Zero Knowledge Proofs

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 30, 2019

Gartner Hype Cycle for Identity

Source: https://twitter.com/IdentityMonk/status/ 1158564314577612800

Zero Knowledge Proofs

- Proofs that yield nothing beyond the validity of an assertion
- Examples of assertions
 - I know the discrete log of a group element wrt a generator
 - I know an isomorphism between two graphs G₁, G₂
- Proofs are a sequence of statements each of which is an axiom or follows from axioms via derivation rules
 - Traditional proofs do not have explicit provers and verifiers
- ZKPs involve explicit interaction between prover and verifier
- Prover and verifier will be modeled as algorithms or machines
 - Verifier is assumed to be probabilistic polynomial-time (PPT)
 - Prover may or may not be PPT

Examples of Interactive Proofs

- Proving that two chalks have different colours to a colour-blind verifier
- Proof of Quadratic Residuosity
 - For a positive integer N, x is called a quadratic residue modulo N if

 $x = w^2 \mod N$ for some w

- Suppose N = pq for distinct primes p and q with |p| = |q| = n.
- Without knowing the factorization of *N*, the best algorithms for checking *x* ∈ *QR_N* run in exp (*O*(*n*^{1/3})) steps
- Using the factorization of $N, x \in QR_N$ can be checked in time which is polynomial in n
- Proof of Quadratic Non-Residuosity
 - Exhaustive checking is not feasible
 - Use an idea similar to the chalks example
- More details on the last two examples http://cyber.biu.ac.il/wp-content/uploads/2018/ 08/WS-19-1-ZK-intro.pdf

Knowledge vs Information

- In information theory, entropy is used to quantify information
- Entropy of a discrete random variable X defined over an alphabet \mathcal{X} is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

- Knowledge is related to computational difficulty, whereas information is not
 - Suppose Alice and Bob know Alice's public key
 - Alice sends her private key to Bob
 - Bob has not gained new information (in the information-theoretic sense)
 - But Bob now knows a quantity he could not have calculated by himself
- Knowledge is related to publicly known objects, whereas information relates to private objects
 - Suppose Alice tosses a fair coin and sends the outcome to Bob
 - Bob gains one bit of information (in the information-theoretic sense)
 - We say Bob has not gained any knowledge as he could have tossed a coin himself

Modeling Assertions and Proofs

- The complexity class \mathcal{NP} captures the asymmetry between proof generation and verification
- A language is a subset of {0, 1}*
- Each language *L* ∈ *NP* has a polynomial-time verification procedure for proofs of statements "*x* ∈ *L*"
 - Example: L is the encoding of pairs of finite isomorphic graphs
- Let $R \subset \{0,1\}^* \times \{0,1\}^*$ be a relation
- *R* is said to be polynomial-time-recognizable if the assertion " $(x, y) \in R$ " can be checked in time poly(|x|, |y|)
- Each $L \in \mathcal{NP}$ is given by a PTR relation R_L such that

$$L = \{x \mid \exists y \text{ such that } (x, y) \in R_L\}$$

and $(x, y) \in R_L$ only if $|y| \le poly(|x|)$

• Any y for which $(x, y) \in R_L$ is a proof of the assertion " $x \in L$ "

Interactive Proof Systems

- Let $\langle A, B \rangle(x)$ denote the output of B when interacting with A on common input x
- Output 1 is interpreted as "accept" and 0 is interpreted as "reject"

Definition

A pair of interactive machines (P, V) is called an **interactive proof system for a language** *L* if machine *V* is polynomial-time and the following conditions hold:

• **Completeness**: For every $x \in L$,

$$\Pr\left[\langle P, V \rangle(x) = 1\right] \geq \frac{2}{3}$$

• **Soundness**: For every $x \notin L$ and every interactive machine *B*,

$$\Pr\left[\langle B, V \rangle(x) = 1\right] \leq \frac{1}{3}$$

- Remarks
 - Soundness condition refers to any possible prover while completeness condition refers only to the prescribed prover
 - Prescribed prover is allowed to fail with probability $\frac{1}{3}$
 - Arbitrary provers are allowed to succeed with probability ¹/₃
 - These probabilities can be made arbitrarily small by repeating the interaction

Generalized Interactive Proof Systems

Definition

Let $c, s : \mathbb{N} \to \mathbb{R}$ be functions satisfying $c(n) > s(n) + \frac{1}{p(n)}$ for some polynomial $p(\cdot)$. A pair of interactive machines (P, V) is called a **generalized** interactive proof system for a language *L* with **completeness bound** $c(\cdot)$ and **soundness bound** $s(\cdot)$ if machine *V* is polynomial-time and the following conditions hold:

• **Completeness**: For every $x \in L$,

$$\Pr[\langle P, V \rangle(x) = 1] \ge c(|x|)$$

• **Soundness**: For every $x \notin L$ and every interactive machine *B*,

$$\Pr\left[\langle B, V \rangle(x) = 1\right] \le s(|x|)$$

The following three conditions are equivalent

- There exists an interactive proof system for *L* with completeness bound $\frac{2}{3}$ and soundness bound $\frac{1}{3}$
- For every polynomial q(·), there exists an interactive proof system for *L* with error probabilistic max (1 − c(|x|), s(|x|)) bounded above by 2^{−q(|x|)}
- There exists a polynomial $q(\cdot)$ and a generalized interactive proof system for the language *L*, with acceptance gap c(|x|) s(|x|) bounded below by $\frac{1}{q(|x|)}$.

Graph Isomorphism

Graphs G₁ = (V₁, E₁) and G₂ = (V₂, E₂) are isomorphic if there exists a bijection π : V₁ → V₂ such that (u, v) ∈ E₁ ⇐⇒ (π(u), π(v)) ∈ E₂

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

$$\pi(a) = 1, \pi(b) = 6, \pi(c) = 8, \pi(d) = 3, \\ \pi(g) = 5, \pi(h) = 2, \pi(i) = 4, \pi(j) = 7$$

Interactive Proof for Graph Non-Isomorphism

- Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $\pi : V_1 \mapsto V_2$ such that $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$
- Graphs G₁ and G₂ are non-isomorphic if no such bijection exists
- Prover and verifier execute the following protocol
 - Verifier picks σ ∈ {1,2} randomly and a random permutation π from the set of all permutations over V_σ
 - Verifier calculates $F = \{(\pi(u), \pi(v) \mid (u, v) \in E_{\sigma}\}$ and sends the graph $G' = (V_{\sigma}, F)$ to prover
 - Prover finds $au \in \{1,2\}$ such that G' is isomorphic to $G_{ au}$ and sends au to verifier
 - If $\tau = \sigma$, verifier accepts claim. Otherwise, it rejects.
- Remarks
 - Verifier is a PPT machine but no known PPT implementation for prover
 - If G_1 and G_2 are not isomorphic, then verifier always accepts
 - If G_1 and G_2 are isomorphic, then verifier rejects with probability at least $\frac{1}{2}$
 - Acceptance gap is bounded from below by $\frac{1}{2}$

Zero Knowledge Interactive Proofs

- Consider an interactive proof system (P, V) for a language L
 - In an interactive proof, we need to guard against a malicious prover
 - To guarantee zero knowledge, we need to guard against a malicious verifier
- · Recall that knowledge is related to computational difficulty
- Informal definition
 - An interactive proof system is **zero knowledge** if whatever can be efficiently computed **after interaction** with *P* on input *x* can also be efficiently computed from *x* (without interaction)
- Formal definition (ideal)
 - We say (P, V) is **perfect zero knowledge** if for every PPT interactive machine V^* there exists a PPT algorithm M^* such that for every $x \in L$ the random variables $\langle P, V^* \rangle(x)$ and $M^*(x)$ are **identically distributed**
 - M* is called a simulator for the interaction of V* with P
- · Unfortunately, the above definition is too strict
- A relaxed definition is used instead

Perfect Zero Knowledge

Definition

Let (P, V) be an interactive proof system for a language *L*. We say that (P, V) is **perfect zero knowledge** if for every PPT interactive machine V^* there exists a PPT algorithm M^* such that for every $x \in L$ the following two conditions hold:

- 1. With probability at most $\frac{1}{2}$, machine M^* outputs a special symbol \perp
- Let m*(x) be the random variable describing the distribution of M*(x) conditioned on M*(x) ≠⊥. Then the random variables ⟨P, V*⟩(x) and m*(x) are identically distributed

Remarks

- M^* is called a **perfect simulator** for the interaction of V^* with P
- By repeated interactions, the probability that the simulator fails to generate the identical distribution can be made negligible
- Alternative formulation: Replace $\langle P, V^* \rangle(x)$ with view $_{V^*}^P(x)$
 - A verifier's view consists of messages it receives and any randomness it generates
 - Simulator *M** has to change accordingly

ZK Proof for Graph Isomorphism

- An isomorphism ϕ between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ exists
- Prover and verifier execute the following protocol
 - Prover picks a random permutation π from the set of permutations of V₂
 - Prover calculates $F = \{(\pi(u), \pi(v) \mid (u, v) \in E_2\}$ and sends the graph $G' = (V_2, F)$ to verifier
 - Verifier picks $\sigma \in \{1, 2\}$ randomly and sends it to prover
 - If σ = 2, then prover sends π to the verifier. Otherwise, it sends π ∘ φ to the verifier where (π ∘ φ) (ν) is defined as π (φ(ν))
 - If the received mapping is an isomorphism between G_σ and G', the verifier accepts. Otherwise, it rejects
- Remarks
 - Verifier is a PPT machine. If ϕ is known to prover, it is a PPT machine
 - If G₁ and G₂ are isomorphic, then verifier always accepts
 - If G_1 and G_2 are not isomorphic, then verifier rejects with probability $\frac{1}{2}$
 - The prover is perfect zero knowledge (to be argued)

Simulator for Graph Isomorphism Transcript

- For an arbitrary PPT verifier V^* , view $_{V^*}^P(x) = \langle G', \sigma, \psi \rangle$ where ψ is an isomorphism between G_{σ} and G'
- The simulator *M*^{*} uses *V*^{*} as a subroutine
- On input (G₁, G₂), simulator randomly picks τ ∈ {1,2} and generates a random isomorphic copy G^{''} of G_τ
 - Note that G'' is identically distributed to G'
- Simulator gives G'' to V^* and receives $\sigma \in \{1, 2\}$ from it
 - V^* is asking for an isomorphism from G_σ to G''
- If $\sigma = \tau$, then the simulator can provide the isomorphism $\pi : G_{\tau} \mapsto G''$
- If $\sigma \neq \tau$, then the simulator outputs \perp
- If the simulator does not output \bot , then $\langle G'', \tau, \pi \rangle$ is identically distributed to $\langle G', \sigma, \psi \rangle$

ZK Proof for Quadratic Residuosity

- Interactive protocol for QR of $x = w^2$ modulo N = pq
 - *P* picks $r \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and sends $y = r^2$ to *V*
 - V picks a bit $b \leftarrow \{0, 1\}$ and sends b to P
 - If b = 0, P sends z = r. If b = 1, P sends z = wr
 - If b = 0, V checks $z^2 = y$. If b = 1, V checks $z^2 = xy$
- If $x \in QR_N$, then V always accepts
- We want to prove that if $x \notin QR_N$, then for any P^*

$$\Pr\left[\langle P^*,V\rangle(x)=1\right]\leq \frac{1}{3}$$

• Using the fact that *QR_N* is a group, we can argue that

$$\Pr\left[\langle P^*, V \rangle(x) = 1\right] \geq \frac{2}{3} \implies x \in QR_N$$

- For an arbitrary PPT verifier V^* , view $_{V^*}^{\mathcal{P}}(x) = \langle y, b, z \rangle$ where $z^2 = x^b y$
 - To show the protocol is ZK, consider a simulator M^* which does the following

•
$$M^*$$
 picks $z \stackrel{\$}{\leftarrow} \mathbb{Z}^*_N$ and $b \stackrel{\$}{\leftarrow} \{0, 1\}$

- M^* sets $y = \frac{z^2}{x^b}$
- If $V^*(y) = b$, then M^* outputs $\langle y, b, z \rangle$. Otherwise, M^* outputs \perp

ZK Proof for Quadratic Non-Residuosity

- Interactive protocol for QNR of x modulo N = pq
 - *V* picks $y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$ and a bit $b \stackrel{\$}{\leftarrow} \{0, 1\}$
 - If b = 0, V sends $z = y^2$. If b = 1, V sends $z = xy^2$
 - If $z \in QR_N$, *P* sends b' = 0. If $z \in \overline{QR}_N$, *P* sends b' = 1
 - V accepts if b' = b
- If $x \notin QR_N$, then V always accepts. Otherwise, it rejects with probability $\frac{1}{2}$
- The above protocol is HVZK but not ZK!
- Consider a PPT verifier V^* which wants to find out if some $u \in \mathbb{Z}_N^*$ is in QR_N
 - By replacing x in the above protocol with u, verifier V* can get information about u
 - If the protocol was ZK, then there exists a PPT M* which can get the same information without interacting with P
 - This contradicts the non-existence of PPT algorithms for checking membership in QR_N
- Solution: V has to prove that it either knows the square root of z or zx^{-1} to P
- The number of interaction rounds increases from 2 to 4

ZK Proof for Quadratic Non-Residuosity

- ZK Interactive protocol for QNR of x modulo N = pq
 - *V* picks $y \xleftarrow{\$} \mathbb{Z}_N^*$ and a bit $b \xleftarrow{\$} \{0, 1\}$
 - If b = 0, V sends $z = y^2$. If b = 1, V sends $z = xy^2$
 - For 1 ≤ *j* ≤ *m*,
 - *V* picks $r_{j,1}, r_{j,2} \xleftarrow{\$} \mathbb{Z}_N^*$ and bit_j $\xleftarrow{\$} \{0, 1\}$
 - V computes $\alpha_j = r_{j,1}^2$ and $\beta_j = x r_{j,2}^2$.
 - If $\text{bit}_j = 1$, V sends $\text{pair}_j = (\alpha_j, \beta_j)$. If $\text{bit}_j = 0$, V sends $\text{pair}_j = (\beta_j, \alpha_j)$.
 - *P* sends *V* a bit string $[i_1, i_2, ..., i_m] \in \{0, 1\}^m$
 - *V* sends *P* the sequence *v*₁, *v*₂, ..., *v*_m
 - If $i_j = 0$, then $v_j = (r_{j,1}, r_{j,2})$.
 - If $i_j = 1$, then $v_j = yr_{j,1}$ if b = 0. So V sends a square root of $z\alpha_j$
 - If $i_j = 1$, then $v_j = xyr_{j,2}$ if b = 1. So V sends a square root of $z\beta_j$
 - P checks the following:
 - If $i_j = 0$, *P* checks if $(r_{j,1}^2, r_{j,2}^2x)$ equals pair_j, possibly with elements in the pair interchanged.
 - If $i_j = 1$, *P* checks if $v_i^2 z^{-1}$ is a member of pair_j.
 - If all checks pass and $z \in QR_N$, P sends b' = 0. If $z \in \overline{QR}_N$, P sends b' = 1
 - V accepts if b' = b

ZK Proofs for \mathcal{NP}

- Goal: To construct ZK proofs for every language in \mathcal{NP}
- Possible if we assume the existence of perfectly binding and computationally hiding commitment schemes
 - Example: El Gamal commitment scheme
 - Let G, H be generators of a group G of order p
 - Discrete logarithms are assumed to be hard to compute in $\ensuremath{\mathcal{G}}$
 - G and H have unknown discrete logarithms wrt each other
 - El Gamal commitment to a message m ∈ Z_p is given by

 $\operatorname{Com}_{G,H}(m,r) = (rG, rH + mG)$

- In contrast, Pedersen commitments are perfectly hiding and computationally binding
- *NP*-complete languages = "Hardest" *NP* languages
 - Examples: SAT, Graph 3-coloring
- Proof strategy
 - Give a ZK proof of graph 3-coloring
 - Since every \mathcal{NP} language can be reduced to graph 3-coloring, we are done

Graph 3-Coloring

 Assigning one of three colors to each vertex such that no two adjacent vertices have the same color

Image source: https://en.wikipedia.org/wiki/Graph_coloring

ZK Proof for Graph 3-Coloring

- Common input: A simple 3-colorable graph G = (V, E) where |V| = n and $V = \{1, 2, ..., n\}$
- Prover has a 3-coloring of G given by ψ : V → {1,2,3} such that ψ(u) ≠ ψ(v) for all (u, v) ∈ E
- Interactive proof
 - 1. Prover selects a random permutation $\pi : \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ and sets $\phi(v) = \pi (\psi(v))$
 - 2. Prover computes commitments $c_v = \text{com}(\phi(v))$ for all $v \in V$ and sends c_1, c_2, \ldots, c_n to verifier
 - 3. Verifier selects an edge $(u, v) \in E$ and sends it to prover
 - 4. Prover opens the commitments of the colors $\phi(u)$ and $\phi(v)$
 - 5. Verifier checks commitment openings and if $\phi(u) \neq \phi(v)$
- Completeness: If G is 3-colorable, verifier accepts with probability 1
- **Soundness**: If *G* is not 3-colorable, there exists at least one edge with $\phi(u) = \phi(v)$ and the verifier rejects with probability at least $\frac{1}{|E|}$
- The acceptance gap is $\frac{1}{|E|}$ which is bounded below by $1/\binom{n}{2}$
- Zero knowledge: For any V*, consider a simulator M* which independently selects *n* values e₁, e₂, ..., e_n from {1, 2, 3} and creates commitments to each of them. If the query edge from V* is (u, v), then e_u ≠ e_v with probability ²/₃ and M* opens the commitments. If e_u = e_v, M* outputs ⊥.

References

- Sections 4.1, 4.2, 4.3, 4.4.2 of *Foundations of Cryptography, Volume I* by Oded Goldreich
- Alon Rosen's lecture in the 9th BIU Winter School on Cryptography
 - https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
 - ZKP intro
 - https://www.youtube.com/watch?v=6uGimDYZPMw
 - ZKP intro http://cyber.biu.ac.il/wp-content/uploads/ 2018/08/WS-19-1-ZK-intro.pdf
 - ZK for NP
 - https://www.youtube.com/watch?v=cQ-BI1WWzjU
 - ZK for NP http://cyber.biu.ac.il/wp-content/ uploads/2018/08/WS-19-2-ZK-for-NP.pdf
 - Widgerson interview is in the first 8 minutes of https://www.youtube.com/watch?v=cAI7Iw_bkZs
- The Knowledge Complexity of Interactive Proof Systems, S. Goldwasser, S. Micali, C. Rackoff, 1989. https://doi.org/10.1137/0218012