
Zero Knowledge Succinct Noninteractive
ARguments of Knowledge

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

October 15, 2019

1 / 24

mailto:sarva@ee.iitb.ac.in

zkSNARKs
• Arguments

• ZK proofs where soundness guarantee is required only against
PPT provers

• Noninteractive
• Proof consists of a single message from prover to verifier

• Succinct
• Proof size is O(1)
• Requires a trusted setup to generate a common reference string
• CRS size is linear in size of assertion being proved

2 / 24

Bilinear Pairings

• Let G and GT be two cyclic groups of prime order p
• In practice, G is an elliptic curve group and GT is subgroup of F∗rn

where r is a prime
• Let G = 〈g〉, i.e. G = {gα | α ∈ Zp}
• A symmetric pairing is a efficient map e : G×G 7→ GT satisfying

1. Bilinearity: ∀α, β ∈ Zp, we have e(gα, gβ) = e(g, g)αβ

2. Non-degeneracy: e(g, g) is not the identity in GT

• Finding discrete logs is assumed to be difficult in both groups
• Pairings enable multiplication of secrets

3 / 24

Computational Diffie-Hellman Problem
• The CDH experiment CDHA,G(n):

1. Run G(1n) to obtain (G, q, g) where G is a cyclic group of order q
(with ‖q‖ = n), and a generator g ∈ G.

2. Choose a uniform x1, x2 ∈ Zq and compute h1 = gx1 , h2 = gx2 .
3. A is given G, q, g, h1, h2 and it outputs h ∈ Zq .
4. Experiment output is 1 if h = gx1·x2 and 0 otherwise.

• Definition: We say that the CDH problem is hard relative to G
if for every PPT adversary A there is a negligible function negl
such that

Pr [CDHA,G(n) = 1] ≤ negl(n).

4 / 24

Decisional Diffie-Hellman Problem
• The DDH experiment DDHA,G(n):

1. Run G(1n) to obtain (G, q, g) where G is a cyclic group of order q (with
‖q‖ = n), and a generator g ∈ G.

2. Choose a uniform x , y , z ∈ Zq and compute u = gx , v = gy

3. Choose a bit b $←− {0, 1} and compute w = gbz+(1−b)xy

4. Give the triple u, v ,w to the adversary A
5. A outputs a bit b′ = A (G, q, g, u, v ,w)

• Definition: We say that the DDH problem is hard relative to G if for all PPT
adversaries A there is a negligible function negl such that∣∣Pr

[
A
(
G, q, g, gx , gy , gz) = 1

]
− Pr

[
A
(
G, q, g, gx , gy , gxy) = 1

]∣∣ ≤ negl(n)

• If G has a pairing, then DDH problem is easy in G

5 / 24

Some Exercises on Pairings
• A symmetric pairing is a efficient map e : G ×G 7→ GT ⊂ F ∗rn

satisfying
1. Bilinearity: ∀α, β ∈ Zp, we have e(gα, gβ) = e(g, g)αβ

2. Non-degeneracy: e(g, g) is not the identity in GT

• Reduce the following expressions
• e (ga, g) e

(
g, gb)

• e (g, ga) e
(
gb, g

)
• e

(
ga, g−b) e(u, v)e (g, g)c

•
∏m

i=1 e (g, gai)
bi

• Show that if e(u, v) = 1 then u = 1 or v = 1

6 / 24

Applications of Pairings
• Three-party Diffie Hellman key agreement

• Three parties Alice, Bob, Carol have private-public key pairs
(a, ga), (b, gb), (c, gc) where G = 〈g〉

• Alice sends ga to the other two
• Bob sends gb to the other two
• Carol sends gc to the other two
• Each party can compute common key

K = e(g, g)abc = e(gb, gc)a = e(ga, gc)b = e(ga, gb)c

• BLS Signature Scheme
• Suppose H : {0, 1}∗ 7→ G is a hash function
• Let (x , gx) be a private-public key pair
• BLS signature on message m is σ = (H(m))x

• Verifier checks that e(g, σ) = e(gx ,H(m))

7 / 24

Knowledge of Exponent Assumptions
• Knowledge of Exponent Assumption (KEA)

• Let G be a cyclic group of prime order p with generator g and let
α ∈ Zp

• Given g, gα, suppose a PPT adversary can output c, ĉ such that
ĉ = cα

• The only way he can do so is by choosing some β ∈ Zp and setting
c = gβ and ĉ = (gα)β

• q-Power Knowledge of Exponent (q-PKE) Assumption
• Let G be a cyclic group of prime order p with a pairing

e : G ×G 7→ GT

• Let G = 〈g〉 and α, s be randomly chosen from Z∗p
• Given g, gs, gs2

, . . . , gsq
, gα, gαs, gαs2

, . . . , gαsq
, suppose a PPT

adversary can output c, ĉ such that ĉ = cα

• The only way he can do so is by choosing some a0, a1, . . . , aq ∈ Zp

and setting c = Πq
i=0

(
gsi
)ai

and ĉ = Πq
i=0

(
gαsi

)ai

8 / 24

Checking Polynomial Evaluation

• Prover knows a polynomial p(x) ∈ Fp[x] of degree d
• Verifier wants to check that prover computes gp(s) for some

randomly chosen s ∈ Fp

• Verifier does not care which p(x) is used but cares about the
evaluation point s

• Verifier sends gsi
, i = 0,1,2, . . . ,d to prover

• If p(x) =
∑d

i=0 pix i , prover can compute gp(s) as

gp(s) = Πd
i=0

(
gsi
)pi

• But prover could have computed gp(t) for some t 6= s

• Verifier also sends gαsi
, i = 0,1,2, . . . ,d for some randomly

chosen α ∈ F∗p
• Prover can now compute gαp(s)

• Anyone can check that e(gα,gp(s)) = e(gαp(s),g)

• But why can’t the prover cheat by returning gp(t) and gαp(t) ?
9 / 24

Schwartz-Zippel Lemma

Lemma
Let F be any field. For any nonzero polynomial f ∈ F[x] of degree d and any finite
subset S of F,

Pr [f (s) = 0] ≤
d
|S|

when s is chosen uniformly from S.

• Suppose F is a finite field of order ≈ 2256

• If s is chosen uniformly from F, then it is unlikely to be a root of low-degree
polynomials

• Equality of polynomials can be checked by evaluating them at the same random
point

• Application: Suppose prover wants to prover that he knows a secret polynomial
p(x) which is divisible by another public polynomial t(x)

• Verifier sends gsi
, gαsi

, i = 0, 1, 2, . . . , d to prover
• Prover computes h(x) = p(x)

t(x)
=
∑d

i=0 hi x i and calculates gh(s) using the
coefficients hi

• Verifier gets gp(s), gh(s), gαp(s), gαh(s) and checks

e
(

g, gp(s)
)

= e
(

gh(s), gt(s)
)

e
(

gα, gp(s)
)

= e
(

gαp(s), g
)
, e

(
gα, gh(s)

)
= e

(
gαh(s), g

)
10 / 24

Arithmetic Circuits

Circuits consisting of additions and multiplications modulo p

11 / 24

Quadratic Arithmetic Programs

Definition
A QAP Q over a field F contains three sets of polynomials V = {vk (x)},W = {wk (x)},
Y = {yk (x)}, for k ∈ {0, 1, . . . ,m}, and a target polynomial t(x).

Suppose f : Fn 7→ Fn′ having input variables with labels 1, 2, . . . , n and output
variables with labels n + 1, . . . , n + n′. We say that Q computes f if for N = n + n′:

(a1, a2, . . . , aN) ∈ FN is a valid assignment of f ’s inputs and outputs, if and only if there
exist (aN+1, . . . , am) such that t(x) divides p(x) where

p(x) =

(
v0(x) +

m∑
k=1

ak vk (x)

)
·
(

w0(x) +
m∑

k=1

ak wk (x)

)
−
(

y0(x) +
m∑

k=1

ak yk (x)

)
.

So there must exist polynomial h(x) such that h(x)t(x) = p(x).

The size of Q is m, and the degree of Q is the degree of t(x).

• Arithmetic circuits can be mapped to QAPs efficiently

12 / 24

QAP for an Arithmetic Circuit

• a5 = (a1 + 7a2)(a2 − 2a3) and a6 = (a2 − 2a3)a4

• Choose distinct r5, r6 ∈ F and t(x) = (x − r5)(x − r6)

• Choose polynomials {vk (x)}, {wk (x)}, {yk (x)}, k = 0, 1, . . . ,m such that

6∑
k=0

ak vk (r5) = a1 + 7a2,

6∑
k=0

ak wk (r5) = a2 − 2a3,

6∑
k=0

ak yk (r5) = a5,

6∑
k=0

ak vk (r6) = a2 − 2a3,

6∑
k=0

ak wk (r6) = a4,
6∑

k=0

ak yk (r6) = a6.

13 / 24

Pinocchio SNARK from QAP
• Let R = {(u,wit)} ⊂ Fn × Fn1 be a relation where u ∈ Fn is the statement and

wit ∈ Fn1 is the witness

• Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic
function f such that f (u) = 1 iff there exists a wit such that (u,wit) ∈ R

• A QAP for f is derived which has N = n + 1 input-output variables

• Prover has to show he knows (a1, . . . , am) such that t(x) divides
v(x)w(x)− y(x) where t(x) has degree d

• Example

• Let R =
{

(u,wit) ∈ {0, 1}256 × {0, 1}100 | u = SHA256(wit)
}

• The corresponding f will compute SHA256(wit) and compare it to u
• f has N = 256 + 1 = 257 input-output-related variables
• The QAP for f will have additional variables aN+1, . . . , am corresponding to

witness values and other circuit gate inputs and outputs

14 / 24

Pinocchio SNARK from QAP
• Let R = {(u,wit)} ⊂ Fn × Fn1 be a relation where u ∈ Fn is the statement and

wit ∈ Fn1 is the witness
• Suppose R can verified with an arithmetic circuit, i.e. there is an arithmetic

function f such that f (u) = 1 iff there exists a wit such that (u,wit) ∈ R
• A QAP for f is derived which has N = n + 1 input-output variables
• Prover has to show he knows (a1, . . . , am) such that t(x) divides

v(x)w(x)− y(x) where t(x) has degree d

• Common Reference String Generation
• Let [m] = {1, 2, . . . ,m}. Indices {1, 2, . . . ,N} are for IO-related variables

while Imid = {N + 1, . . . ,m} are indices of non-IO-related variables

• Choose rv , rw , s, αv , αw , αy , β, γ
$←− F∗ and set ry = rv rw , gv = grv ,

gw = grw , and gy = gry

• Evaluation key
• Generate {gvk (s)

v }k∈Imid , {g
wk (s)
w }k∈Imid , {g

yk (s)
y }k∈Imid

• Generate {gαv vk (s)
v }k∈Imid , {g

αw wk (s)
w }k∈Imid , {g

αy yk (s)
y }k∈Imid

• Generate {gsi }i∈[d],
{

gβvk (s)
v gβwk (s)

w gβyk (s)
y

}
k∈Imid

• Verification key
• Generate {gvk (s)

v }k∈{0}∪[N], {g
wk (s)
w }k∈{0}∪[N], {g

yk (s)
y }k∈{0}∪[N]

• Generate gαv , gαw , gαy , gγ , gβγ , gt(s)
y

15 / 24

Proof Generation for Pinocchio SNARK
• Prover will prove that (u,wit) ∈ R by showing that f (u) = 1

• Prover computes QAP coefficients (a1, . . . , am) such that

h(x)t(x)=(v0(x)+
∑m

k=1 ak vk (x))·(w0(x)+
∑m

k=1 ak wk (x))−(y0(x)+
∑m

k=1 ak yk (x)).

• For

vmid (x) =
∑

k∈Imid

ak vk (x),

wmid (x) =
∑

k∈Imid

ak wk (x),

ymid (x) =
∑

k∈Imid

ak yk (x)

the prover outputs the proof π as

gvmid (s)
v , gwmid (s)

w , gymid (s)
y , gh(s),

gαv vmid (s)
v , gαw wmid (s)

w , gαy ymid (s)
y

gβvmid (s)
v gβwmid (s)

w gβymid (s)
y

• Verifier sees alleged proof as gVmid , gWmid , gYmid , gH , gV ′mid , gW ′mid , gY ′mid , and gZ

16 / 24

Proof Verification for Pinocchio SNARK
• Verification key

• {gvk (s)
v }k∈{0}∪[N], {g

wk (s)
w }k∈{0}∪[N], {g

yk (s)
y }k∈{0}∪[N]

• gαv , gαw , gαy , gγ , gβγ , gt(s)
y

• Verifier computes gvio(s)
v =

∏
k∈[N]

(
gvk (s)

v

)ak
and similarly gwio(s)

w , gyio(s)
y and

checks divisibility

e
(

gv0(s)
v gvio(s)

v gVmid , gw0(s)
w gwio(s)

w gWmid
)

= e
(

gt(s)
y , gH

)
e
(

gy0(s)
y gyio(s)

y gYmid , g
)

• Verifier checks the vmid (s),wmid (s), ymid (s) are the correct linear combinations
by checking

e
(

gV ′mid , g
)

= e
(

gVmid , gαv
)
, e

(
gW ′mid , g

)
= e

(
gWmid , gαw

)
e
(

gY ′mid , g
)

= e
(

gYmid , gαy
)

• Verifier checks that the same variables ai were used in all three linear
combinations vmid (s),wmid (s), ymid (s) by checking

e
(

gZ , gγ
)

= e
(

gVmid gWmid gYmid , gβγ
)

17 / 24

Converting the SNARK into a zkSNARK
• Proof π has gvmid (s)

v , gwmid (s)
w , gymid (s)

y which reveals information about
{aN+1, . . . , am} which has the witness values

• Prover chooses δv , δw , δy
$←− F∗ and uses vmid (x) + δv t(x) instead of vmid (x),

wmid (x) + δw t(x) instead of wmid (x), and ymid (x) + δy t(x) instead of ymid (x)

• Add gt(s)
v , gt(s)

w , gαv t(s)
v , gαw t(s)

w , gαy t(s)
y , gβt(s)

v , gβt(s)
w , gβt(s)

y to the proving key
• Before adding the perturbations by t(x) multplies we had

h(x)t(x)=(v0(x)+vio(x)+vmid (x))·(w0(x)+wio(x)+wmid (x))−(y0(x)+yio(x)+ymid (x)).

• Now we have

h′(x)t(x)=(v0(x)+vio(x)+vmid (x)+δv t(x))·(w0(x)+wio(x)+wmid (x)+δw t(x))

−(y0(x)+yio(x)+ymid (x)+δy t(x)).

• The extra terms on the right are all divisible by t(x) and can be incorporated into
the new proof π′

18 / 24

Proof Generation for Pinocchio zkSNARK
• Prover computes h′(x) as

h′(x) = (v0(x)+vio (x)+vmid (x))·(w0(x)+wio (x)+wmid (x))−(y0(x)+yio (x)+ymid (x))
t(x)

+δv (w0(x)+wio(x)+wmid (x))+δw (v0(x)+vio(x)+vmid (x))+δvδw t(x)−δy .

• For

v†mid (x) =
∑

k∈Imid

ak vk (x) + δv t(x),

w†mid (x) =
∑

k∈Imid

ak wk (x) + δw t(x),

y†mid (x) =
∑

k∈Imid

ak yk (x) + δy t(x)

the prover outputs the proof π as

g
v†mid (s)
v , g

w†mid (s)
w , g

y†mid (s)
y , gh′(s),

g
αv v†mid (s)
v , g

αw w†mid (s)
w , g

αy y†mid (s)
y

g
βv†mid (s)
v g

βw†mid (s)
w g

βy†mid (s)
y

• Verifier sees alleged proof as gVmid , gWmid , gYmid , gH , gV ′mid , gW ′mid , gY ′mid , and gZ

19 / 24

Proof Verification for Pinocchio zkSNARK
• The same proof verification procedure is used

e
(

gv0(s)
v gvio(s)

v gVmid , gw0(s)
w gwio(s)

w gWmid
)

= e
(

gt(s)
y , gH

)
e
(

gy0(s)
y gyio(s)

y gYmid , g
)

e
(

gV ′mid , g
)

= e
(

gVmid , gαv
)
, e

(
gW ′mid , g

)
= e

(
gWmid , gαw

)
e
(

gY ′mid , g
)

= e
(

gYmid , gαy
)

e
(

gZ , gγ
)

= e
(

gVmid gWmid gYmid , gβγ
)

• Since gt(s)
v , gt(s)

w , gαv t(s)
v , gαw t(s)

w , gαy t(s)
y , gβt(s)

v , gβt(s)
w , gβt(s)

y have been added to
the proving key, verifier is convinced only multiples of t(x) have been added in
the appropriate places

• Verifier is convinced that QAP divisibility condition still holds

20 / 24

Defining zkSNARKs
• Let R be a relation for an NP language L

• A SNARG system consists of Π = (Gen,P,V)

• For security parameter κ, crs ← Gen(1κ)
• For (u,w) ∈ R, prover generates π ← P(crs, u,w)
• If π is a valid proof, V (crs, u, π) = 1 and 0 otherwise

• Completeness: For all (u,w) ∈ R,

Pr [V (crs, u, π) = 0 | crs ← Gen(1κ), π ← P(crs, u,w)] = negl(κ)

• Soundness: For all PPT provers P∗,

Pr [V (crs, u, π) = 1 ∧ u 6∈ L | crs ← Gen(1κ), π ← P∗(1κ, crs, u)] = negl(κ)

• Succinctness: Proof length |π| = poly(κ)polylog (|u|+ |w |)
• SNARK: A SNARG with an extractor E . For any statement u, we require a PPT

extractor Eu such that for any π ← P(crs, u,w) the witness is given by
w ← Eu(crs, π).

• zkSNARK: A SNARK is zero-knowledge if there exists a simulator (S1,S2) such
that S1 outputs a simulated CRS crs and a trapdoor τ , S2 takes as input crs, a
statement u and trapdoor τ and outputs a simulated proof π. For (u,w) ∈ R,

Pr [π | crs ← Gen(1κ), π ← P (crs, u,w)] ≈
Pr [π | (crs, τ)← S1(1κ), π ← S2 (crs, u, τ)]

21 / 24

Simulator Construction for Pinocchio zkSNARK
• S1 generates Pinocchio crs with trapdoor τ = (s, rv , rw , αv , αw , αy , β)

• Pinocchio proof is of the form gVmid , gWmid , gYmid , gH , gV ′mid , gW ′mid , gY ′mid , and gZ

• S2 picks random v(x),w(x), y(x) such that t(x) divides v(x) · w(x)− y(x)

• S2 sets vmid (x) = v(x)− v0(x)− vio(x) and similarly for wmid (x), ymid (x)

• Using the trapdoor information, S2 outputs the proof π as

gvmid (s)
v , gwmid (s)

w , gymid (s)
y , gh(s),

gαv vmid (s)
v , gαw wmid (s)

w , gαy ymid (s)
y

gβvmid (s)
v gβwmid (s)

w gβymid (s)
y

• The proof has the same distribution as the Pinocchio proof

22 / 24

ZCash CRS Generation in Brief

• Let us restrict our attention to the generation of gs,gs2
, . . . ,gsd

• Suppose n parties will participate in the CRS generation
• The value of s should not be made public
• Each party generates a random exponent si

• First party publishes gs1 ,gs2
1 , . . . ,gsd

1

• Second party publishes gs1s2 ,gs2
1s2

2 , . . . ,gsd
1 sd

2

• Last party publishes gs1s2···sn , . . . ,gsd
1 sd

2 ···s
d
n

• Desired s = s1s2 · · · sn

• Only one party is required to destroy its secret si to keep s secret

23 / 24

References
• Pairing-Based Cryptographic Protocols : A Survey

https://eprint.iacr.org/2004/064.pdf

• DDH and CDH Problems https://www.ee.iitb.ac.in/~sarva/courses/
EE720/2019/notes/lecture-21.pdf

• Jens Groth’s lecture in the 9th BIU Winter School on Cryptography
• https://cyber.biu.ac.il/event/
the-9th-biu-winter-school-on-cryptography/

• NIZKs from Pairings https://cyber.biu.ac.il/wp-content/
uploads/2019/02/BarIlan2019.pdf

• NIZKs from Pairings
https://www.youtube.com/watch?v=_mAKh7LFPOU

• Pinocchio: Nearly Practical Verifiable Computation,
https://eprint.iacr.org/2013/279.pdf

• Why and How zk-SNARK Works by Maksym Petkus
https://arxiv.org/abs/1906.07221

• Sections 7, 8 of Quadratic Span Programs and Succinct NIZKs without PCPs,
GGPR13 https://eprint.iacr.org/2012/215

24 / 24

https://eprint.iacr.org/2004/064.pdf
https://www.ee.iitb.ac.in/~sarva/courses/EE720/2019/notes/lecture-21.pdf
https://www.ee.iitb.ac.in/~sarva/courses/EE720/2019/notes/lecture-21.pdf
https://cyber.biu.ac.il/event/the-9th-biu-winter-school-on-cryptography/
https://cyber.biu.ac.il/event/the-9th-biu-winter-school-on-cryptography/
https://cyber.biu.ac.il/wp-content/uploads/2019/02/BarIlan2019.pdf
https://cyber.biu.ac.il/wp-content/uploads/2019/02/BarIlan2019.pdf
https://www.youtube.com/watch?v=_mAKh7LFPOU
https://eprint.iacr.org/2013/279.pdf
https://arxiv.org/abs/1906.07221
https://eprint.iacr.org/2012/215

