transcript

e For an arbitrary PPT verifier V*, viewﬁ* (x) = (G, 0,%) where ¢ is an
isomorphism between G, and G’

e The simulator M* uses V* as a subroutine

® Oninput (Gy, Gz), simulator randomly picks 7 € {1,2} and generates a random
isomorphic copy G” of G-

e Note that G” is identically distributed to G’
e Simulator gives G to V* and receives o € {1,2} from it

e V* is asking for an isomorphism from G, to G”
e |f o = 7, then the simulator can provide the isomorphism = : G — G”
e |f o # 7, then the simulator outputs L

e [f the simulator does not output L, then (G”, 7, w) is identically distributed to
(G, 0,7)
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ZK Proof for Quadratic Residuosity

Interactive protocol for QR of x = w2 modulo N = pg
e Ppicks r & Zjy and sends y = r2to V

e Vpicks abit b < {0,1} and sends bto P
o [fb=0,Psendsz=r.lfb=1, Psends z = wr
e lfb=0, Vchecks zZ2 =y. If b= 1, V checks z2 = xy

If x € QRy, then V always accepts
We want to prove that if x ¢ QRy, then for any P*

PP, V)() =11 < 3
Using the fact that QR)y is a group, we can argue that
2
Pr[<P*7 V>(X) = 1] > 5 — X € QHN

For an arbitrary PPT verifier V*, view. (x) = (y, b, z) where z2 = xPy
e To show the protocol is ZK, consider a simulator M* which does the
following
e M* picks z & Zy, and b & {0,1}
o M*setsy = i—i
e |f V*(y) = b, then M* outputs (y, b, z). Otherwise, M* outputs L
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ZK Proof for Quadratic Non-Residuosity

Interactive protocol for QNR of x modulo N = pg

o Vpicks y <& 7% and abit b & {0,1}

o lfb=0, Vsendsz=y2 If b=1, Vsends z = xy?

e Ifzc QRy, Psends b’ = 0. If z€ QRy, Psends b’ =

e Vacceptsif b’ =b
If x € QRy, then V always accepts. Otherwise, it rejects with probability %
The above protocol is HVZK but not ZK!

Consider a PPT verifier V* which wants to find out if some u € Zj, is in QRy
e By replacing x in the above protocol with u, verifier V* can get information
about u
o [f the protocol was ZK, then there exists a PPT M* which can get the same
information without interacting with P
e This contradicts the non-existence of PPT algorithms for checking
membership in QRy

Solution: V has to prove that it either knows the square root of z or zx~' to P
The number of interaction rounds increases from 2 to 4
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ZK Proof for Quadratic Non-Residuosity

e ZK Interactive protocol for QNR of x modulo N = pg

o Vpicks y <& 7% and abit b & {0,1}
e Ifb=0, Vsends z=y? Ifb=1, Vsends z = xy?
For1 <j<m,

o Vpicks 11,12 <i Zj and bit; <& {0, 1}
e V computes aj = and Bj = xrj o
e Ifbit; =1, V sends pa|r = (o, Bj). If bit; = 0, V sends
pair/- = (B, ).
P sends V a bit string [iy, o, . . . , im] € {0,1}7
V sends P the sequence vy, Vo, ..., Vm
° Ifi,_O then v; = (rj 1, 1j2)-
e Itjj=1,thenv; = yr; 1 if b= 0. So V sends a square root of zq;
o Ifj=1,thenv; = xyr; > if b= 1. So V sends a square root of zg;
P checks the following:
e If j =0, P checks if (r21 , r22x) equals pair;, possibly with elements in
the pair interchanged.
e Ifj; =1, P checks if \/]?2*1 is a member of pair;.

If all checks pass and z € QRy, P sends b’ = 0. If z € QRy, P sends
b =
V accepts if b’ = b



ZK Proofs for NP

e Goal: To construct ZK proofs for every language in NP

o Possible if we assume the existence of perfectly binding and
computationally hiding commitment schemes

Example: El Gamal commitment scheme

Let G, H be generators of a group G of order p

Discrete logarithms are assumed to be hard to compute in G

G and H have unknown discrete logarithms wrt each other

El Gamal commitment to a message m € Zp, is given by

Comg n(m,r) = (rG, rH + mG)

¢ In contrast, Pedersen commitments are perfectly hiding and
computationally binding
o N'P-complete languages = "Hardest" AP languages
e Examples: SAT, Graph 3-coloring
e Proof strategy

e Give a ZK proof of graph 3-coloring
e Since every NP language can be reduced to graph 3-coloring, we are done
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Graph 3-Coloring

¢ Assigning one of three colors to each vertex such that no two
adjacent vertices have the same color

Image source: https://en.wikipedia.org/wiki/Graph_coloring
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ZK Proof for Graph 3-Coloring

Common input: A simple 3-colorable graph G = (V, E) where |V| = nand
V={1,2,...,n}

Prover has a 3-coloring of G given by ¢ : V — {1, 2,3} such that y(u) # ¥(v)
forall (u,v) € E

Interactive proof
1. Prover selects a random permutation 7 : {1,2,3} — {1,2,3} and sets

P(v) = ($(v))

2. Prover computes commitments ¢, = com (¢(v)) for all v € V and sends

¢y, Co,...,Cn to verifier

3. Verifier selects an edge (u, v) € E and sends it to prover

4. Prover opens the commitments of the colors ¢(u) and ¢(v)

5. Verifier checks commitment openings and if ¢(u) # ¢(v)
Completeness: If G is 3-colorable, verifier accepts with probability 1
Soundness: If G is not 3-colorable, there exists at least one edge with
¢(u) = ¢(v) and the verifier rejects with probability at least %
The acceptance gap is |1T\ which is bounded below by 1/(3)

Zero knowledge: For any V*, consider a simulator M* which independently
selects nvalues eq, ey, ..., e, from {1,2,3} and creates commitments to each of
them. If the query edge from V* is (u, v), then ey # ey with probability % and M*
opens the commitments. If e, = ey, M* outputs L.
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