Zero Knowledge Succinct Noninteractive ARguments of Knowledge

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in
Department of Electrical Engineering Indian Institute of Technology Bombay

October 15, 2019

zkSNARKs

- Arguments
- ZK proofs where soundness guarantee is required only against PPT provers
- Noninteractive
- Proof consists of a single message from prover to verifier
- Succinct
- Proof size is $\mathcal{O}(1)$
- Requires a trusted setup to generate a common reference string
- CRS size is linear in size of assertion being proved

Bilinear Pairings

- Let G and G_{T} be two cyclic groups of prime order p
- In practice, G is an elliptic curve group and G_{T} is subgroup of $\mathbb{F}_{r n}^{*}$ where r is a prime
- Let $G=\langle g\rangle$, i.e. $G=\left\{g^{\alpha} \mid \alpha \in \mathbb{Z}_{p}\right\}$
- A symmetric pairing is a efficient map e : $G \times G \mapsto G_{T}$ satisfying

1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_{p}$, we have $e\left(g^{\alpha}, g^{\beta}\right)=e(g, g)^{\alpha \beta}$
2. Non-degeneracy: $e(g, g)$ is not the identity in G_{T}

- Finding discrete logs is assumed to be difficult in both groups
- Pairings enable multiplication of secrets

Computational Diffie-Hellman Problem

- The CDH experiment $\operatorname{CDH}_{\mathcal{A}, \mathcal{G}}(n)$:

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain (G, q, g) where G is a cyclic group of order q (with $\|q\|=n$), and a generator $g \in G$.
2. Choose a uniform $x_{1}, x_{2} \in \mathbb{Z}_{q}$ and compute $h_{1}=g^{x_{1}}, h_{2}=g^{x_{2}}$.
3. \mathcal{A} is given G, q, g, h_{1}, h_{2} and it outputs $h \in \mathbb{Z}_{q}$.
4. Experiment output is 1 if $h=g^{x_{1} \cdot x_{2}}$ and 0 otherwise.

- Definition: We say that the CDH problem is hard relative to \mathcal{G} if for every PPT adversary \mathcal{A} there is a negligible function negl such that

$$
\operatorname{Pr}\left[\operatorname{CDH}_{\mathcal{A}, \mathcal{G}}(n)=1\right] \leq \operatorname{neg} l(n) .
$$

Decisional Diffie-Hellman Problem

- The DDH experiment DDH $_{\mathcal{A}, \mathcal{G}}(n)$:

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain (G, q, g) where G is a cyclic group of order q (with $\|q\|=n$), and a generator $g \in G$.
2. Choose a uniform $x, y, z \in \mathbb{Z}_{q}$ and compute $u=g^{x}, v=g^{y}$
3. Choose a bit $b \stackrel{\$}{\leftarrow}\{0,1\}$ and compute $w=g^{b z+(1-b) x y}$
4. Give the triple u, v, w to the adversary \mathcal{A}
5. \mathcal{A} outputs a bit $b^{\prime}=\mathcal{A}(G, q, g, u, v, w)$

- Definition: We say that the DDH problem is hard relative to \mathcal{G} if for all PPT adversaries \mathcal{A} there is a negligible function negl such that

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right]\right| \leq \operatorname{negl}(n)
$$

- If G has a pairing, then DDH problem is easy in G

Some Exercises on Pairings

- A symmetric pairing is a efficient map e : $G \times G \mapsto G_{T} \subset F_{r^{n}}^{*}$ satisfying

1. Bilinearity: $\forall \alpha, \beta \in \mathbb{Z}_{p}$, we have $e\left(g^{\alpha}, g^{\beta}\right)=e(g, g)^{\alpha \beta}$
2. Non-degeneracy: $e(g, g)$ is not the identity in G_{T}

- Reduce the following expressions
- e $\left(g^{a}, g\right) e\left(g, g^{b}\right)$
- $e\left(g, g^{a}\right) e\left(g^{b}, g\right)$
- e $\left(g^{a}, g^{-b}\right) e(u, v) e(g, g)^{c}$
- $\prod_{i=1}^{m} e\left(g, g^{a_{i}}\right)^{b_{i}}$
- Show that if $e(u, v)=1$ then $u=1$ or $v=1$

Applications of Pairings

- Three-party Diffie Hellman key agreement
- Three parties Alice, Bob, Carol have private-public key pairs $\left(a, g^{a}\right),\left(b, g^{b}\right),\left(c, g^{c}\right)$ where $G=\langle g\rangle$
- Alice sends g^{a} to the other two
- Bob sends g^{b} to the other two
- Carol sends g^{c} to the other two
- Each party can compute common key

$$
K=e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}=e\left(g^{a}, g^{c}\right)^{b}=e\left(g^{a}, g^{b}\right)^{c}
$$

- BLS Signature Scheme
- Suppose $H:\{0,1\}^{*} \mapsto G$ is a hash function
- Let $\left(x, g^{x}\right)$ be a private-public key pair
- BLS signature on message m is $\sigma=(H(m))^{x}$
- Verifier checks that $e(g, \sigma)=e\left(g^{x}, H(m)\right)$

Knowledge of Exponent Assumptions

- Knowledge of Exponent Assumption (KEA)
- Let G be a cyclic group of prime order p with generator g and let $\alpha \in \mathbb{Z}_{p}$
- Given g, g^{α}, suppose a PPT adversary can output c, \hat{c} such that $\hat{c}=c^{\alpha}$
- The only way he can do so is by choosing some $\beta \in \mathbb{Z}_{p}$ and setting $c=g^{\beta}$ and $\hat{c}=\left(g^{\alpha}\right)^{\beta}$
- q-Power Knowledge of Exponent (q-PKE) Assumption
- Let G be a cyclic group of prime order p with a pairing $e: G \times G \mapsto G_{T}$
- Let $G=\langle g\rangle$ and α, s be randomly chosen from \mathbb{Z}_{p}^{*}
- Given $g, g^{s}, g^{s^{2}}, \ldots, g^{s^{q}}, g^{\alpha}, g^{\alpha s}, g^{\alpha s^{2}}, \ldots, g^{\alpha s^{q}}$, suppose a PPT adversary can output c, \hat{c} such that $\hat{c}=c^{\alpha}$
- The only way he can do so is by choosing some $a_{0}, a_{1}, \ldots, a_{q} \in \mathbb{Z}_{p}$ and setting $c=\Pi_{i=0}^{q}\left(g^{s^{i}}\right)^{a_{i}}$ and $\hat{c}=\Pi_{i=0}^{q}\left(g^{\alpha s^{i}}\right)^{a_{i}}$

Checking Polynomial Evaluation

- Prover knows a polynomial $p(x) \in \mathbb{F}_{p}[x]$ of degree d
- Verifier wants to check that prover computes $g^{p(s)}$ for some randomly chosen $s \in \mathbb{F}_{p}$
- Verifier does not care which $p(x)$ is used but cares about the evaluation point s
- Verifier sends $g^{s^{i}}, i=0,1,2, \ldots, d$ to prover
- If $p(x)=\sum_{i=0}^{d} p_{i} x^{i}$, prover can compute $g^{p(s)}$ as

$$
g^{p(s)}=\Pi_{i=0}^{d}\left(g^{s^{i}}\right)^{p_{i}}
$$

- But prover could have computed $g^{p(t)}$ for some $t \neq s$
- Verifier also sends $g^{\alpha s^{i}}, i=0,1,2, \ldots, d$ for some randomly chosen $\alpha \in \mathbb{F}_{p}^{*}$
- Prover can now compute $g^{\alpha p(s)}$
- Anyone can check that $e\left(g^{\alpha}, g^{p(s)}\right)=e\left(g^{\alpha p(s)}, g\right)$
- But why can't the prover cheat by returning $g^{p(t)}$ and $g^{\alpha p(t)}$?

Schwartz-Zippel Lemma

Lemma

Let \mathbb{F} be any field. For any nonzero polynomial $f \in \mathbb{F}[x]$ of degree d and any finite subset S of \mathbb{F},

$$
\operatorname{Pr}[f(s)=0] \leq \frac{d}{|S|}
$$

when s is chosen uniformly from S.

- Suppose \mathbb{F} is a finite field of order $\approx 2^{256}$
- If s is chosen uniformly from \mathbb{F}, then it is unlikely to be a root of low-degree polynomials
- Equality of polynomials can be checked by evaluating them at the same random point
- Application: Suppose prover wants to prover that he knows a secret polynomial $p(x)$ which is divisible by another public polynomial $t(x)$
- Verifier sends $g^{s^{i}}, g^{\alpha s^{i}}, i=0,1,2, \ldots, d$ to prover
- Prover computes $h(x)=\frac{p(x)}{t(x)}=\sum_{i=0}^{d} h_{i} x^{i}$ and calculates $g^{h(s)}$ using the coefficients h_{i}
- Verifier gets $g^{p(s)}, g^{h(s)}, g^{\alpha p(s)}, g^{\alpha h(s)}$ and checks

$$
\begin{aligned}
& e\left(g, g^{p(s)}\right)=e\left(g^{h(s)}, g^{t(s)}\right) \\
& e\left(g^{\alpha}, g^{p(s)}\right)=e\left(g^{\alpha p(s)}, g\right), \quad e\left(g^{\alpha}, g^{h(s)}\right)=e\left(g^{\alpha h(s)}, g\right)
\end{aligned}
$$

Arithmetic Circuits

Circuits consisting of additions and multiplications modulo p

Quadratic Arithmetic Programs

Definition

A QAP Q over a field \mathbb{F} contains three sets of polynomials $\mathcal{V}=\left\{v_{k}(x)\right\}, \mathcal{W}=\left\{w_{k}(x)\right\}$, $\mathcal{Y}=\left\{y_{k}(x)\right\}$, for $k \in\{0,1, \ldots, m\}$, and a target polynomial $t(x)$.

Suppose $f: \mathbb{F}^{n} \mapsto \mathbb{F}^{n^{\prime}}$ having input variables with labels $1,2, \ldots, n$ and output variables with labels $n+1, \ldots, n+n^{\prime}$. We say that Q computes f if for $N=n+n^{\prime}$:
$\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{F}^{N}$ is a valid assignment of f 's inputs and outputs, if and only if there exist $\left(a_{N+1}, \ldots, a_{m}\right)$ such that $t(x)$ divides $p(x)$ where
$p(x)=\left(v_{0}(x)+\sum_{k=1}^{m} a_{k} v_{k}(x)\right) \cdot\left(w_{0}(x)+\sum_{k=1}^{m} a_{k} w_{k}(x)\right)-\left(y_{0}(x)+\sum_{k=1}^{m} a_{k} y_{k}(x)\right)$.
So there must exist polynomial $h(x)$ such that $h(x) t(x)=p(x)$.
The size of Q is m, and the degree of Q is the degree of $t(x)$.

- Arithmetic circuits can be mapped to QAPs efficiently

QAP for an Arithmetic Circuit

- $a_{5}=\left(a_{1}+7 a_{2}\right)\left(a_{2}-2 a_{3}\right)$ and $a_{6}=\left(a_{2}-2 a_{3}\right) a_{4}$
- Choose distinct $r_{5}, r_{6} \in \mathbb{F}$ and $t(x)=\left(x-r_{5}\right)\left(x-r_{6}\right)$
- Choose polynomials $\left\{v_{k}(x)\right\},\left\{w_{k}(x)\right\},\left\{y_{k}(x)\right\}, k=0,1, \ldots, m$ such that

$$
\begin{array}{lll}
\sum_{k=0}^{6} a_{k} v_{k}\left(r_{5}\right)=a_{1}+7 a_{2}, & \sum_{k=0}^{6} a_{k} w_{k}\left(r_{5}\right)=a_{2}-2 a_{3}, & \sum_{k=0}^{6} a_{k} y_{k}\left(r_{5}\right)=a_{5}, \\
\sum_{k=0}^{6} a_{k} v_{k}\left(r_{6}\right)=a_{2}-2 a_{3}, & \sum_{k=0}^{6} a_{k} w_{k}\left(r_{6}\right)=a_{4}, & \sum_{k=0}^{6} a_{k} y_{k}\left(r_{6}\right)=a_{6} .
\end{array}
$$

Pinocchio SNARK from QAP

- Let $R=\{(u$, wit $)\} \subset \mathbb{F}^{n} \times \mathbb{F}^{n_{1}}$ be a relation where $u \in \mathbb{F}^{n}$ is the statement and wit $\in \mathbb{F}^{n_{1}}$ is the witness
- Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic function f such that $f(u)=1$ iff there exists a wit such that $(u$, wit $) \in R$
- A QAP for f is derived which has $N=n+1$ input-output variables
- Prover has to show he knows $\left(a_{1}, \ldots, a_{m}\right)$ such that $t(x)$ divides $v(x) w(x)-y(x)$ where $t(x)$ has degree d
- Example
- Let $R=\left\{(u\right.$, wit $) \in\{0,1\}^{256} \times\{0,1\}^{100} \mid u=$ SHA256(wit) $\}$
- The corresponding f will compute SHA256(wit) and compare it to u
- f has $N=256+1=257$ input-output-related variables
- The QAP for f will have additional variables a_{N+1}, \ldots, a_{m} corresponding to witness values and other circuit gate inputs and outputs

Pinocchio SNARK from QAP

- Let $R=\{(u$, wit $)\} \subset \mathbb{F}^{n} \times \mathbb{F}^{n_{1}}$ be a relation where $u \in \mathbb{F}^{n}$ is the statement and wit $\in \mathbb{F}^{n_{1}}$ is the witness
- Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic function f such that $f(u)=1$ iff there exists a wit such that $(u$, wit) $\in R$
- A QAP for f is derived which has $N=n+1$ input-output variables
- Prover has to show he knows $\left(a_{1}, \ldots, a_{m}\right)$ such that $t(x)$ divides $v(x) w(x)-y(x)$ where $t(x)$ has degree d
- Common Reference String Generation
- Let $[m]=\{1,2, \ldots, m\}$. Indices $\{1,2, \ldots, N\}$ are for IO-related variables while $\mathcal{I}_{\text {mid }}=\{N+1, \ldots, m\}$ are indices of non-IO-related variables
- Choose $r_{v}, r_{w}, s, \alpha_{v}, \alpha_{w}, \alpha_{y}, \beta, \gamma \stackrel{\$}{\leftarrow} \mathbb{F}^{*}$ and set $r_{y}=r_{v} r_{w}, g_{v}=g^{r_{v}}$, $g_{w}=g^{r_{w}}$, and $g_{y}=g^{r_{y}}$
- Evaluation key
- Generate $\left\{g_{v}^{v_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}},\left\{g_{w}^{w_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}},\left\{g_{y}^{y_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}}$
- Generate $\left\{g_{v}^{\alpha_{\nu} v_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}},\left\{g_{w}^{\alpha_{w} w_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}},\left\{g_{y}^{\alpha_{y} y_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}}$
- Generate $\left\{g^{s^{i}}\right\}_{i \in[d]},\left\{g_{v}^{\beta v_{k}(s)} g_{w}^{\beta w_{k}(s)} g_{y}^{\beta y_{k}(s)}\right\}_{k \in \mathcal{I}_{\text {mid }}}$
- Verification key
- Generate $\left\{g_{v}^{v_{k}(s)}\right\}_{k \in\{0\} \cup[N]},\left\{g_{w}^{w_{k}(s)}\right\}_{k \in\{0\} \cup[N]},\left\{g_{y}^{y_{k}(s)}\right\}_{k \in\{0\} \cup[N]}$
- Generate $g^{\alpha_{v}}, g^{\alpha_{w}}, g^{\alpha_{y}}, g^{\gamma}, g^{\beta \gamma}, g_{y}^{t(s)}$

Proof Generation for Pinocchio SNARK

- Prover will prove that $(u$, wit $) \in R$ by showing that $f(u)=1$
- Prover computes QAP coefficients $\left(a_{1}, \ldots, a_{m}\right)$ such that

$$
h(x) t(x)=\left(v_{0}(x)+\sum_{k=1}^{m} a_{k} v_{k}(x)\right) \cdot\left(w_{0}(x)+\sum_{k=1}^{m} a_{k} w_{k}(x)\right)-\left(y_{0}(x)+\sum_{k=1}^{m} a_{k} y_{k}(x)\right) .
$$

- For

$$
\begin{aligned}
v_{\text {mid }}(x) & =\sum_{k \in \mathcal{I}_{\text {mid }}} a_{k} v_{k}(x), \\
w_{\text {mid }}(x) & =\sum_{k \in \mathcal{I}_{\text {mid }}} a_{k} w_{k}(x) \\
y_{\text {mid }}(x) & =\sum_{k \in \mathcal{I}_{\text {mid }}} a_{k} y_{k}(x)
\end{aligned}
$$

the prover outputs the proof π as

$$
\begin{aligned}
& g_{v}^{v_{\text {mid }}(s)}, \quad g_{w}^{w_{\text {mid }}(s)}, \quad g_{y}^{y_{\text {mid }}(s)}, \quad g^{h(s)} \\
& g_{v}^{\alpha_{V} v_{\text {mid }}(s)}, \quad g_{w}^{\alpha w_{\text {mid }}(s)}, \quad g_{y}^{\alpha_{y} y_{\text {mid }}(s)} \\
& g_{v}^{\beta v_{\text {mid }}(s)} g_{w}^{\beta w_{\text {mid }}(s)} g_{y}^{\beta y_{\text {mid }}(s)}
\end{aligned}
$$

- Verifier sees alleged proof as $g^{V_{\text {mid }}}, g^{W_{\text {mid }}}, g^{Y_{\text {mid }}}, g^{H}, g^{V_{\text {mid }}^{\prime}}, g^{W_{\text {mid }}^{\prime}}, g^{Y_{\text {mid }}^{\prime}}$, and g^{Z}

Proof Verification for Pinocchio SNARK

- Verification key
- $\left\{g_{v}^{v_{k}(s)}\right\}_{k \in\{0\} \cup[N]},\left\{g_{w}^{w_{k}(s)}\right\}_{k \in\{0\} \cup[N]},\left\{g_{y}^{y_{k}(s)}\right\}_{k \in\{0\} \cup[N]}$
- $g^{\alpha_{v}}, g^{\alpha_{w}}, g^{\alpha_{y}}, g^{\gamma}, g^{\beta \gamma}, g_{y}^{t(s)}$
- Verifier computes $g_{v}^{v_{i o}(s)}=\prod_{k \in[N]}\left(g_{v}^{v_{k}(s)}\right)^{a_{k}}$ and similarly $g_{w}^{w_{i o}(s)}, g_{y}^{y_{i 0}(s)}$ and checks divisibility

$$
e\left(g_{v}^{v_{0}(s)} g_{v}^{v_{i o}(s)} g^{V_{\text {mid }}}, g_{w}^{w_{0}(s)} g_{w}^{w_{i o}(s)} g^{W_{\text {mid }}}\right)=e\left(g_{y}^{t(s)}, g^{H}\right) e\left(g_{y}^{y_{0}(s)} g_{y}^{y_{i o}(s)} g^{Y_{\text {mid }}}, g\right)
$$

- Verifier checks the $v_{\text {mid }}(s), w_{\text {mid }}(s), y_{\text {mid }}(s)$ are the correct linear combinations by checking

$$
\begin{aligned}
& e\left(g^{V_{\text {mid }}^{\prime}}, g\right)=e\left(g^{V_{\text {mid }}}, g^{\alpha_{v}}\right), \quad e\left(g^{W_{\text {mid }}^{\prime}}, g\right)=e\left(g^{W_{\text {mid }}}, g^{\alpha_{w}}\right) \\
& e\left(g^{Y_{\text {mid }}^{\prime}}, g\right)=e\left(g^{Y_{\text {mid }}}, g^{\alpha_{y}}\right)
\end{aligned}
$$

- Verifier checks that the same variables a_{i} were used in all three linear combinations $v_{\text {mid }}(s), w_{\text {mid }}(s), y_{\text {mid }}(s)$ by checking

$$
e\left(g^{Z}, g^{\gamma}\right)=e\left(g^{V_{\text {mid }}} g^{W_{\text {mid }}} g^{Y_{\text {mid }}}, g^{\beta \gamma}\right)
$$

Converting the SNARK into a zkSNARK

- Proof π has $g_{v}^{v_{\text {mid }}(s)}, g_{w}^{w_{\text {mid }}(s)}, g_{y}^{y_{\text {mid }}(s)}$ which reveals information about $\left\{a_{N+1}, \ldots, a_{m}\right\}$ which has the witness values
 $w_{\text {mid }}(x)+\delta_{w} t(x)$ instead of $w_{\text {mid }}(x)$, and $y_{\text {mid }}(x)+\delta_{y} t(x)$ instead of $y_{\text {mid }}(x)$
- Add $g_{v}^{t(s)}, g_{w}^{t(s)}, g_{v}^{\alpha_{v} t(s)}, g_{w}^{\alpha_{w} t(s)}, g_{y}^{\alpha_{y} t(s)}, g_{v}^{\beta t(s)}, g_{w}^{\beta t(s)}, g_{y}^{\beta t(s)}$ to the proving key
- Before adding the perturbations by $t(x)$ multplies we had

$$
h(x) t(x)=\left(v_{0}(x)+v_{i o}(x)+v_{\text {mid }}(x)\right) \cdot\left(w_{0}(x)+w_{i o}(x)+w_{\text {mid }}(x)\right)-\left(y_{0}(x)+y_{i o}(x)+y_{\text {mid }}(x)\right) .
$$

- Now we have

$$
\begin{aligned}
h^{\prime}(x) t(x)= & \left(v_{0}(x)+v_{i o}(x)+v_{\text {mid }}(x)+\delta_{v} t(x)\right) \cdot\left(w_{0}(x)+w_{i o}(x)+w_{\text {mid }}(x)+\delta_{w} t(x)\right) \\
& -\left(y_{0}(x)+y_{i o}(x)+y_{\text {mid }}(x)+\delta_{y} t(x)\right) .
\end{aligned}
$$

- The extra terms on the right are all divisible by $t(x)$ and can be incorporated into the new proof π^{\prime}

Proof Generation for Pinocchio zkSNARK

- Prover computes $h^{\prime}(x)$ as

$$
\begin{aligned}
h^{\prime}(x)= & \frac{\left(v_{0}(x)+v_{i o}(x)+v_{\text {mid }}(x)\right) \cdot\left(w_{0}(x)+w_{i o}(x)+w_{\text {mid }}(x)\right)-\left(y_{0}(x)+y_{i o}(x)+y_{\text {mid }}(x)\right)}{t(x)} \\
& +\delta_{v}\left(w_{0}(x)+w_{\text {io }}(x)+w_{\text {mid }}(x)\right)+\delta_{w}\left(v_{0}(x)+v_{i o}(x)+v_{\text {mid }}(x)\right)+\delta_{v} \delta_{w} t(x)-\delta_{y}
\end{aligned}
$$

- For

$$
\begin{aligned}
v_{\text {mid }}^{\dagger}(x) & =\sum_{k \in \mathcal{I}_{\text {mid }}} a_{k} v_{k}(x)+\delta_{v} t(x) \\
w_{\text {mid }}^{\dagger}(x) & =\sum_{k \in \mathcal{I}_{\text {mid }}} a_{k} w_{k}(x)+\delta_{w} t(x) \\
y_{\text {mid }}^{\dagger}(x) & =\sum_{k \in \mathcal{I}_{\text {mid }}} a_{k} y_{k}(x)+\delta_{y} t(x)
\end{aligned}
$$

the prover outputs the proof π as

$$
\begin{aligned}
& g_{v}^{v_{\text {mid }}^{\dagger}(s)}, \quad g_{w}^{w_{m i d}^{\dagger}(s)}, \quad g_{y}^{y_{\text {mid }}^{\dagger}(s)}, \quad g^{h^{\prime}(s)}, \\
& g_{v}^{\alpha_{V} v_{\text {mid }}^{\dagger}(s)}, \quad g_{w}^{\alpha_{w} w_{\text {mid }}^{\dagger}(s)}, \quad g_{y}^{\alpha_{y} y_{\text {mid }}^{\dagger}(s)} \\
& g_{v}^{\beta v_{\text {mid }}^{\dagger}(s)} g_{w}^{\beta w_{\text {mid }}^{\dagger}(s)} g_{y}^{\beta y_{\text {mid }}^{\dagger}(s)}
\end{aligned}
$$

- Verifier sees alleged proof as $g^{V_{\text {mid }}}, g^{W_{\text {mid }}}, g^{Y_{\text {mid }}}, g^{H}, g^{V_{\text {mid }}^{\prime}}, g^{W_{\text {mid }}^{\prime}}, g^{Y_{\text {mid }}^{\prime}}$, and g^{Z}

Proof Verification for Pinocchio zkSNARK

- The same proof verification procedure is used

$$
\begin{gathered}
e\left(g_{v}^{v_{0}(s)} g_{v}^{v_{i o}(s)} g^{V_{\text {mid }}}, g_{w}^{w_{0}(s)} g_{w}^{w_{i o}(s)} g^{W_{\text {mid }}}\right)=e\left(g_{y}^{t(s)}, g^{H}\right) e\left(g_{y}^{y_{0}(s)} g_{y}^{y_{i o}(s)} g^{Y_{\text {mid }}}, g\right) \\
e\left(g^{V_{\text {mid }}^{\prime}}, g\right)=e\left(g^{V_{\text {mid }}}, g^{\alpha_{v}}\right), \quad e\left(g^{W_{\text {mid }}^{\prime}}, g\right)=e\left(g^{W_{\text {mid }}}, g^{\alpha_{w}}\right) \\
e\left(g^{Y_{\text {mid }}^{\prime}}, g\right)=e\left(g^{Y_{\text {mid }}}, g^{\alpha_{y}}\right) \\
e\left(g^{z}, g^{\gamma}\right)=e\left(g^{V_{\text {mid }}} g^{W_{\text {mid }}} g^{Y_{\text {mid }}}, g^{\beta \gamma}\right)
\end{gathered}
$$

- Since $g_{v}^{t(s)}, g_{w}^{t(s)}, g_{v}^{\alpha v t(s)}, g_{w}^{\alpha w t(s)}, g_{y}^{\alpha_{y} t(s)}, g_{v}^{\beta t(s)}, g_{w}^{\beta t(s)}, g_{y}^{\beta t(s)}$ have been added to the proving key, verifier is convinced only multiples of $t(x)$ have been added in the appropriate places
- Verifier is convinced that QAP divisibility condition still holds

Defining zkSNARKs

- Let R be a relation for an NP language L
- A SNARG system consists of $\Pi=(G e n, P, V)$
- For security parameter κ, crs $\leftarrow \operatorname{Gen}\left(1^{\kappa}\right)$
- For $(u, w) \in R$, prover generates $\pi \leftarrow P(c r s, u, w)$
- If π is a valid proof, $V(c r s, u, \pi)=1$ and 0 otherwise
- Completeness: For all $(u, w) \in R$,

$$
\operatorname{Pr}\left[V(c r s, u, \pi)=0 \mid c r s \leftarrow \operatorname{Gen}\left(1^{\kappa}\right), \pi \leftarrow P(c r s, u, w)\right]=\operatorname{negl}(\kappa)
$$

- Soundness: For all PPT provers P^{*},

$$
\operatorname{Pr}\left[V(c r s, u, \pi)=1 \wedge u \notin L \mid c r s \leftarrow \operatorname{Gen}\left(1^{\kappa}\right), \pi \leftarrow P^{*}\left(1^{\kappa}, c r s, u\right)\right]=\operatorname{negl}(\kappa)
$$

- Succinctness: Proof length $|\pi|=\operatorname{poly}(\kappa)$ polylog $(|u|+|w|)$
- SNARK: A SNARG with an extractor \mathcal{E}. For any statement u, we require a PPT extractor \mathcal{E}_{u} such that for any $\pi \leftarrow P(c r s, u, w)$ the witness is given by $w \leftarrow \mathcal{E}_{u}(c r s, \pi)$.
- zkSNARK: A SNARK is zero-knowledge if there exists a simulator $\left(S_{1}, S_{2}\right)$ such that S_{1} outputs a simulated CRS crs and a trapdoor τ, S_{2} takes as input crs, a statement u and trapdoor τ and outputs a simulated proof π. For $(u, w) \in R$,

$$
\begin{aligned}
& \operatorname{Pr}\left[\pi \mid \text { crs } \leftarrow \operatorname{Gen}\left(1^{\kappa}\right), \pi \leftarrow P(\text { crs }, u, w)\right] \approx \\
& \operatorname{Pr}\left[\pi \mid(c r s, \tau) \leftarrow S_{1}\left(1^{\kappa}\right), \pi \leftarrow S_{2}(\text { crs, } u, \tau)\right]
\end{aligned}
$$

Simulator Construction for Pinocchio zkSNARK

- S_{1} generates Pinocchio crs with trapdoor $\tau=\left(s, r_{v}, r_{w}, \alpha_{v}, \alpha_{w}, \alpha_{y}, \beta\right)$
- Pinocchio proof is of the form $g^{V_{\text {mid }}}, g^{W_{\text {mid }}}, g^{Y_{\text {mid }}}, g^{H}, g^{V_{\text {mid }}^{\prime}}, g^{W_{\text {mid }}^{\prime}}, g^{Y_{\text {mid }}^{\prime}}$, and g^{Z}
- S_{2} picks random $v(x), w(x), y(x)$ such that $t(x)$ divides $v(x) \cdot w(x)-y(x)$
- S_{2} sets $v_{\text {mid }}(x)=v(x)-v_{0}(x)-v_{i o}(x)$ and similarly for $w_{\text {mid }}(x), y_{\text {mid }}(x)$
- Using the trapdoor information, S_{2} outputs the proof π as

$$
\begin{aligned}
& g_{v}^{v_{\text {mid }}(s)}, \quad g_{w}^{w_{\text {mid }}(s)}, \quad g_{y}^{y_{\text {mid }}(s)}, \quad g^{h(s)} \\
& g_{v}^{\alpha_{v} v_{\text {mid }}(s)}, \quad g_{w}^{\alpha w_{\text {mid }}(s)}, \quad g_{y}^{\alpha_{y} y_{\text {mid }}(s)} \\
& g_{v}^{\beta v_{\text {mid }}(s)} g_{w}^{\beta w_{\text {mid }}(s)} g_{y}^{\beta y_{\text {mid }}(s)}
\end{aligned}
$$

- The proof has the same distribution as the Pinocchio proof

ZCash CRS Generation in Brief

- Let us restrict our attention to the generation of $g^{s}, g^{s^{2}}, \ldots, g^{s^{d}}$
- Suppose n parties will participate in the CRS generation
- The value of s should not be made public
- Each party generates a random exponent s_{i}
- First party publishes $g^{s_{1}}, g^{s_{1}^{2}}, \ldots, g^{s_{1}^{d}}$
- Second party publishes $g^{s_{1} s_{2}}, g^{s_{1}^{2} s_{2}^{2}}, \ldots, g^{s_{1}^{d} s_{2}^{d}}$
- Last party publishes $g^{s_{1} s_{2} \cdots s_{n}}, \ldots, g^{s_{1}^{d} s_{2}^{d} \cdots s_{n}^{d}}$
- Desired $s=s_{1} s_{2} \cdots s_{n}$
- Only one party is required to destroy its secret s_{i} to keep s secret

References

- Pairing-Based Cryptographic Protocols: A Survey https://eprint.iacr.org/2004/064.pdf
- DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/ EE720/2019/notes/lecture-21.pdf
- Jens Groth's lecture in the 9th BIU Winter School on Cryptography
- https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
- NIZKs from Pairings https://cyber.biu.ac.il/wp-content/ uploads/2019/02/BarIlan2019.pdf
- NIZKs from Pairings

```
https://www.youtube.com/watch?v=_mAKh7LFPOU
```

- Pinocchio: Nearly Practical Verifiable Computation, https://eprint.iacr.org/2013/279.pdf
- Why and How zk-SNARK Works by Maksym Petkus https://arxiv.org/abs/1906.07221
- Sections 7, 8 of Quadratic Span Programs and Succinct NIZKs without PCPs, GGPR13 https://eprint.iacr.org/2012/215

