Zero Knowledge Succinct Noninteractive ARguments of Knowledge

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

October 15, 2019

zkSNARKs

- Arguments
 - ZK proofs where soundness guarantee is required only against PPT provers
- Noninteractive
 - Proof consists of a single message from prover to verifier
- Succinct
 - Proof size is O(1)
 - Requires a trusted setup to generate a common reference string
 - · CRS size is linear in size of assertion being proved

Bilinear Pairings

- Let G and G_T be two cyclic groups of prime order p
- In practice, G is an elliptic curve group and G_T is subgroup of 𝔽^{*}_{rⁿ} where r is a prime
- Let $G = \langle g \rangle$, i.e. $G = \{g^{\alpha} \mid \alpha \in \mathbb{Z}_{p}\}$
- A symmetric **pairing** is a efficient map $e: G \times G \mapsto G_T$ satisfying
 - 1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_{p}$, we have $e(g^{\alpha}, g^{\beta}) = e(g, g)^{\alpha \beta}$
 - 2. Non-degeneracy: e(g, g) is not the identity in G_T
- Finding discrete logs is assumed to be difficult in both groups
- · Pairings enable multiplication of secrets

Computational Diffie-Hellman Problem

• The CDH experiment CDH_{A,G}(n):

- 1. Run $\mathcal{G}(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n), and a generator $g \in G$.
- 2. Choose a uniform $x_1, x_2 \in \mathbb{Z}_q$ and compute $h_1 = g^{x_1}, h_2 = g^{x_2}$.
- 3. \mathcal{A} is given G, q, g, h_1, h_2 and it outputs $h \in \mathbb{Z}_q$.
- 4. Experiment output is 1 if $h = g^{x_1 \cdot x_2}$ and 0 otherwise.
- Definition: We say that the CDH problem is hard relative to \mathcal{G} if for every PPT adversary \mathcal{A} there is a negligible function negl such that

 $\Pr\left[\operatorname{CDH}_{\mathcal{A},\mathcal{G}}(n)=1
ight]\leq \operatorname{negl}(n).$

Decisional Diffie-Hellman Problem

• The DDH experiment DDH_{A,G}(n):

1. Run $\mathcal{G}(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n), and a generator $g \in G$.

2. Choose a uniform $x, y, z \in \mathbb{Z}_q$ and compute $u = g^x, v = g^y$

- 3. Choose a bit $b \stackrel{\$}{\leftarrow} \{0, 1\}$ and compute $w = g^{bz+(1-b)xy}$
- 4. Give the triple u, v, w to the adversary A
- 5. \mathcal{A} outputs a bit $b' = \mathcal{A}(G, q, g, u, v, w)$
- Definition: We say that the DDH problem is hard relative to G if for all PPT adversaries A there is a negligible function negl such that

 $\left| \mathsf{Pr}\left[\mathcal{A}\left(G,q,g,g^{\mathsf{X}},g^{\mathsf{Y}},g^{\mathsf{Z}}\right) = 1 \right] - \mathsf{Pr}\left[\mathcal{A}\left(G,q,g,g^{\mathsf{X}},g^{\mathsf{Y}},g^{\mathsf{X} \mathsf{Y}}\right) = 1 \right] \right| \leq \texttt{negl}(\textit{n})$

• If G has a pairing, then DDH problem is easy in G

Some Exercises on Pairings

- A symmetric **pairing** is a efficient map *e* : *G* × *G* → *G_T* ⊂ *F*^{*}_{rⁿ} satisfying
 - 1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_p$, we have $e(g^{\alpha}, g^{\beta}) = e(g, g)^{\alpha \beta}$
 - 2. Non-degeneracy: e(g, g) is not the identity in G_T
- Reduce the following expressions
 - $e(g^a,g) e(g,g^b)$
 - $e(g,g^a) e(g^b,g)$
 - $e(g^{a}, g^{-b}) e(u, v) e(g, g)^{c}$
 - $\prod_{i=1}^m e(g, g^{a_i})^{b_i}$
- Show that if e(u, v) = 1 then u = 1 or v = 1

Applications of Pairings

- Three-party Diffie Hellman key agreement
 - Three parties Alice, Bob, Carol have private-public key pairs $(a, g^a), (b, g^b), (c, g^c)$ where $G = \langle g \rangle$
 - Alice sends g^a to the other two
 - Bob sends g^b to the other two
 - Carol sends g^c to the other two
 - Each party can compute common key
 K = e(g,g)^{abc} = e(g^b,g^c)^a = e(g^a,g^c)^b = e(g^a,g^b)^c
- BLS Signature Scheme
 - Suppose $H : \{0, 1\}^* \mapsto G$ is a hash function
 - Let (x, g^x) be a private-public key pair
 - BLS signature on message *m* is $\sigma = (H(m))^{x}$
 - Verifier checks that $e(g, \sigma) = e(g^x, H(m))$

Knowledge of Exponent Assumptions

Knowledge of Exponent Assumption (KEA)

- Let *G* be a cyclic group of prime order *p* with generator *g* and let $\alpha \in \mathbb{Z}_p$
- Given g, g^{α} , suppose a PPT adversary can output c, \hat{c} such that $\hat{c} = c^{\alpha}$
- The only way he can do so is by choosing some $\beta\in\mathbb{Z}_p$ and setting $c=g^\beta$ and $\hat{c}=(g^\alpha)^\beta$

• *q*-Power Knowledge of Exponent (*q*-PKE) Assumption

- Let *G* be a cyclic group of prime order *p* with a pairing $e: G \times G \mapsto G_T$
- Let ${\it G}=\langle {\it g}
 angle$ and $lpha, {\it s}$ be randomly chosen from \mathbb{Z}_p^*
- Given $g, g^s, g^{s^2}, \ldots, g^{s^q}, g^{\alpha}, g^{\alpha s}, g^{\alpha s^2}, \ldots, g^{\alpha s^q}$, suppose a PPT adversary can output c, \hat{c} such that $\hat{c} = c^{\alpha}$
- The only way he can do so is by choosing some $a_0, a_1, \ldots, a_q \in \mathbb{Z}_p$ and setting $c = \prod_{i=0}^q \left(g^{s^i}\right)^{a_i}$ and $\hat{c} = \prod_{i=0}^q \left(g^{\alpha s^i}\right)^{a_i}$

Checking Polynomial Evaluation

- Prover knows a polynomial $p(x) \in \mathbb{F}_p[x]$ of degree d
- Verifier wants to check that prover computes $g^{p(s)}$ for some randomly chosen $s \in \mathbb{F}_p$
- Verifier does not care which p(x) is used but cares about the evaluation point s
- Verifier sends $g^{s^i}, i = 0, 1, 2, \dots, d$ to prover
- If $p(x) = \sum_{i=0}^{d} p_i x^i$, prover can compute $g^{p(s)}$ as

$$g^{
ho(s)}=\Pi_{i=0}^{d}\left(g^{s^{i}}
ight)^{
ho_{i}}$$

- But prover could have computed $g^{p(t)}$ for some $t \neq s$
- Verifier also sends $g^{\alpha s^i}$, i = 0, 1, 2, ..., d for some randomly chosen $\alpha \in \mathbb{F}_p^*$
- Prover can now compute g^{αp(s)}
- Anyone can check that $e(g^{lpha},g^{p(s)})=e(g^{lpha p(s)},g)$
- But why can't the prover cheat by returning $g^{p(t)}$ and $g^{\alpha p(t)}$?

Schwartz-Zippel Lemma

Lemma

Let \mathbb{F} be any field. For any nonzero polynomial $f \in \mathbb{F}[x]$ of degree d and any finite subset S of \mathbb{F} ,

$$\Pr\left[f(s)=0\right] \leq \frac{d}{|S|}$$

when s is chosen uniformly from S.

- Suppose $\mathbb F$ is a finite field of order $\approx 2^{256}$
- If s is chosen uniformly from $\mathbb F,$ then it is unlikely to be a root of low-degree polynomials
- Equality of polynomials can be checked by evaluating them at the same random point
- **Application:** Suppose prover wants to prover that he knows a secret polynomial p(x) which is divisible by another public polynomial t(x)
 - Verifier sends $g^{s^i}, g^{\alpha s^i}, i = 0, 1, 2, \dots, d$ to prover
 - Prover computes $h(x) = \frac{p(x)}{t(x)} = \sum_{i=0}^{d} h_i x^i$ and calculates $g^{h(s)}$ using the coefficients h_i
 - Verifier gets $g^{p(s)}, g^{h(s)}, g^{\alpha p(s)}, g^{\alpha h(s)}$ and checks

$$\begin{split} & e\left(g, g^{p(s)}\right) = e\left(g^{h(s)}, g^{t(s)}\right) \\ & e\left(g^{\alpha}, g^{p(s)}\right) = e\left(g^{\alpha p(s)}, g\right), \quad e\left(g^{\alpha}, g^{h(s)}\right) = e\left(g^{\alpha h(s)}, g\right) \end{split}$$

Arithmetic Circuits

Circuits consisting of additions and multiplications modulo p

Quadratic Arithmetic Programs

Definition

A QAP *Q* over a field \mathbb{F} contains three sets of polynomials $\mathcal{V} = \{v_k(x)\}, \mathcal{W} = \{w_k(x)\}, \mathcal{Y} = \{y_k(x)\}, \text{ for } k \in \{0, 1, ..., m\}, \text{ and a target polynomial } t(x).$

Suppose $f : \mathbb{F}^n \mapsto \mathbb{F}^{n'}$ having input variables with labels 1, 2, ..., n and output variables with labels n + 1, ..., n + n'. We say that *Q* computes *f* if for N = n + n':

 $(a_1, a_2, \dots, a_N) \in \mathbb{F}^N$ is a valid assignment of *t*'s inputs and outputs, if and only if there exist (a_{N+1}, \dots, a_m) such that t(x) divides p(x) where

$$p(x) = \left(v_0(x) + \sum_{k=1}^m a_k v_k(x)\right) \cdot \left(w_0(x) + \sum_{k=1}^m a_k w_k(x)\right) - \left(y_0(x) + \sum_{k=1}^m a_k y_k(x)\right).$$

So there must exist polynomial h(x) such that h(x)t(x) = p(x).

The size of Q is m, and the degree of Q is the degree of t(x).

• Arithmetic circuits can be mapped to QAPs efficiently

QAP for an Arithmetic Circuit

- $a_5 = (a_1 + 7a_2)(a_2 2a_3)$ and $a_6 = (a_2 2a_3)a_4$
- Choose distinct $r_5, r_6 \in \mathbb{F}$ and $t(x) = (x r_5)(x r_6)$
- Choose polynomials $\{v_k(x)\}, \{w_k(x)\}, \{y_k(x)\}, k = 0, 1, \dots, m$ such that

$$\sum_{k=0}^{6} a_k v_k(r_5) = a_1 + 7a_2, \quad \sum_{k=0}^{6} a_k w_k(r_5) = a_2 - 2a_3, \quad \sum_{k=0}^{6} a_k y_k(r_5) = a_5,$$

$$\sum_{k=0}^{6} a_k v_k(r_6) = a_2 - 2a_3, \quad \sum_{k=0}^{6} a_k w_k(r_6) = a_4, \qquad \sum_{k=0}^{6} a_k y_k(r_6) = a_6.$$

Pinocchio SNARK from QAP

- Let $R = \{(u, wit)\} \subset \mathbb{F}^n \times \mathbb{F}^{n_1}$ be a relation where $u \in \mathbb{F}^n$ is the statement and $wit \in \mathbb{F}^{n_1}$ is the witness
- Suppose *R* can verified with an arithmetic circuit, i.e. there is an arithmetic function *f* such that *f*(*u*) = 1 iff there exists a *wit* such that (*u*, *wit*) ∈ *R*
- A QAP for *f* is derived which has N = n + 1 input-output variables
- Prover has to show he knows (a_1, \ldots, a_m) such that t(x) divides v(x)w(x) y(x) where t(x) has degree d

• Example

- Let $R = \{(u, wit) \in \{0, 1\}^{256} \times \{0, 1\}^{100} \mid u = SHA256(wit)\}$
- The corresponding f will compute SHA256(wit) and compare it to u
- f has N = 256 + 1 = 257 input-output-related variables
- The QAP for *f* will have additional variables a_{N+1}, \ldots, a_m corresponding to witness values and other circuit gate inputs and outputs

Pinocchio SNARK from QAP

- Let $R = \{(u, wit)\} \subset \mathbb{F}^n \times \mathbb{F}^{n_1}$ be a relation where $u \in \mathbb{F}^n$ is the statement and $wit \in \mathbb{F}^{n_1}$ is the witness
- Suppose *R* can verified with an arithmetic circuit, i.e. there is an arithmetic function *f* such that *f*(*u*) = 1 iff there exists a *wit* such that (*u*, *wit*) ∈ *R*
- A QAP for f is derived which has N = n + 1 input-output variables
- Prover has to show he knows (a₁,..., a_m) such that t(x) divides v(x)w(x) y(x) where t(x) has degree d

Common Reference String Generation

- Let $[m] = \{1, 2, ..., m\}$. Indices $\{1, 2, ..., N\}$ are for IO-related variables while $\mathcal{I}_{mid} = \{N + 1, ..., m\}$ are indices of non-IO-related variables
- Choose $r_v, r_w, s, \alpha_v, \alpha_w, \alpha_y, \beta, \gamma \stackrel{\$}{\leftarrow} \mathbb{F}^*$ and set $r_y = r_v r_w, g_v = g^{r_v}, g_w = g^{r_w}$, and $g_y = g^{r_y}$
- Evaluation key
 - Generate $\{g_v^{v_k(s)}\}_{k \in \mathcal{I}_{mid}}, \{g_w^{w_k(s)}\}_{k \in \mathcal{I}_{mid}}, \{g_y^{v_k(s)}\}_{k \in \mathcal{I}_{mid}}$
 - Generate $\{g_v^{\alpha_v v_k(s)}\}_{k \in \mathcal{I}_{mid}}, \{g_w^{\alpha_w w_k(s)}\}_{k \in \mathcal{I}_{mid}}, \{g_y^{\alpha_y y_k(s)}\}_{k \in \mathcal{I}_{mid}}\}$
 - Generate $\{g^{s^i}\}_{i \in [d]}, \{g^{\beta v_k(s)}_v g^{\beta w_k(s)}_w g^{\beta y_k(s)}_y\}_{k \in \mathcal{I}_{min}}$
- Verification key
 - Generate $\{g_v^{v_k(s)}\}_{k \in \{0\} \cup [N]}, \{g_w^{w_k(s)}\}_{k \in \{0\} \cup [N]}, \{g_y^{v_k(s)}\}_{k \in \{0\} \cup [N]}$
 - Generate g^{α_v}, g^{α_w}, g^{α_y}, g^γ, g^{βγ}, g^{t(s)}

Proof Generation for Pinocchio SNARK

- Prover will prove that (u, wit) ∈ R by showing that f(u) = 1
- Prover computes QAP coefficients (*a*₁,..., *a_m*) such that

 $h(x)t(x) = (v_0(x) + \sum_{k=1}^m a_k v_k(x)) \cdot (w_0(x) + \sum_{k=1}^m a_k w_k(x)) - (y_0(x) + \sum_{k=1}^m a_k y_k(x)).$

For

$$egin{aligned} &v_{mid}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k v_k(x), \ &w_{mid}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k w_k(x), \ &y_{mid}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k y_k(x) \end{aligned}$$

the prover outputs the proof π as

$$\begin{split} g_{v}^{v_{mid}(s)}, & g_{w}^{w_{mid}(s)}, & g_{y}^{v_{mid}(s)}, & g_{h(s)}^{h(s)}, \\ g_{v}^{\alpha_{v}v_{mid}(s)}, & g_{w}^{\alpha_{w}w_{mid}(s)}, & g_{y}^{\alpha_{y}y_{mid}(s)} \\ g_{v}^{\beta_{v}w_{mid}(s)}g_{w}^{\beta_{w}mid}(s)}g_{y}^{\beta_{y}mid}(s) \end{split}$$

• Verifier sees alleged proof as $g^{V_{mid}}, g^{W_{mid}}, g^{Y_{mid}}, g^{H}, g^{V'_{mid}}, g^{W'_{mid}}, g^{Y'_{mid}}$, and g^{Z}

Proof Verification for Pinocchio SNARK

- Verification key
 - $\{g_{v}^{v_{k}(s)}\}_{k\in\{0\}\cup[N]}, \{g_{w}^{w_{k}(s)}\}_{k\in\{0\}\cup[N]}, \{g_{y}^{y_{k}(s)}\}_{k\in\{0\}\cup[N]}$
 - $g^{\alpha_v}, g^{\alpha_w}, g^{\alpha_y}, g^{\gamma}, g^{\beta\gamma}, g^{t(s)}_y$
- Verifier computes $g_v^{v_{io}(s)} = \prod_{k \in [N]} (g_v^{v_k(s)})^{a_k}$ and similarly $g_w^{w_{io}(s)}, g_y^{v_{io}(s)}$ and checks divisibility

$$e\left(g_{v}^{v_{0}(s)}g_{v}^{v_{io}(s)}g^{V_{mid}},g_{w}^{w_{0}(s)}g_{w}^{w_{io}(s)}g^{W_{mid}}\right) = e\left(g_{y}^{t(s)},g^{H}\right)e\left(g_{y}^{v_{0}(s)}g_{y}^{v_{io}(s)}g^{Y_{mid}},g\right)$$

 Verifier checks the v_{mid}(s), w_{mid}(s), y_{mid}(s) are the correct linear combinations by checking

$$egin{aligned} &e\left(g^{V'_{mid}},g
ight)=e\left(g^{V_{mid}},g^{lpha_V}
ight), \quad e\left(g^{W'_{mid}},g
ight)=e\left(g^{W_{mid}},g^{lpha_W}
ight)\\ &e\left(g^{Y'_{mid}},g
ight)=e\left(g^{Y_{mid}},g^{lpha_Y}
ight) \end{aligned}$$

Verifier checks that the same variables a_i were used in all three linear combinations v_{mid}(s), w_{mid}(s), y_{mid}(s) by checking

$$e\left(g^{Z},g^{\gamma}
ight)=e\left(g^{V_{\textit{mid}}}g^{W_{\textit{mid}}}g^{Y_{\textit{mid}}},g^{\beta\gamma}
ight)$$

Converting the SNARK into a zkSNARK

- Proof π has $g_v^{v_{mid}(s)}, g_w^{w_{mid}(s)}, g_y^{y_{mid}(s)}$ which reveals information about $\{a_{N+1}, \ldots, a_m\}$ which has the witness values
- Prover chooses δ_ν, δ_w, δ_y
 ^{\$} F^{*} and uses ν_{mid}(x) + δ_νt(x) instead of ν_{mid}(x), w_{mid}(x) + δ_vt(x) instead of w_{mid}(x), and y_{mid}(x) + δ_yt(x) instead of y_{mid}(x)
- Add $g_v^{t(s)}, g_w^{t(s)}, g_v^{\alpha_v t(s)}, g_w^{\alpha_w t(s)}, g_v^{\alpha_v t(s)}, g_v^{\beta t(s)}, g_w^{\beta t(s)}, g_v^{\beta t(s)}$ to the proving key
- Before adding the perturbations by *t*(*x*) multplies we had

 $h(x)t(x) = (v_0(x) + v_{io}(x) + v_{mid}(x)) \cdot (w_0(x) + w_{io}(x) + w_{mid}(x)) - (y_0(x) + y_{io}(x) + y_{mid}(x)).$

Now we have

$$\begin{split} h'(x)t(x) &= (v_0(x) + v_{io}(x) + v_{mid}(x) + \delta_v t(x)) \cdot (w_0(x) + w_{io}(x) + w_{mid}(x) + \delta_w t(x)) \\ &- \big(y_0(x) + y_{io}(x) + y_{mid}(x) + \delta_y t(x) \big). \end{split}$$

 The extra terms on the right are all divisible by t(x) and can be incorporated into the new proof π'

Proof Generation for Pinocchio zkSNARK

• Prover computes *h*'(*x*) as

$$\begin{split} h'(x) &= \frac{(v_0(x) + v_{io}(x) + v_{mid}(x)) \cdot (w_0(x) + w_{io}(x) + w_{mid}(x)) - (y_0(x) + y_{io}(x) + y_{mid}(x))}{t(x)} \\ &+ \delta_v(w_0(x) + w_{io}(x) + w_{mid}(x)) + \delta_w(v_0(x) + v_{io}(x) + v_{mid}(x)) + \delta_v \delta_w t(x) - \delta_y \end{split}$$

For

$$v_{mid}^{\dagger}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k v_k(x) + \delta_v t(x),$$

$$w_{mid}^{\dagger}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k w_k(x) + \delta_w t(x),$$

$$y_{mid}^{\dagger}(x) = \sum_{k \in \mathcal{I}_{mid}} a_k y_k(x) + \delta_y t(x)$$

the prover outputs the proof π as

$$\begin{array}{l} g_{v}^{v_{mid}^{\dagger}(s)}, \quad g_{w}^{w_{mid}^{\dagger}(s)}, \quad g_{y}^{v_{mid}^{\dagger}(s)}, \quad g_{y}^{h'(s)}, \\ g_{v}^{\alpha_{v}v_{mid}^{\dagger}(s)}, \quad g_{w}^{\alpha_{w}w_{mid}^{\dagger}(s)}, \quad g_{y}^{\alpha_{y}y_{mid}^{\dagger}(s)} \\ g_{v}^{\beta_{v}m_{mid}^{\dagger}(s)} g_{w}^{\beta_{w}m_{mid}^{\dagger}(s)} g_{y}^{\beta_{y}m_{mid}^{\dagger}(s)} \end{array}$$

• Verifier sees alleged proof as $g^{V_{mid}}, g^{W_{mid}}, g^{Y_{mid}}, g^{H}, g^{V'_{mid}}, g^{W'_{mid}}, g^{Y'_{mid}}, and g^{Z}$

Proof Verification for Pinocchio zkSNARK

• The same proof verification procedure is used

$$e\left(g_{v}^{v_{0}(s)}g_{v}^{v_{jo}(s)}g^{v_{mid}},g_{w}^{w_{0}(s)}g_{w}^{w_{jo}(s)}g^{W_{mid}}\right) = e\left(g_{y}^{t(s)},g^{H}\right)e\left(g_{y}^{v_{0}(s)}g_{y}^{v_{jo}(s)}g^{Y_{mid}},g\right)$$

$$\begin{split} & e\left(g^{V'_{\textit{mid}}},g\right) = e\left(g^{V_{\textit{mid}}},g^{\alpha_{V}}\right), \quad e\left(g^{W'_{\textit{mid}}},g\right) = e\left(g^{W_{\textit{mid}}},g^{\alpha_{W}}\right) \\ & e\left(g^{Y'_{\textit{mid}}},g\right) = e\left(g^{Y_{\textit{mid}}},g^{\alpha_{Y}}\right) \end{split}$$

$$e\left(g^{Z},g^{\gamma}
ight)=e\left(g^{V_{mid}}g^{W_{mid}}g^{Y_{mid}},g^{\beta\gamma}
ight)$$

- Since g_v^{t(s)}, g_w^{t(s)}, g_v^{αv,t(s)}, g_w^{αv,t(s)}, g_y^{αv,t(s)}, g_y^{βt(s)}, g_y^{βt(s)}, g_y^{βt(s)}, g_y^{βt(s)} have been added to the proving key, verifier is convinced only multiples of t(x) have been added in the appropriate places
- · Verifier is convinced that QAP divisibility condition still holds

Defining zkSNARKs

- Let R be a relation for an NP language L
- A **SNARG** system consists of $\Pi = (Gen, P, V)$
 - For security parameter κ, crs ← Gen(1^κ)
 - For $(u, w) \in R$, prover generates $\pi \leftarrow P(crs, u, w)$
 - If π is a valid proof, $V(crs, u, \pi) = 1$ and 0 otherwise
- Completeness: For all $(u, w) \in R$,

 $\Pr\left[V(\mathit{crs}, u, \pi) = 0 \mid \mathit{crs} \leftarrow \mathit{Gen}(1^{\kappa}), \pi \leftarrow P(\mathit{crs}, u, w)\right] = \mathsf{negl}(\kappa)$

• Soundness: For all PPT provers P*,

 $\Pr\left[V(\mathit{crs}, u, \pi) = 1 \land u \notin L \mid \mathit{crs} \leftarrow \mathit{Gen}(1^{\kappa}), \pi \leftarrow P^*(1^{\kappa}, \mathit{crs}, u)\right] = \operatorname{negl}(\kappa)$

- Succinctness: Proof length $|\pi| = poly(\kappa)polylog(|u| + |w|)$
- **SNARK:** A SNARG with an extractor \mathcal{E} . For any statement u, we require a PPT extractor \mathcal{E}_u such that for any $\pi \leftarrow P(crs, u, w)$ the witness is given by $w \leftarrow \mathcal{E}_u(crs, \pi)$.
- **zkSNARK:** A SNARK is zero-knowledge if there exists a simulator (S_1, S_2) such that S_1 outputs a simulated CRS *crs* and a trapdoor τ , S_2 takes as input *crs*, a statement u and trapdoor τ and outputs a simulated proof π . For $(u, w) \in R$,

$$\Pr\left[\pi \mid crs \leftarrow Gen(1^{\kappa}), \pi \leftarrow P(crs, u, w)\right] \approx \\\Pr\left[\pi \mid (crs, \tau) \leftarrow S_1(1^{\kappa}), \pi \leftarrow S_2(crs, u, \tau)\right]$$

Simulator Construction for Pinocchio zkSNARK

- S₁ generates Pinocchio crs with trapdoor τ = (s, r_v, r_w, α_v, α_w, α_y, β)
- Pinocchio proof is of the form $g^{V_{mid}}, g^{W_{mid}}, g^{Y_{mid}}, g^{H}, g^{V'_{mid}}, g^{W'_{mid}}, g^{Y'_{mid}}$, and g^{Z}
- S_2 picks random v(x), w(x), y(x) such that t(x) divides $v(x) \cdot w(x) y(x)$
- S_2 sets $v_{mid}(x) = v(x) v_0(x) v_{io}(x)$ and similarly for $w_{mid}(x), y_{mid}(x)$
- Using the trapdoor information, S_2 outputs the proof π as

$$\begin{array}{l} g_{v}^{v_{mid}(s)}, \quad g_{w}^{w_{mid}(s)}, \quad g_{y}^{v_{mid}(s)}, \quad g^{h(s)}_{v} \\ g_{v}^{\alpha_{v}v_{mid}(s)}, \quad g_{w}^{\alpha_{w}w_{mid}(s)}, \quad g_{y}^{\alpha_{y}y_{mid}(s)} \\ g_{v}^{\beta_{v}w_{mid}(s)}g_{w}^{\beta_{w}w_{mid}(s)}g_{y}^{\beta_{y}w_{mid}(s)} \end{array}$$

· The proof has the same distribution as the Pinocchio proof

ZCash CRS Generation in Brief

- Let us restrict our attention to the generation of $g^s, g^{s^2}, \ldots, g^{s^d}$
- Suppose *n* parties will participate in the CRS generation
- The value of *s* should not be made public
- Each party generates a random exponent s_i
- First party publishes $g^{s_1}, g^{s_1^2}, \dots, g^{s_1^d}$
- Second party publishes $g^{s_1s_2}, g^{s_1^2s_2^2}, \dots, g^{s_1^ds_2^d}$
- Last party publishes $g^{s_1s_2\cdots s_n},\ldots,g^{s_1^ds_2^d\cdots s_n^d}$
- Desired $s = s_1 s_2 \cdots s_n$
- Only one party is required to destroy its secret s_i to keep s secret

References

- Pairing-Based Cryptographic Protocols: A Survey https://eprint.iacr.org/2004/064.pdf
- DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/ EE720/2019/notes/lecture-21.pdf
- Jens Groth's lecture in the 9th BIU Winter School on Cryptography
 - https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
 - NIZKs from Pairings https://cyber.biu.ac.il/wp-content/ uploads/2019/02/BarIlan2019.pdf
 - NIZKs from Pairings https://www.youtube.com/watch?v=_mAKh7LFPOU
- Pinocchio: Nearly Practical Verifiable Computation, https://eprint.iacr.org/2013/279.pdf
- Why and How zk-SNARK Works by Maksym Petkus https://arxiv.org/abs/1906.07221
- Sections 7, 8 of *Quadratic Span Programs and Succinct NIZKs without PCPs*, GGPR13 https://eprint.iacr.org/2012/215