Consensus Protocols

Saravanan Vijayakumaran

Associate Professor
Department of Electrical Engineering
Indian Institute of Technology Bombay

March 14, 2024

1/23



Consensus

Informally, consensus protocols enable multiple computers
connected by a network to be in sync
® The computers are called nodes
® Network may be unreliable (packet drops, delays)
® Some nodes may act maliciously (deviate from protocol)
Assumptions
® Semi-reliable point-to-point communication between nodes
® Secure digital signatures are available
State Machine Replication (SMR)
® First studied in the 1980s
e Clients submit transactions to one or more nodes
® Each node maintains a local append-only data structure
representing an ordered sequence of transactions (history)
® Goal: All nodes must have identical local histories
® |f all nodes start from same initial state, then applying the
transactions in the same order will result in the same final state
SMR protocol requirements
® Consistency: All nodes agree on the same history
® Liveness: Every valid transaction submitted by a client is
eventually added to the history
2/23



SMR in Synchronous Setting with Honest Nodes



SMR in Synchronous Setting with Honest Nodes

e Assumption 1: Permissioned Network
® Set of nodes running the protocol is fixed and known
® Let the nodes be denoted by {1,2,...,n}
Blockchain networks represent a permissionless setting. Why
study the permissioned setting?
® Impossibility results in permissioned setting automatically apply to
the harder permissioned setting
® Permissionless consensus protocols use ideas from the
permissioned setting
e Assumption 2: Public Key Infrastructure
® Each node has a public key which is known to all other nodes
Assumption 3: Synchronous Network
® Shared global clock: If time is broken into time steps, then all
nodes agree on which time step they are currently in
® Bounded message delays: A message sent at time step t arrives
before the beginning of time step t + 1 (msg reordering is possible)
Assumption 4: All nodes are honest
® All nodes run the protocol without deviations or errors

4/23



Two Faulty SMR Protocols

e A faulty SMR protocol

* Nodes do not communicate with each other
® As soon as a node receives a client request, it adds the transaction
to its local history
® |[f clients submit transactions to all nodes at the same time, then
local histories will be identical
® Protocol fails to guarantee consistency if
® A client submits requests only to a strict subset of the nodes
® Or if requests arrive in different orders at different nodes
¢ Another faulty SMR protocol

® One of the nodes is designated as the leader (say node 1)

® At the beginning of each time step, the leader sends an ordered list
of transactions it knows about to all nodes

® Each node (including the leader) appends this list of transactions to
its history

® Consistency is achieved as all local histories will be identical

® Liveness is not achieved if client submits a request to a non-leader
node

5/23



SMR via Rotating Leaders

In each time-step, a node is designated as the leader in
round-robin fashion
In time step t, the leader is the node with ID equal 1 + (¢ mod n)

At the beginning of each time step, the leader sends an ordered
list of new transactions it knows about to all nodes

® new = Transactions not yet added to the history

® Empty list is also allowed
Before the beginning of the next time step, each node (including
the leader) appends this list of transactions to its history
Consistency is achieved as all local histories will be identical
Liveness

® Suppose a client submitted a request to node i

® Node / will eventually become the leader in a time step

® |f the client’s transaction has not been included so far, it will be sent
by node i to all other nodes

6/23



The Byzantine Broadcast Problem



Faulty/Byzantine Nodes

The honest nodes assumption is unrealistic
Types of faults

Crash faults: A node stops working at some time t

Omission faults: A node does not send a subset of the messages
it is supposed to send

Byzantine faults: A node can deviate from the protocol in an
arbitrary manner

® Cannot forge digital signatures

Byzantine?

Istanbul was known as Byzantium in the past
In a 1982 paper, Lamport, Shostak, and Pease introduced a
consensus problem using a story of Byzantine army generals

Relaxed Assumption 4: Number of Byzantine nodes < f

All honest nodes assumption corresponds to f = 0

Parameter f is assumed to be known (protocol description can
depend on it)

Identities of the (at most f) Byzantine nodes are not known; but set
of Byzantine nodes is fixed

Even with f = 1, the SMR via rotating leaders protocol fails

8/23



Byzantine Broadcast Problem

A single-shot consensus problem
Any solution to BB can be combined with the rotating leaders
idea to solve SMR
* Need to detect that the leader in current time step is Byzantine
Setting of Byzantine broadcast
® One of the n nodes is the sender (who may be Byzantine)
® The identity of the sender is known to all nodes in advance
® The sender has a private input v* which belongs to some set V
Desired properties of a Byzantine broadcast protocol
® Termination: Every honest node i eventually halts with some
output v; € V
® Agreement: All honest nodes halt with the same output (even if
sender is Byzantine)
® Validity: If the sender is an honest node, then the common output
of the honest nodes is the private input v* of the sender

Agreement is a safety property similar to consistency
Termination and validity together are similar to liveness

Termination + validity or termination + agreement are easy to
achieve; getting all three properties is challenging

9/23



SMR Reduces to Byzantine Broadcast

Idea: Use rotating leaders and in each time step invoke BB with
current leader as sender

® Many blockchain consensus protocols work by reducing multi-shot
consensus to single-shot consensus

Suppose 7 is a protocol for BB that terminates in at most T time
steps while satisfying agreement and validity
At each time stepin 0, T,2T,...
® Define the current leader using round-robin assignment
® The leader constructs an ordered list L* of all not-yet-included
transactions that it has heard about
® |nvoke 7 with leader as sender and L* as private input
®* When 7 terminates, every node i appends its output L; in the BB to
its local history

If = requires at most f nodes to be Byzantine, then the SMR
protocol above satisfies consistency and liveness for same
bound f

® Small modification of liveness definition: Only client requests

submitted to honest nodes need to be eventually added to the
history

10/23



Protocol for BB when f = 1

e Canonical strategy by Byzantine nodes: Send conflicting
messages to different nodes

* Honest nodes need to perform cross-checking to detect
conflicting messages

¢ Simple Cross-Checking Protocol for Byzantine Broadcast
® |n the first time step, sender sends it private value v* to all
non-senders along with its digital signature
® | et m; be the message (including signature) which the sender sent to
non-sender i
® |n the second time step, every non-sender signs the message m;
and sends the message-signature pair to all other non-senders
® |f an honest non-sender does not receive a message from the sender
in the first time step, it continues as if it received a null value L
® |n the third time step, each non-sender uses the majority rule to
choose its output from the messages it received from the sender
and other non-senders
® Ties are broken in a consistent manner, such as lexicographic
ordering
® Sender outputs its private input v*

* Proposition: When f = 1, the above protocol satisfies
termination, agreement, and validity
11/23



Protocol for BB when f = 1

* Proposition: When f = 1, the protocol satisfies termination,
agreement, and validity
e Termination: Every honest node halts after 3 steps with an output

e Agreement
® Honest sender
® All honest non-senders receive v* from the sender
® The Byzantine non-sender cannot forge sender’s signature on v* (it
can only induce an omission fault)
® All honest non-senders receive at least n — 2 votes for v*
® Byzantine sender
® |f the sender is Byzantine, all non-senders are honest
® At the start of the third time step, all non-senders have exactly the
same information (the set of messages sent by the sender to different

nodes)
® The result of majority voting will be the same at all non-senders (it
could be 1)

e Validity
® Only need to care about honest sender case
® All honest non-senders receive at least n — 2 votes for v*

12/23



Protocol Fails for f = 2

Suppose the sender and a non-sender are Byzantine
Suppose the number of nodes nis even and n > 4
Let the set of possible values V contain 0 and 1

In the first time step

Byzantine sender sends 0 to § — 1 honest non-senders and 1 to the other
3 — 1 honest non-senders

Sender also shares both the 0 and 1 messages (including its signatures)
with Byzantine non-sender

In second time-step

Byzantine non-sender echoes the 0 message to the first group of honest
non-senders

It echoes the 1 message to the second group of honest non-senders
Honest non-senders echo the message they received from sender

In the third time-step

Half the honest non-senders will have received § votes for 0 and § — 1
votes for 1

The other half of honest non-senders will have received g — 1 votes for 1
and 7 votes for 0

The two groups will output different values, violating agreement

13/23



The Dolev-Strong Protocol

® Proposed in 1983 as a solution to Byzantine broadcast problem
Works for any f in the permissioned, PKI, synchronous setting

Definition of Convincing Messages: A node i is convinced of
value v at time step ¢ if it receives a message prior to that time
step that:
® references the value v,
® s signed first by the sender,
® is signed by at least t — 1 other distinct nodes
Protocol description
* Time step 0: Sender sends its private input v* along with its
signature to all non-senders and outputs v*
®* Timestepst=1,2,...,f+ 1: If a non-sender is convinced of a
value v by a message m prior to this time step and had not
previously been convinced of v, it signs m to get a signature s and
sends (m, s) to all other non-senders
* Final output: If a non-sender is convinced of exactly one value v,
it outputs v. Otherwise, it outputs L

e Theorem: The Dolev-Strong protocol satisfies termination,
validity, and agreement for any number of Byzantine nodes f

14/23



FLM Impossibility Result

Established first by Pease, Shostak, and Lamport (1980)
Named after Fischer, Lynch, Merrit (1986) who gave a nice proof

Shows that the PKI Assumption is necessary in the Dolev-Strong
protocol

Consider the synchronous, permissioned, non-PKI setting

If f > 7, there is no Byzantine broadcast protocol that satisfies
termination, agreement, and validity.

Proof: Lecture 3 of Tim Roughgarden’s Foundations of
Blockchains course

15/23



Asynchronous Network Model



Asynchronous Network Model

The synchronous network model

® Shared global clock
® Every message sent at time step t arrives by time step t + 1
® Unrealistic for modeling the Internet (outages, DoS attacks)

Assuming known bounds on message delay and clock drifts
again leads to the synchronous model
The asynchronous network model

® No shared global clock
® No bound on the maximum message delay
® Every message sent arrives eventually

Can we have consensus protocols in the asynchronous network
model?

17/23



The FLP Impossibility Theorem

Named after Fischer, Lynch, Paterson
Applies in the permissioned, PKI, asynchronous setting

Byzantine Agreement
® Single-shot consensus problem
® No sender node
® Node has a private input v; € V

Desired properties of a Byzantine agreement protocol
® Termination: Every honest node i eventually halts with some output w; € V
® Agreement: All honest nodes halt with the same output (no matter what the
private inputs are)
® Validity: If v; = v* for every honest node /, then w; = v* for every honest
node i
FLP Impossibility Theorem: For every n > 2, even with f = 1, no deterministic
protocol for the Byzantine agreement problem satisfies termination, agreement,
and validity in the asynchronous model
Randomized protocols for BA in the asynchronous model exist (for
e.g. HoneyBadgerBFT)
Practical blockchain protocols escape the FLP impossibility theorem by relaxing
the asynchronous assumption

18/23



Partially Synchronous Network Model



Partially Synchronous Network Model

Lies between the synchronous and asynchronous models
All nodes share a global clock
Message delays are arbitrary up to some unknown time instant
called the global stabilization time (GST)
After GST, message delays are bounded by a known value A
Message delivery model

® If message is sentatt < GST, then it is received at or before

GST+ A

® |f message is sentatt > GST, then it is received at or before t + A
Goals of consensus protocols in the partially synchronous model

® Safety properties must always hold (even pre-GST)

® Liveness properties must eventually hold (possibly only after GST)
Theorem: There exists a deterministic protocol for the Byzantine
agreement problem that satisfies agreement, validity, and
eventual (post-GST) termination in the partially synchronous
model if and only if f < 7

® Tendermint and PBFT are protocols that achieve the "if" direction

20/23



The 33% Threshold

® Reasoning for 33% threshold

Honest nodes can only wait for messages from n — f nodes before
taking action

But there may by Byzantine nodes in the n — f nodes which
responded (honest nodes messages may be delayed)

A strict majority of the n — f nodes must be honest

f<1§(n—f) — f<gorn23f+1

e Proof of "only if" direction in the special case of n=3and f = 1

Suppose there exists a protocol = for BA that satisfies agreement
(always), validity (always), and termination (eventually)

Suppose the three nodes are Alice, Bob, and Carol

Bob is Byzantine

Alice has a private input 1 and Carol has private input 0

All messages between Alice and Carol are delayed

Bob sends 1 to Alice and none of Carol’s messages

Bob sends 0 to Carol and none of Alice’s messages

Alice will output 1 and Carol will output 0 to satisfy termination and
validity

Agreement is violated

21/23



The CAP Principle

A well-known result about distributed systems
Consistency: All nodes agree on the same history
® A consistent distributed system looks like a centralized system to a
client
Availability: A client request to the distributed system should be
eventually executed
® Example: A client may query a distributed database. Response
should be eventually delivered
Partition Tolerance: Consistency and availability should hold in
the presence of a network partition
CAP Principle: No distributed system can have all three
properties
® Network partitions are unavoidable in practice
® Protocols have to choose between availability (liveness) and
consistency (safety)
Tendermint/PBFT give up on liveness (shared history is frozen
during a network partition)
Bitcoin’s heaviest chain rule gives up on consistency (long reorgs
of block history are possible)

22/23



Notes of lectures 1 to 6 from 2021 FoB course

github.
github.
github.
github.
github.

https:
https:

https

https:
https:

M. Pease, R.

References

Foundations of Blockchains: Video lectures by Tim Roughgarden

//timroughgarden.
//timroughgarden.
://timroughgarden.
//timroughgarden.
//timroughgarden.

io/fob21/1/11.pdf
io/fob21/1/12.pdf
io/fob21/1/13.pdf
io/fob21/1/14-5.pdf
io/fob21/1/16.pdf

Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 1980

M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing, 1986.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 1985

Blue eyes puzzle
https://www.explainxkcd.com/wiki/index.php/Blue_Eyes

HoneyBadgerBFT https://eprint.iacr.org/2016/199

23/23


https://www.youtube.com/playlist?list=PLEGCF-WLh2RLOHv_xUGLqRts_9JxrckiA
https://timroughgarden.github.io/fob21/l/l1.pdf
https://timroughgarden.github.io/fob21/l/l2.pdf
https://timroughgarden.github.io/fob21/l/l3.pdf
https://timroughgarden.github.io/fob21/l/l4-5.pdf
https://timroughgarden.github.io/fob21/l/l6.pdf
https://www.explainxkcd.com/wiki/index.php/Blue_Eyes
https://eprint.iacr.org/2016/199

	SMR in Synchronous Setting with Honest Nodes
	The Byzantine Broadcast Problem
	Asynchronous Network Model
	Partially Synchronous Network Model

