
Consensus Protocols

Saravanan Vijayakumaran

Associate Professor
Department of Electrical Engineering
Indian Institute of Technology Bombay

March 14, 2024

1 / 23



Consensus
• Informally, consensus protocols enable multiple computers

connected by a network to be in sync
• The computers are called nodes
• Network may be unreliable (packet drops, delays)
• Some nodes may act maliciously (deviate from protocol)

• Assumptions
• Semi-reliable point-to-point communication between nodes
• Secure digital signatures are available

• State Machine Replication (SMR)
• First studied in the 1980s
• Clients submit transactions to one or more nodes
• Each node maintains a local append-only data structure

representing an ordered sequence of transactions (history)
• Goal: All nodes must have identical local histories
• If all nodes start from same initial state, then applying the

transactions in the same order will result in the same final state
• SMR protocol requirements

• Consistency: All nodes agree on the same history
• Liveness: Every valid transaction submitted by a client is

eventually added to the history
2 / 23



SMR in Synchronous Setting with Honest Nodes



SMR in Synchronous Setting with Honest Nodes
• Assumption 1: Permissioned Network

• Set of nodes running the protocol is fixed and known
• Let the nodes be denoted by {1, 2, . . . , n}

• Blockchain networks represent a permissionless setting. Why
study the permissioned setting?

• Impossibility results in permissioned setting automatically apply to
the harder permissioned setting

• Permissionless consensus protocols use ideas from the
permissioned setting

• Assumption 2: Public Key Infrastructure
• Each node has a public key which is known to all other nodes

• Assumption 3: Synchronous Network
• Shared global clock: If time is broken into time steps, then all

nodes agree on which time step they are currently in
• Bounded message delays: A message sent at time step t arrives

before the beginning of time step t + 1 (msg reordering is possible)
• Assumption 4: All nodes are honest

• All nodes run the protocol without deviations or errors

4 / 23



Two Faulty SMR Protocols
• A faulty SMR protocol

• Nodes do not communicate with each other
• As soon as a node receives a client request, it adds the transaction

to its local history
• If clients submit transactions to all nodes at the same time, then

local histories will be identical
• Protocol fails to guarantee consistency if

• A client submits requests only to a strict subset of the nodes
• Or if requests arrive in different orders at different nodes

• Another faulty SMR protocol
• One of the nodes is designated as the leader (say node 1)
• At the beginning of each time step, the leader sends an ordered list

of transactions it knows about to all nodes
• Each node (including the leader) appends this list of transactions to

its history
• Consistency is achieved as all local histories will be identical
• Liveness is not achieved if client submits a request to a non-leader

node

5 / 23



SMR via Rotating Leaders
• In each time-step, a node is designated as the leader in

round-robin fashion
• In time step t , the leader is the node with ID equal 1 + (t mod n)
• At the beginning of each time step, the leader sends an ordered

list of new transactions it knows about to all nodes
• new = Transactions not yet added to the history
• Empty list is also allowed

• Before the beginning of the next time step, each node (including
the leader) appends this list of transactions to its history

• Consistency is achieved as all local histories will be identical
• Liveness

• Suppose a client submitted a request to node i
• Node i will eventually become the leader in a time step
• If the client’s transaction has not been included so far, it will be sent

by node i to all other nodes

6 / 23



The Byzantine Broadcast Problem



Faulty/Byzantine Nodes
• The honest nodes assumption is unrealistic
• Types of faults

• Crash faults: A node stops working at some time t
• Omission faults: A node does not send a subset of the messages

it is supposed to send
• Byzantine faults: A node can deviate from the protocol in an

arbitrary manner
• Cannot forge digital signatures

• Byzantine?
• Istanbul was known as Byzantium in the past
• In a 1982 paper, Lamport, Shostak, and Pease introduced a

consensus problem using a story of Byzantine army generals
• Relaxed Assumption 4: Number of Byzantine nodes ≤ f

• All honest nodes assumption corresponds to f = 0
• Parameter f is assumed to be known (protocol description can

depend on it)
• Identities of the (at most f ) Byzantine nodes are not known; but set

of Byzantine nodes is fixed
• Even with f = 1, the SMR via rotating leaders protocol fails

8 / 23



Byzantine Broadcast Problem
• A single-shot consensus problem
• Any solution to BB can be combined with the rotating leaders

idea to solve SMR
• Need to detect that the leader in current time step is Byzantine

• Setting of Byzantine broadcast
• One of the n nodes is the sender (who may be Byzantine)
• The identity of the sender is known to all nodes in advance
• The sender has a private input v∗ which belongs to some set V

• Desired properties of a Byzantine broadcast protocol
• Termination: Every honest node i eventually halts with some

output vi ∈ V
• Agreement: All honest nodes halt with the same output (even if

sender is Byzantine)
• Validity: If the sender is an honest node, then the common output

of the honest nodes is the private input v∗ of the sender
• Agreement is a safety property similar to consistency
• Termination and validity together are similar to liveness
• Termination + validity or termination + agreement are easy to

achieve; getting all three properties is challenging
9 / 23



SMR Reduces to Byzantine Broadcast
• Idea: Use rotating leaders and in each time step invoke BB with

current leader as sender
• Many blockchain consensus protocols work by reducing multi-shot

consensus to single-shot consensus
• Suppose π is a protocol for BB that terminates in at most T time

steps while satisfying agreement and validity
• At each time step in 0,T ,2T , . . .

• Define the current leader using round-robin assignment
• The leader constructs an ordered list L∗ of all not-yet-included

transactions that it has heard about
• Invoke π with leader as sender and L∗ as private input
• When π terminates, every node i appends its output Li in the BB to

its local history
• If π requires at most f nodes to be Byzantine, then the SMR

protocol above satisfies consistency and liveness for same
bound f

• Small modification of liveness definition: Only client requests
submitted to honest nodes need to be eventually added to the
history

10 / 23



Protocol for BB when f = 1
• Canonical strategy by Byzantine nodes: Send conflicting

messages to different nodes
• Honest nodes need to perform cross-checking to detect

conflicting messages
• Simple Cross-Checking Protocol for Byzantine Broadcast

• In the first time step, sender sends it private value v∗ to all
non-senders along with its digital signature

• Let mi be the message (including signature) which the sender sent to
non-sender i

• In the second time step, every non-sender signs the message mi
and sends the message-signature pair to all other non-senders

• If an honest non-sender does not receive a message from the sender
in the first time step, it continues as if it received a null value ⊥

• In the third time step, each non-sender uses the majority rule to
choose its output from the messages it received from the sender
and other non-senders

• Ties are broken in a consistent manner, such as lexicographic
ordering

• Sender outputs its private input v∗

• Proposition: When f = 1, the above protocol satisfies
termination, agreement, and validity

11 / 23



Protocol for BB when f = 1
• Proposition: When f = 1, the protocol satisfies termination,

agreement, and validity
• Termination: Every honest node halts after 3 steps with an output
• Agreement

• Honest sender
• All honest non-senders receive v∗ from the sender
• The Byzantine non-sender cannot forge sender’s signature on v∗ (it

can only induce an omission fault)
• All honest non-senders receive at least n − 2 votes for v∗

• Byzantine sender
• If the sender is Byzantine, all non-senders are honest
• At the start of the third time step, all non-senders have exactly the

same information (the set of messages sent by the sender to different
nodes)

• The result of majority voting will be the same at all non-senders (it
could be ⊥)

• Validity
• Only need to care about honest sender case
• All honest non-senders receive at least n − 2 votes for v∗

12 / 23



Protocol Fails for f = 2
• Suppose the sender and a non-sender are Byzantine
• Suppose the number of nodes n is even and n ≥ 4
• Let the set of possible values V contain 0 and 1
• In the first time step

• Byzantine sender sends 0 to n
2 − 1 honest non-senders and 1 to the other

n
2 − 1 honest non-senders

• Sender also shares both the 0 and 1 messages (including its signatures)
with Byzantine non-sender

• In second time-step
• Byzantine non-sender echoes the 0 message to the first group of honest

non-senders
• It echoes the 1 message to the second group of honest non-senders
• Honest non-senders echo the message they received from sender

• In the third time-step
• Half the honest non-senders will have received n

2 votes for 0 and n
2 − 1

votes for 1
• The other half of honest non-senders will have received n

2 − 1 votes for 1
and n

2 votes for 0
• The two groups will output different values, violating agreement

13 / 23



The Dolev-Strong Protocol
• Proposed in 1983 as a solution to Byzantine broadcast problem
• Works for any f in the permissioned, PKI, synchronous setting
• Definition of Convincing Messages: A node i is convinced of

value v at time step t if it receives a message prior to that time
step that:

• references the value v ,
• is signed first by the sender,
• is signed by at least t − 1 other distinct nodes

• Protocol description
• Time step 0: Sender sends its private input v∗ along with its

signature to all non-senders and outputs v∗

• Time steps t = 1, 2, . . . , f + 1: If a non-sender is convinced of a
value v by a message m prior to this time step and had not
previously been convinced of v , it signs m to get a signature s and
sends (m, s) to all other non-senders

• Final output: If a non-sender is convinced of exactly one value v ,
it outputs v . Otherwise, it outputs ⊥

• Theorem: The Dolev-Strong protocol satisfies termination,
validity, and agreement for any number of Byzantine nodes f

14 / 23



FLM Impossibility Result
• Established first by Pease, Shostak, and Lamport (1980)
• Named after Fischer, Lynch, Merrit (1986) who gave a nice proof
• Shows that the PKI Assumption is necessary in the Dolev-Strong

protocol
• Consider the synchronous, permissioned, non-PKI setting
• If f ≥ n

3 , there is no Byzantine broadcast protocol that satisfies
termination, agreement, and validity.

• Proof: Lecture 3 of Tim Roughgarden’s Foundations of
Blockchains course

15 / 23



Asynchronous Network Model



Asynchronous Network Model
• The synchronous network model

• Shared global clock
• Every message sent at time step t arrives by time step t + 1
• Unrealistic for modeling the Internet (outages, DoS attacks)

• Assuming known bounds on message delay and clock drifts
again leads to the synchronous model

• The asynchronous network model
• No shared global clock
• No bound on the maximum message delay
• Every message sent arrives eventually

• Can we have consensus protocols in the asynchronous network
model?

17 / 23



The FLP Impossibility Theorem
• Named after Fischer, Lynch, Paterson
• Applies in the permissioned, PKI, asynchronous setting

• Byzantine Agreement
• Single-shot consensus problem
• No sender node
• Node has a private input vi ∈ V

• Desired properties of a Byzantine agreement protocol
• Termination: Every honest node i eventually halts with some output wi ∈ V
• Agreement: All honest nodes halt with the same output (no matter what the

private inputs are)
• Validity: If vi = v∗ for every honest node i , then wi = v∗ for every honest

node i
• FLP Impossibility Theorem: For every n ≥ 2, even with f = 1, no deterministic

protocol for the Byzantine agreement problem satisfies termination, agreement,
and validity in the asynchronous model

• Randomized protocols for BA in the asynchronous model exist (for
e.g. HoneyBadgerBFT)

• Practical blockchain protocols escape the FLP impossibility theorem by relaxing
the asynchronous assumption

18 / 23



Partially Synchronous Network Model



Partially Synchronous Network Model
• Lies between the synchronous and asynchronous models
• All nodes share a global clock
• Message delays are arbitrary up to some unknown time instant

called the global stabilization time (GST)
• After GST, message delays are bounded by a known value ∆

• Message delivery model
• If message is sent at t ≤ GST , then it is received at or before

GST +∆
• If message is sent at t ≥ GST , then it is received at or before t +∆

• Goals of consensus protocols in the partially synchronous model
• Safety properties must always hold (even pre-GST)
• Liveness properties must eventually hold (possibly only after GST)

• Theorem: There exists a deterministic protocol for the Byzantine
agreement problem that satisfies agreement, validity, and
eventual (post-GST) termination in the partially synchronous
model if and only if f < n

3
• Tendermint and PBFT are protocols that achieve the "if" direction

20 / 23



The 33% Threshold
• Reasoning for 33% threshold

• Honest nodes can only wait for messages from n − f nodes before
taking action

• But there may by Byzantine nodes in the n − f nodes which
responded (honest nodes messages may be delayed)

• A strict majority of the n − f nodes must be honest

f <
1
2
(n − f ) =⇒ f <

n
3

or n ≥ 3f + 1

• Proof of "only if" direction in the special case of n = 3 and f = 1
• Suppose there exists a protocol π for BA that satisfies agreement

(always), validity (always), and termination (eventually)
• Suppose the three nodes are Alice, Bob, and Carol
• Bob is Byzantine
• Alice has a private input 1 and Carol has private input 0
• All messages between Alice and Carol are delayed
• Bob sends 1 to Alice and none of Carol’s messages
• Bob sends 0 to Carol and none of Alice’s messages
• Alice will output 1 and Carol will output 0 to satisfy termination and

validity
• Agreement is violated

21 / 23



The CAP Principle
• A well-known result about distributed systems
• Consistency: All nodes agree on the same history

• A consistent distributed system looks like a centralized system to a
client

• Availability: A client request to the distributed system should be
eventually executed

• Example: A client may query a distributed database. Response
should be eventually delivered

• Partition Tolerance: Consistency and availability should hold in
the presence of a network partition

• CAP Principle: No distributed system can have all three
properties

• Network partitions are unavoidable in practice
• Protocols have to choose between availability (liveness) and

consistency (safety)
• Tendermint/PBFT give up on liveness (shared history is frozen

during a network partition)
• Bitcoin’s heaviest chain rule gives up on consistency (long reorgs

of block history are possible)
22 / 23



References
• Foundations of Blockchains: Video lectures by Tim Roughgarden

• Notes of lectures 1 to 6 from 2021 FoB course
• https://timroughgarden.github.io/fob21/l/l1.pdf
• https://timroughgarden.github.io/fob21/l/l2.pdf
• https://timroughgarden.github.io/fob21/l/l3.pdf
• https://timroughgarden.github.io/fob21/l/l4-5.pdf
• https://timroughgarden.github.io/fob21/l/l6.pdf

• M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 1980

• M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing, 1986.

• M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 1985

• Blue eyes puzzle
https://www.explainxkcd.com/wiki/index.php/Blue_Eyes

• HoneyBadgerBFT https://eprint.iacr.org/2016/199

23 / 23

https://www.youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA
https://timroughgarden.github.io/fob21/l/l1.pdf
https://timroughgarden.github.io/fob21/l/l2.pdf
https://timroughgarden.github.io/fob21/l/l3.pdf
https://timroughgarden.github.io/fob21/l/l4-5.pdf
https://timroughgarden.github.io/fob21/l/l6.pdf
https://www.explainxkcd.com/wiki/index.php/Blue_Eyes
https://eprint.iacr.org/2016/199

	SMR in Synchronous Setting with Honest Nodes
	The Byzantine Broadcast Problem
	Asynchronous Network Model
	Partially Synchronous Network Model

