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zkSNARKs

e Arguments
o ZK proofs where soundness guarantee is required only against
PPT provers
e Noninteractive
e Proof consists of a single message from prover to verifier
e Succinct

e Proof size is O(1)
e Requires a trusted setup to generate a common reference string
e CRS size is linear in size of assertion being proved
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Bilinear Pairings

Let G and Gr be two cyclic groups of prime order p

In practice, G is an elliptic curve group and Gr is subgroup of F},
where r is a prime
Let G=(g),i.e. G={g" | v € Zp}
A symmetric pairing is a efficient map e : G x G — Gr satisfying
1. Bilinearity: Vo, 8 € Z,, we have e(g®, g°) = e(g, g)*#
2. Non-degeneracy: e(g, g) is not the identity in Gr

Finding discrete logs is assumed to be difficult in both groups
Pairings enable multiplication of secrets
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Computational Diffie-Hellman Problem

e The CDH experiment CDH 4 ¢(n):
1. Run G(17) to obtain (G, q, g) where G is a cyclic group of order q
(with ||g]| = n), and a generator g € G.
2. Choose a uniform x, o € Zq and compute hy = g*1, h. = g’@.
3. Aisgiven G, q, g, hi, hp and it outputs h € Zg.
4. Experiment output is 1 if h = g* 2 and 0 otherwise.

¢ Definition: We say that the CDH problem is hard relative to G
if for every PPT adversary A there is a negligible function negl
such that

Pr[cDHAg(n) = 1] < negl(n).



Decisional Diffie-Hellman Problem

e The DDH experiment DDH 4 ¢ (n):

1.

abrw D

Run G(17) to obtain (G, q, g) where G is a cyclic group of order g (with
llg|l = n), and a generator g € G.
Choose a uniform x, y, z € Zq and compute u = g*, v = g¥

Choose a bit b < {0, 1} and compute w = gb7+(1=b)xy
Give the triple u, v, w to the adversary A
Aoutputs a bit b’ = A(G, q,9,u,v,w)

e Definition: We say that the DDH problem is hard relative to G if for all PPT
adversaries A there is a negligible function negl such that

|Pr[A(G,q,9.9,¢",9°) =1] —Pr[A(G,q,9,9",¢",9¥) = 1]| < negl(n)
e |f G has a pairing, then DDH problem is easy in G
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Some Exercises on Pairings

e A symmetric pairing is a efficientmape: G x G— Gr C F};

satisfying
1. Bilinearity: Vo, 8 € Z,, we have e(g®, g°) = e(g, g)*#
2. Non-degeneracy: e(g, g) is not the identity in Gr
¢ Reduce the following expressions
c e(g%g)e(g,9"
 e(g,9%e(g%9)
s e(g%g7") e(u,v)e(g,9)°
o TI7, e(g,9%)"
e Show thatif e(u,v)=1thenu=1o0orv=1
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Applications of Pairings

o Three-party Diffie Hellman key agreement

e Three parties Alice, Bob, Carol have private-public key pairs
(a7 ga)v (b7 gb)7 (Cv gc:) where G = <g>
Alice sends g? to the other two
Bob sends g° to the other two
Carol sends g° to the other two
Each party can compute common key
K = e(g.9)™ = e(g°,9°)% = e(g”. ¢°)° = e(9%, 9°)°
e BLS Signature Scheme
e Suppose H: {0,1}* — Gis a hash function
e Let (x,g") be a private-public key pair
o BLS signature on message mis o = (H(m))*
o Verifier checks that e(g, o) = e(g*, H(m))
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Knowledge of Exponent Assumptions

o Knowledge of Exponent Assumption (KEA)
e Let G be a cyclic group of prime order p with generator g and let
(RS Zp
e Given g, g“, suppose a PPT adversary can output ¢, ¢ such that
c=c"
e The only way he can do so is by choosing some 3 € Z, and setting
c=g°and ¢ = (g*)’
o g-Power Knowledge of Exponent (g-PKE) Assumption
e Let G be a cyclic group of prime order p with a pairing
e:Gx G+ Gr
e Let G = (g) and «, s be randomly chosen from Z;
e Given g, gs,gsz, . ,gsq,g‘*,g“s,g"‘sz, . ,g"“sq, suppose a PPT
adversary can output ¢, ¢ such that ¢ = ¢
e The only way he can do so is by choosing some ap, a1, ...,aq € Zp

and setting ¢ = N7, (gsi)af and & = N7, (gasf>a'



Checking Polynomial Evaluation

Prover knows a polynomial p(x) € Fp[x] of degree d

Verifier wants to check that prover computes gP(s) for some
randomly chosen s € FF,,

Verifier does not care which p(x) is used but cares about the
evaluation point s

Verifier sends gS', i=0,1,2,...,d to prover
If p(x) = 327, pix’, prover can compute g”® as

9 =ney (o)

But prover could have computed gP(!) for some t # s

Verifier also sends g“si, i=0,1,2,...,d for some randomly
chosen a € Fj,

Prover can now compute g*P(¢)

Anyone can check that e(g®, gP(®)) = e(g*P®), g)

But why can’t the prover cheat by returning g°() and g~(t) ?



Schwartz-Zippel Lemma

Lemma
LetF be any field. For any nonzero polynomial f € F[x] of degree d and any finite

subset S of F, g

Pr(f(s) =0] < —
S|
when s is chosen uniformly from S.

e Suppose F is a finite field of order ~ 2256
e |f sis chosen uniformly from I, then it is unlikely to be a root of low-degree
polynomials
e Equality of polynomials can be checked by evaluating them at the same random
point
e Application: Suppose prover wants to prover that he knows a secret polynomial
p(x) which is divisible by another public polynomial t(x)
o \erifier sends gsi gc“S i=0, 1,2, ..., d to prover
e Prover computes h(x) = 2% — $~9 p.xi and calculates g"®) using the

t(x)
coefficients h;
o Verifier gets gP(s), ghts) | gep(s) gah(s) and checks

e(9.6%7) =e(d"".97)

(o) ~ee0). o(o" )=o)
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Arithmetic Circuits

Circuits consisting of additions and multiplications modulo p
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Quadratic Arithmetic Programs

Definition
A QAP Q over a field F contains three sets of polynomials V = {vi(x)}, W = {wk(x)},
Y = {yk(x)}, for k € {0,1,...,m}, and a target polynomial {(x).

Suppose f : F" F having input variables with labels 1,2, ..., n and output
variables with labels n+ 1,...,n+ n’. We say that Q computes f if for N = n+ n’:

(ay, as,...,an) € FN is a valid assignment of f's inputs and outputs, if and only if there
exist (an+1, - - -, @m) such that f(x) divides p(x) where

p(x) = (VO(X) + Zakvk(x)> : (WO(X) + Zaka(X)> - <}/0(X) + Zak}’k(x)> .
k=1 k=1 k=1
So there must exist polynomial h(x) such that h(x)t(x) = p(x).

The size of Q is m, and the degree of Q is the degree of t(x).

o Arithmetic circuits can be mapped to QAPs efficiently
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QAP for an Arithmetic Circuit

® a5 = (a +7az)(a —2a3) and as = (a2 — 2a3)ay
e Choose distinct 15, 15 € F and t(x) = (x — r5)(x — 1)
e Choose polynomials {vi(x)}, {wk(x)}, {¥k(x)},k =0,1,..., msuch that

6 6 6
D av(rs) = an+7a, Y akw(rs) = a —2as, > ayk(rs) = as,
k=0 k=0 k=0

6 6 6
> akvi(re) = @ —2as, > axw(rs) = as, > ayk(re) = as.

k=0 k=0 k=0
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Pinocchio SNARK from QAP

Let R = {(u, wit)} C F" x F™ be a relation where u € F" is the statement and
wit € F™ is the witness

Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic
function f such that f(u) = 1 iff there exists a wit such that (u, wit) € R

A QAP for f is derived which has N = n + 1 input-output variables

Prover has to show he knows (ay, ..., am) such that t(x) divides
v(x)w(x) — y(x) where t(x) has degree d

Example

Let A = {(u, wit) € {0,1}2% x {0,1}1%0 | u = SHA256(wit) }

The corresponding f will compute SHA256(wit) and compare it to u
f has N = 256 + 1 = 257 input-output-related variables

The QAP for f will have additional variables ay.1, . .., am corresponding to
witness values and other circuit gate inputs and outputs
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Pinocchio SNARK from QAP

Let R = {(u, wit)} C F" x F™ be a relation where u € F" is the statement and
wit € F™ is the witness

Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic
function f such that f(u) = 1 iff there exists a wit such that (u, wit) € R

A QAP for f is derived which has N = n + 1 input-output variables

Prover has to show he knows (a, ..., am) such that {(x) divides
v(x)w(x) — y(x) where t(x) has degree d

Common Reference String Generation

Let [m] = {1,2,...,m}. Indices {1,2,..., N} are for |O-related variables
while Znig = {N + 1, ..., m} are indices of non-1O-related variables

Choose rv, fw, S, av, aw, ay, B,y & F* and set fy = Ifvfw, 9v = 9",

gw =g, and gy = g%
Evaluation key

* Generate {gy** }kezm,dﬁ{ngv S}kezm,d,{gz ez
e Generate {gavv" }kezm,c,,{Qawwk ()

o Generate {g° }:e[d]! {gﬁv"

Verification key

}kGImld’{ k€T

BWk(S) 5}’k s) }
9y KETmig

o Generate {9, }c (oyuim 19w e royum 1905 Yee roy o
e Generate g@v, g*w,g®v,g",g%", gﬁ(s)

15
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Proof Generation for Pinocchio SNARK

e Prover will prove that (u, wit) € R by showing that f(u) = 1
e Prover computes QAP coefficients (ay, . .., am) such that

hOOt)=(vo(X)+32L 1 @k vk () (wo () +325L 1 @i () — (Yo ()+ R akyk(x))-
e For

Vmig(X) = D akvk(X),

KETmig
Wiig(X) = > awk(x),
KEL iy
Ymia(X) = > akyk(x)

KETmig

the prover outputs the proof 7 as

gxm/‘a(s)7 g;/Vmid(-‘f)7 g}}jmid(s), gh(s)

)

o Vimid (S) , gxwwmid(s) i g}‘}y}’mid(s)

gf Vmid (S) gv/f/ Wrig (S) g}ljymid(s)
o Verifier sees alleged proof as gVmid, gWmia | gYmia gH, gVmia, gWmia, g¥mia, and g?
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Proof Verification for Pinocchio SNARK

Verification key
o {0 N icroyomg 190 ke oy oms 190 ke royumm
o g, g, g, g7, g%, gi¢¥

Wi (S)

Verifier computes g/ = ke (g,‘f"(s))a and similarly g, ,g}’,”"’(s) and

checks divisibility
e (90 gy gVma, g0 gyieldgWma ) = e (g, o) e (g1 g}V g"ma, g)

Verifier checks the vinig(S), Wmia (S), Ymid(S) are the correct linear combinations
by checking

e(g'n,g) = e(g'ms,g™), e(g"ms,g) = e (g"ms, ™)

o(91.0) o (37.07)

Verifier checks that the same variables a; were used in all three linear
combinations Vpmig(S), Wmia(S), Ymia(S) by checking

e (927 gv) —e (gVm/‘dgWmidemid7 g5v>



Converting the SNARK into a zkSNARK

Proof = has gi/me(®), g,'fyl’"’“(s),gj”"’d(s) which reveals information about
{ani1,--.,am} which has the witness values

Prover chooses dv, dw, oy &g and uses Vpig(X) + dvt(x) instead of vpig(x),
Wnig(X) + dwt(x) instead of wiig(X), and ¥mia(x) + 6y t(x) instead of ymig(x)

Add gl(®, glie), govi(e) gawl(e) gav(e) gBi(e) gais) gB1(S) tq the proving key
Before adding the perturbations by {(x) multplies we had
h(x)t(x)=(vo (%) +Vio (X)+Vimig (X)) - (Wo (%) +Wio (X) +Wimig (X)) — (Yo (X)+¥io (X) +Ymig (X))
Now we have
B ()1 (x)=(Vo (X)+Vio (X)+Vimia (X)+8v (X)) (Wo (X)+Wip (X) +Wpmig (X)+Sw t(x))
— (Yo (X)+HYio(X)+Ymig (X)+3yt(x)).

The extra terms on the right are all divisible by {(x) and can be incorporated into
the new proof 7/
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Proof Generation for Pinocchio zkSNARK

e Prover computes h'(x) as

W (x) = (v G +Vip () +Vimig (%) - (wp (x +W,o((X))+wm,d ) = (o () i) +Y mig (%)
+8v(Wo (X)+Wio (X)+Wmig (X)) +8w (Vo (X)+Vip (X)+Vmig (X)) +6vSwt(x)—y -
e For
Vha() = D7 avk(x) + dut(x),

KELpmig
wha() = > aw(x) + dwt(x),
KELmig
Vha() = D ai(x) + dyt(x)
KEZLmig

the prover outputs the proof = as
g";;id( ) mrd(S gymld(s h/ s)

gs“/vmid(s)’ g?ywwliud( )7 g;lyy;id( )
gf Viia(s) gf/w:w(s) gfy;fd(s)
o Verifier sees alleged proof as gVmid, gWmid | gYmia gH gVmia, gWmia, g¥mid, and g?
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Proof Verification for Pinocchio zkSNARK

e The same proof verification procedure is used

e (gxo(s)gvlo( )g 'mid gWO(S)gW/o(S)ng,‘d) —e <g}t/(5)7g > e (g}}/’o(s)g}}/’io(s)gym,'d7g>

e (gvl/nid,g> = < mid | g < mid7g> —e (ngid’g&w)

).
e(ng'ma,g) — ( Yo, ay)
(

e(g%.97) = e(gmeg"magms, go7)

ayt(s) _awt(s)

e Since g9, gl{®) gavt®) go ,gayr(s),g,, ), glte), g, 51) have been added to
the proving key, verifier is convmced only multiples of t(x) have been added in
the appropriate places

o \Verifier is convinced that QAP divisibility condition still holds
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Defining zkSNARKs

Let R be a relation for an NP language L

A SNARG system consists of 1 = (Gen, P, V)

e For security parameter «, crs < Gen(1*)
e For (u,w) € R, prover generates © < P(crs, u, w)
e |f 7 is a valid proof, V(crs, u, ) = 1 and 0 otherwise

Completeness: For all (u,w) € R,
Pr[V(crs,u,m) =0 | crs < Gen(17),m < P(crs, u, w)] = negl(x)
Soundness: For all PPT provers P*,
Pr{V(crs,u,m) =1Au¢L|crs«+ Gen(1%),m < P*(1%, crs, u)] = negl(k)

Succinctness: Proof length |7| = poly(x)polylog (Ju| + |w|)

SNARK: A SNARG with an extractor £. For any statement u, we require a PPT
extractor £, such that for any 7 < P(crs, u, w) the witness is given by

w <+ Eu(crs, ).

zkSNARK: A SNARK is zero-knowledge if there exists a simulator (S;, Sz) such
that S; outputs a simulated CRS crs and a trapdoor 7, S, takes as input crs, a
statement u and trapdoor T and outputs a simulated proof «. For (u, w) € R,

Pr x| crs < Gen(17),m < P(crs,u, w)] =
Prx | (crs,7) < S1(17), 7 « Sz (crs, u, 7)]
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Simulator Construction for Pinocchio zkSNARK

Sy generates Pinocchio crs with trapdoor 7 = (s, rv, fw, o, aw, ay, B)
Pinocchio proof is of the form gVmia | gWmia | gYmia | gH, gVmia | gWmia | g¥mia, and g%
S, picks random v(x), w(x), y(x) such that {(x) divides v(x) - w(x) — y(x)

S sets Vipig(Xx) = v(Xx) — vo(X) — Vip(x) and similarly for Wpig(X), Ymia(X)
Using the trapdoor information, S, outputs the proof = as

g g gyma(9) - ghts),

ggvaid(S) 7 gfévmeid(S) 7 g;!yyrnid(s)

Vmid (S) Wrmid (S)
v I w bl

gf Vmid(S)gf/Wmfd(S) g}f?}’mid(s)

The proof has the same distribution as the Pinocchio proof
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ZCash CRS Generation in Brief

Let us restrict our attention to the generation of g3, gSZ, . ,gsd
Suppose n parties will participate in the CRS generation

The value of s should not be made public

Each party generates a random exponent s;

First party publishes g*', gsi . ,g51d

Second party publishes g%, g5isz, ..., gsis

Last party publishes gsis s, ... gsiss-s

Desired s = 5182+ - 8y

Only one party is required to destroy its secret s; to keep s secret
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