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Gartner Hype Cycle for Identity

Source: https://twitter.com/IdentityMonk/status/
1158564314577612800
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Zero Knowledge Proofs

• Proofs that yield nothing beyond the validity of an assertion
• Examples of assertions

• I know the discrete log of a group element wrt a generator
• I know an isomorphism between two graphs G1,G2

• Proofs are a sequence of statements each of which is an axiom
or follows from axioms via derivation rules
• Traditional proofs do not have explicit provers and verifiers

• ZKPs involve explicit interaction between prover and verifier
• Prover and verifier will be modeled as algorithms or machines

• Verifier is assumed to be probabilistic polynomial-time (PPT)
• Prover may or may not be PPT
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Examples of Interactive Proofs

• Proving that two chalks have different colours to a colour-blind
verifier

• Proof of Quadratic Residuosity
• For a positive integer N, x is called a quadratic residue modulo N if

x = w2 mod N for some w

• Suppose N = pq for distinct primes p and q with |p| = |q| = n.
• Without knowing the factorization of N, the best algorithms for

checking x ∈ QRN run in exp
(
O(n

1
3 )
)

steps
• Using the factorization of N, x ∈ QRN can be checked in time

which is polynomial in n
• Proof of Quadratic Non-Residuosity

• Exhaustive checking is not feasible
• Use an idea similar to the chalks example

• More details on the last two examples
http://cyber.biu.ac.il/wp-content/uploads/2018/
08/WS-19-1-ZK-intro.pdf
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Knowledge vs Information
• In information theory, entropy is used to quantify information
• Entropy of a discrete random variable X defined over an

alphabet X is
H(X ) = −

∑
x∈X

p(x) log p(x)

• Knowledge is related to computational difficulty, whereas
information is not
• Suppose Alice and Bob know Alice’s public key
• Alice sends her private key to Bob
• Bob has not gained new information (in the information-theoretic

sense)
• But Bob now knows a quantity he could not have calculated by

himself
• Knowledge is related to publicly known objects, whereas

information relates to private objects
• Suppose Alice tosses a fair coin and sends the outcome to Bob
• Bob gains one bit of information (in the information-theoretic sense)
• We say Bob has not gained any knowledge as he could have

tossed a coin himself
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Modeling Assertions and Proofs

• The complexity class NP captures the asymmetry between
proof generation and verification

• A language is a subset of {0,1}∗

• Each language L ∈ NP has a polynomial-time verification
procedure for proofs of statements “x ∈ L”
• Example: L is the encoding of pairs of finite isomorphic graphs

• Let R ⊂ {0,1}∗ × {0,1}∗ be a relation
• R is said to be polynomial-time-recognizable if the assertion

“(x , y) ∈ R” can be checked in time poly(|x |, |y |)
• Each L ∈ NP is given by a PTR relation RL such that

L = {x | ∃y such that (x , y) ∈ RL}

and (x , y) ∈ RL only if |y | ≤ poly(|x |)
• Any y for which (x , y) ∈ RL is a proof of the assertion “x ∈ L”
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Interactive Proof Systems
• Let 〈A,B〉(x) denote the output of B when interacting with A on common input x
• Output 1 is interpreted as “accept” and 0 is interpreted as “reject”

Definition
A pair of interactive machines (P,V ) is called an interactive proof system for a
language L if machine V is polynomial-time and the following conditions hold:
• Completeness: For every x ∈ L,

Pr [〈P,V 〉(x) = 1] ≥
2
3

• Soundness: For every x /∈ L and every interactive machine B,

Pr [〈B,V 〉(x) = 1] ≤
1
3

• Remarks
• Soundness condition refers to any possible prover while completeness

condition refers only to the prescribed prover
• Prescribed prover is allowed to fail with probability 1

3
• Arbitrary provers are allowed to succeed with probability 1

3
• These probabilities can be made arbitrarily small by repeating the

interaction
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Generalized Interactive Proof Systems
Definition
Let c, s : N→ R be functions satisfying c(n) > s(n) + 1

p(n) for some polynomial p(·). A
pair of interactive machines (P,V ) is called a generalized interactive proof system for
a language L with completeness bound c(·) and soundness bound s(·) if machine
V is polynomial-time and the following conditions hold:
• Completeness: For every x ∈ L,

Pr [〈P,V 〉(x) = 1] ≥ c(|x |)

• Soundness: For every x /∈ L and every interactive machine B,

Pr [〈B,V 〉(x) = 1] ≤ s(|x |)

The following three conditions are equivalent
• There exists an interactive proof system for L with completeness bound 2

3 and
soundness bound 1

3

• For every polynomial q(·), there exists an interactive proof system for L with error
probabilistic max (1− c(|x |), s(|x |)) bounded above by 2−q(|x|)

• There exists a polynomial q(·) and a generalized interactive proof system for the
language L, with acceptance gap c(|x |)− s(|x |) bounded below by 1

q(|x|) .
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Graph Isomorphism
• Graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a

bijection π : V1 7→ V2 such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

π(a) = 1, π(b) = 6, π(c) = 8, π(d) = 3,
π(g) = 5, π(h) = 2, π(i) = 4, π(j) = 7
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Interactive Proof for Graph Non-Isomorphism
• Graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there exists a

bijection π : V1 7→ V2 such that (u, v) ∈ E1 ⇐⇒ (π(u), π(v)) ∈ E2

• Graphs G1 and G2 are non-isomorphic if no such bijection exists

• Prover and verifier execute the following protocol

• Verifier picks σ ∈ {1, 2} randomly and a random permutation π from the set
of all permutations over Vσ

• Verifier calculates F = {(π(u), π(v) | (u, v) ∈ Eσ} and sends the graph
G′ = (Vσ ,F ) to prover

• Prover finds τ ∈ {1, 2} such that G′ is isomorphic to Gτ and sends τ to
verifier

• If τ = σ, verifier accepts claim. Otherwise, it rejects.

• Remarks

• Verifier is a PPT machine but no known PPT implementation for prover
• If G1 and G2 are not isomorphic, then verifier always accepts
• If G1 and G2 are isomorphic, then verifier rejects with probability at least 1

2
• Acceptance gap is bounded from below by 1

2
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Zero Knowledge Interactive Proofs
• Consider an interactive proof system (P,V ) for a language L

• In an interactive proof, we need to guard against a malicious prover
• To guarantee zero knowledge, we need to guard against a

malicious verifier

• Recall that knowledge is related to computational difficulty
• Informal definition

• An interactive proof system is zero knowledge if whatever can be
efficiently computed after interaction with P on input x can also
be efficiently computed from x (without interaction)

• Formal definition (ideal)
• We say (P,V ) is perfect zero knowledge if for every PPT

interactive machine V ∗ there exists a PPT algorithm M∗ such that
for every x ∈ L the random variables 〈P,V ∗〉(x) and M∗(x) are
identically distributed

• M∗ is called a simulator for the interaction of V ∗ with P

• Unfortunately, the above definition is too strict
• A relaxed definition is used instead
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Perfect Zero Knowledge
Definition
Let (P,V ) be an interactive proof system for a language L. We say that (P,V ) is
perfect zero knowledge if for every PPT interactive machine V∗ there exists a PPT
algorithm M∗ such that for every x ∈ L the following two conditions hold:

1. With probability at most 1
2 , machine M∗ outputs a special symbol ⊥

2. Let m∗(x) be the random variable describing the distribution of M∗(x)
conditioned on M∗(x) 6=⊥. Then the random variables 〈P,V∗〉(x) and m∗(x) are
identically distributed

• Remarks
• M∗ is called a perfect simulator for the interaction of V ∗ with P
• By repeated interactions, the probability that the simulator fails to

generate the identical distribution can be made negligible

• Alternative formulation: Replace 〈P,V ∗〉(x) with viewP
V∗(x)

• A verifier’s view consists of messages it receives and any
randomness it generates

• Simulator M∗ has to change accordingly
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ZK Proof for Graph Isomorphism
• An isomorphism φ between graphs G1 = (V1,E1) and G2 = (V2,E2) exists

• Prover and verifier execute the following protocol

• Prover picks a random permutation π from the set of permutations of V2
• Prover calculates F = {(π(u), π(v) | (u, v) ∈ E2} and sends the graph

G′ = (V2,F ) to verifier
• Verifier picks σ ∈ {1, 2} randomly and sends it to prover
• If σ = 2, then prover sends π to the verifier. Otherwise, it sends π ◦ φ to the

verifier where (π ◦ φ) (v) is defined as π (φ(v))
• If the received mapping is an isomorphism between Gσ and G′, the verifier

accepts. Otherwise, it rejects

• Remarks

• Verifier is a PPT machine. If φ is known to prover, it is a PPT machine
• If G1 and G2 are isomorphic, then verifier always accepts
• If G1 and G2 are not isomorphic, then verifier rejects with probability 1

2
• The prover is perfect zero knowledge (to be argued)
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Simulator for Graph Isomorphism Transcript
• For an arbitrary PPT verifier V∗, viewP

V∗ (x) = 〈G′, σ, ψ〉 where ψ is an
isomorphism between Gσ and G′

• The simulator M∗ uses V∗ as a subroutine

• On input (G1,G2), simulator randomly picks τ ∈ {1, 2} and generates a random
isomorphic copy G′′ of Gτ
• Note that G′′ is identically distributed to G′

• Simulator gives G′′ to V∗ and receives σ ∈ {1, 2} from it

• V∗ is asking for an isomorphism from Gσ to G′′

• If σ = τ , then the simulator can provide the isomorphism π : Gτ 7→ G′′

• If σ 6= τ , then the simulator outputs ⊥
• If the simulator does not output ⊥, then 〈G′′, τ, π〉 is identically distributed to
〈G′, σ, ψ〉
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ZK Proof for Quadratic Residuosity
• Interactive protocol for QR of x = w2 modulo N = pq

• P picks r $←− Z∗N and sends y = r2 to V

• V picks a bit b $←− {0, 1} and sends b to P
• If b = 0, P sends z = r . If b = 1, P sends z = wr
• If b = 0, V checks z2 = y . If b = 1, V checks z2 = xy

• If x ∈ QRN , then V always accepts
• We want to prove that if x 6∈ QRN , then for any P∗

Pr [〈P∗,V 〉(x) = 1] ≤
1
3

• Using the fact that QRN is a group, we can argue that

Pr [〈P∗,V 〉(x) = 1] ≥
2
3

=⇒ x ∈ QRN

• For an arbitrary PPT verifier V∗, viewP
V∗ (x) = 〈y , b, z〉 where z2 = xby

• To show the protocol is ZK, consider a simulator M∗ which does the
following

• M∗ picks z $←− Z∗N and b $←− {0, 1}
• M∗ sets y = z2

xb

• If V∗(y) = b, then M∗ outputs 〈y , b, z〉. Otherwise, M∗ outputs ⊥
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ZK Proof for Quadratic Non-Residuosity
• Interactive protocol for QNR of x modulo N = pq

• V picks y $←− Z∗N and a bit b $←− {0, 1}
• If b = 0, V sends z = y2. If b = 1, V sends z = xy2

• If z ∈ QRN , P sends b′ = 0. If z ∈ QRN , P sends b′ = 1
• V accepts if b′ = b

• If x 6∈ QRN , then V always accepts. Otherwise, it rejects with probability 1
2

• The above protocol is HVZK but not ZK!

• Consider a PPT verifier V∗ which wants to find out if some u ∈ Z∗N is in QRN

• By replacing x in the above protocol with u, verifier V∗ can get information
about u

• If the protocol was ZK, then there exists a PPT M∗ which can get the same
information without interacting with P

• This contradicts the non-existence of PPT algorithms for checking
membership in QRN

• Solution: V has to prove that it either knows the square root of z or zx−1 to P
• The number of interaction rounds increases from 2 to 4
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ZK Proof for Quadratic Non-Residuosity
• ZK Interactive protocol for QNR of x modulo N = pq

• V picks y $←− Z∗N and a bit b $←− {0, 1}
• If b = 0, V sends z = y2. If b = 1, V sends z = xy2

• For 1 ≤ j ≤ m,

• V picks rj,1, rj,2
$←− Z∗N and bitj

$←− {0, 1}
• V computes αj = r2

j,1 and βj = xr2
j,2.

• If bitj = 1, V sends pairj = (αj , βj ). If bitj = 0, V sends
pairj = (βj , αj ).

• P sends V a bit string [i1, i2, . . . , im] ∈ {0, 1}m

• V sends P the sequence v1, v2, . . . , vm

• If ij = 0, then vj = (rj,1, rj,2).
• If ij = 1, then vj = yrj,1 if b = 0. So V sends a square root of zαj
• If ij = 1, then vj = xyrj,2 if b = 1. So V sends a square root of zβj

• P checks the following:
• If ij = 0, P checks if (r2

j,1, r
2
j,2x) equals pairj , possibly with elements in

the pair interchanged.
• If ij = 1, P checks if v2

j z−1 is a member of pairj .

• If all checks pass and z ∈ QRN , P sends b′ = 0. If z ∈ QRN , P sends
b′ = 1

• V accepts if b′ = b
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ZK Proofs for NP
• Goal: To construct ZK proofs for every language in NP
• Possible if we assume the existence of perfectly binding and

computationally hiding commitment schemes
• Example: El Gamal commitment scheme
• Let G,H be generators of a group G of order p
• Discrete logarithms are assumed to be hard to compute in G
• G and H have unknown discrete logarithms wrt each other
• El Gamal commitment to a message m ∈ Zp is given by

ComG,H(m, r) = (rG, rH + mG)

• In contrast, Pedersen commitments are perfectly hiding and
computationally binding

• NP-complete languages = "Hardest" NP languages
• Examples: SAT, Graph 3-coloring

• Proof strategy
• Give a ZK proof of graph 3-coloring
• Since every NP language can be reduced to graph 3-coloring, we are done

18 / 21



Graph 3-Coloring

• Assigning one of three colors to each vertex such that no two
adjacent vertices have the same color

Image source: https://en.wikipedia.org/wiki/Graph_coloring
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ZK Proof for Graph 3-Coloring
• Common input: A simple 3-colorable graph G = (V ,E) where |V | = n and

V = {1, 2, . . . , n}
• Prover has a 3-coloring of G given by ψ : V → {1, 2, 3} such that ψ(u) 6= ψ(v)

for all (u, v) ∈ E

• Interactive proof
1. Prover selects a random permutation π : {1, 2, 3} → {1, 2, 3} and sets

φ(v) = π (ψ(v))
2. Prover computes commitments cv = com (φ(v)) for all v ∈ V and sends

c1, c2, . . . , cn to verifier
3. Verifier selects an edge (u, v) ∈ E and sends it to prover
4. Prover opens the commitments of the colors φ(u) and φ(v)
5. Verifier checks commitment openings and if φ(u) 6= φ(v)

• Completeness: If G is 3-colorable, verifier accepts with probability 1
• Soundness: If G is not 3-colorable, there exists at least one edge with
φ(u) = φ(v) and the verifier rejects with probability at least 1

|E|

• The acceptance gap is 1
|E| which is bounded below by 1/

(n
2

)
• Zero knowledge: For any V∗, consider a simulator M∗ which independently

selects n values e1, e2, . . . , en from {1, 2, 3} and creates commitments to each of
them. If the query edge from V∗ is (u, v), then eu 6= ev with probability 2

3 and M∗
opens the commitments. If eu = ev , M∗ outputs ⊥.
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