
Elliptic Curve Cryptography in Bitcoin

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

January 29, 2024

1 / 30

mailto:sarva@ee.iitb.ac.in


Some Context on Diophantine Equations



Diophantine Equations
• Polynomial equations with integer coefficients
• Solutions in the integers or rational numbers are of interest
• Named after Greek mathematician Diophantus of Alexandria,

who lived before the 3rd century AD
• Example: Fermat’s Last Theorem

X n + Y n = Z n

where n ∈ Z,n ≥ 3
• Has no solutions in the non-zero integers X ,Y ,Z
• Stated in 17th century; proved in 1995 by Andrew Wiles

3 / 30



Bachet’s Equation
• Consider the problem of writing an integer as the difference of a

square and a cube

y2 − x3 = c for some fixed c ∈ Z

• In 1621, Bachet discovered a duplication formula
• If (x , y) is a solution in Q2 and y ̸= 0, then the following is also a

solution (
x4 − 8cx

4y2 ,
−x6 − 20cx3 + 8c2

8y3

)
• Later, it was proved that if xy ̸= 0 and c ̸∈ {1,−432}, then the

duplication formula gives infinitely many distinct solutions
• It turns out that the duplication solution is the intersection of the

tangent at (x , y) with the curve y2 − x3 = c
• An instance of geometry being used to settle algebraic questions

4 / 30



Bivariate Diophantine Equations
• Consider the equation

f (x , y) = 0

where f is a polynomial with rational coefficients
• Mathematicians were interested in the following questions

1. Are there any solutions in the integers?
2. Are there any solutions in the rational numbers?
3. Are there infinitely many solutions in the integers?
4. Are there infinitely many solutions in the rational numbers?

• The answers are easy for linear polynomials of the form

ax + by + c = 0

where a,b, c ∈ Z
• No integer solutions if gcd(a, b) ∤ c
• Infinitely many integer solutions if gcd(a, b) | c
• Infinitely many rational solutions always exist

5 / 30



Rational Conics
• A rational conic is given by a quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0

where the coefficients are rational numbers
• If the conic has one rational point O, then it has infinitely many

rational points
• Substituting the equation of a line passing through O into the

conic gives a quadratic equation in x
• Since the quadratic has rational coefficients, the sum of its roots

is rational
• Since the x-coordinate of O is one of the roots, the other root is

also rational

6 / 30



Rational Cubics
• A rational cubic is given by a cubic equation

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gY 2 + hx + iy + j = 0

where the coefficients are rational numbers
• We cannot use the technique we used for conics as a line

generally meets a cubic in three points
• But if we have two rational points on a cubic, we can use the line

joining them to find the third point
• In the 1920s, Siegel proved that cubic equation has only finitely

many integer solutions
• In 1922, Mordell proved that a non-singular rational cubic curve

has a finite set of rational points that “generate” all other rational
points
• The generation process involves drawing lines through points and

considering intersections
• Elliptic curves are curves of genus one with a specified point
• Every elliptic curve can be specified by a cubic equation in the

affine plane with specified point mapped to [0,1,0]
7 / 30



Elliptic Curves Over Real Numbers



Elliptic Curves over Reals
The set E of real solutions (x , y) of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 ̸= 0.

−2 2

−4

−2

2

4

y2 = x3 − x + 2

−2 2

−4

−2

2

4

y2 = x3 − 2x

9 / 30



Point Addition (1/3)

P

Q
R′

R

P = (x1, y1),Q = (x2, y2)

x1 ̸= x2

P + Q = R

R = (x3, y3)

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

10 / 30



Point Addition (2/3)

P

Q

O
P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = −y2

P + Q = O

11 / 30



Point Addition (3/3)

P

R′

R

P = (x1, y1),Q = (x2, y2)

x1 = x2, y1 = y2 ̸= 0
P + Q = R

R = (x3, y3)

x3 =

(
3x2

1 + a
2y1

)2

− 2x1

y3 =

(
3x2

1 + a
2y1

)
(x1 − x3)− y1

12 / 30



Elliptic Curves Over Finite Fields



Elliptic Curves over Finite Fields
For char(F ) ̸= 2,3, the set E of solutions (x , y) in F 2 of

y2 = x3 + ax + b

along with a “point of infinity” O. Here 4a3 + 27b2 ̸= 0.

0 2 4 6 8 10

0

2

4

6

8

10

x

y

y2 = x3 + 10x + 2 over F11

0 2 4 6 8 10

0

2

4

6

8

10

x

y

y2 = x3 + 9x over F11

14 / 30



Point Addition for Finite Field Curves
• Point addition formulas derived for reals are used
• Example: y2 = x3 + 10x + 2 over F11

+ O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)
O O (3,2) (3,9) (5,1) (5,10) (6,5) (6,6) (8,0)

(3,2) (3,2) (6,6) O (6,5) (8,0) (3,9) (5,10) (5,1)
(3,9) (3,9) O (6,5) (8,0) (6,6) (5,1) (3,2) (5,10)
(5,1) (5,1) (6,5) (8,0) (6,6) O (5,10) (3,9) (3,2)
(5,10) (5,10) (8,0) (6,6) O (6,5) (3,2) (5,1) (3,9)
(6,5) (6,5) (3,9) (5,1) (5,10) (3,2) (8,0) O (6,6)
(6,6) (6,6) (5,10) (3,2) (3,9) (5,1) O (8,0) (6,5)
(8,0) (8,0) (5,1) (5,10) (3,2) (3,9) (6,6) (6,5) O

• The set E ∪ O is closed under addition
• In fact, its a group

15 / 30



Bitcoin’s Elliptic Curve: secp256k1
• y2 = x3 + 7 over Fp where

p = FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

• E ∪ O has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

• Private key is k ∈ {1,2, . . . ,n − 1}
• Public key is kP where P = (x , y)

x =79BE667E F9DCBBAC 55A06295 CE870B07

029BFCDB 2DCE28D9 59F2815B 16F81798,

y =483ADA77 26A3C465 5DA4FBFC 0E1108A8

FD17B448 A6855419 9C47D08F FB10D4B8.

16 / 30



Point Multiplication using Double-and-Add
• Point multiplication: kP calculation from k and P
• Let k = k0 + 2k1 + 22k2 + · · ·+ 2mkm where ki ∈ {0,1}
• Double-and-Add algorithm

• Set N = P and Q = O
• for i = 0, 1, . . . ,m

• if ki = 1, set Q ← Q + N
• Set N ← 2N

• Return Q

17 / 30



Why ECC?
• For elliptic curves E(Fq), best DL algorithms are exponential in

n = ⌈log2 q⌉
CEC(n) = 2n/2

• In F∗
p, best DL algorithms are sub-exponential in N = ⌈log2 p⌉
• Lp(v , c) = exp

(
c(log p)v (log log p)(1−v)

)
with 0 < v < 1

• Using GNFS method, DLs can be found in Lp(1/3, c0) in F∗
p

CCONV (N) = exp
(

c0N1/3 (log (N log 2))2/3
)

• Best algorithms for factorization have same asymptotic
complexity

• For similar security levels

n = βN1/3 (log (N log 2))2/3

• Key size in ECC grows slightly faster than cube root of
conventional key size
• 173 bits instead of 1024 bits, 373 bits instead of 4096 bits

18 / 30



Elliptic Curve Digital Signature Algorithm



Digital Signatures
• Digital signatures prove that the signer knows private key

(Message, Signature)Signer

Message

Signer’s
Private Key

Verifier
Decision on

Signature Validity

Signer’s
Public Key

20 / 30



Schnorr Identification Scheme
• Let G be a cyclic group of order q with generator g
• Identity corresponds to knowledge of private key x where h = gx

• A prover wants to prove that she knows x to a verifier without
revealing it

1. Prover picks k ← Zq and sends initial message I = gk

2. Verifier sends a challenge r ← Zq

3. Prover sends s = rx + k mod q
4. Verifier checks gs · h−r ?

= I
• Passive eavesdropping does not reveal x for uniform r

• (I, r) is uniform on G × Zq and s = logg(I · hr )
• Transcripts with same distribution can be simulated without

knowing x
• Choose r , s uniformly from Zq and set I = gs · h−r

• We can prove that a prover which generates correct proofs must
know x by constructing an extractor for x
• Section 19.1 of Boneh-Shoup

21 / 30



Schnorr Signature Algorithm
• Based on the Schnorr identification scheme
• Let G be a cyclic group of order q with generator g
• Let H : {0,1}∗ 7→ Zq be a cryptographic hash function
• Signer knows x ∈ Zq such that public key h = gx

• Signer:
1. On input m ∈ {0, 1}∗, chooses k ← Zq

2. Sets I := gk

3. Computes r := H(I,m)
4. Computes s = rx + k mod q
5. Outputs (r , s) as signature for m

• Verifier
1. On input m and (r , s)
2. Compute I := gs · h−r

3. Signature valid if H(I,m)
?
= r

• Example of Fiat-Shamir transform
• Patented by Claus Schnorr in 1988

22 / 30



Digital Signature Algorithm
• Part of the Digital Signature Standard issued by NIST in 1994
• Based on the following identification protocol

1. Suppose prover knows x ∈ Zq such that public key h = gx

2. Prover chooses k ← Z∗
q and sends I := gk

3. Verifier chooses uniform α, r ∈ Zq and sends them
4. Prover sends s :=

[
k−1 · (α+ xr) mod q

]
as response

5. Verifier accepts if s ̸= 0 and

gαs−1
· hrs−1 ?

= I

• Digital Signature Algorithm
1. Let H : {0, 1}∗ 7→ Zq be a cryptographic hash function
2. Let F : G 7→ Zq be a function, not necessarily CHF
3. Signer:

3.1 On input m ∈ {0, 1}∗, chooses k ← Z∗
q and sets r := F (gk )

3.2 Computes s :=
[
k−1 · (H(m) + xr)

]
mod q

3.3 If r = 0 or s = 0, choose k again
3.4 Outputs (r , s) as signature for m

4. Verifier
4.1 On input m and (r , s) with r ̸= 0, s ̸= 0 checks

F
(

gH(m)s−1
hrs−1) ?

= r

23 / 30



ECDSA in Bitcoin
• Signer: Has private key k and message m

1. Compute e = SHA-256(SHA-256(m))
2. Choose a random integer j from F∗

n

3. Compute jP = (x , y)
4. Calculate r = x mod n. If r = 0, go to step 2.
5. Calculate s = j−1(e + kr) mod n. If s = 0, go to step 2.
6. Output (r , s) as signature for m

• Verifier: Has public key kP, message m, and signature (r , s)
1. Calculate e = SHA-256(SHA-256(m))
2. Calculate j1 = es−1 mod n and j2 = rs−1 mod n
3. Calculate the point Q = j1P + j2(kP)
4. If Q = O, then the signature is invalid.
5. If Q ̸= O, then let Q = (x , y) ∈ F2

p. Calculate t = x mod n. If t = r ,
the signature is valid.

• As n is a 256-bit integer, signatures are 512 bits long
• As j is randomly chosen, ECDSA output is random for same m

24 / 30



Transaction Malleability



Transaction ID

nVersion
Number of Inputs N
hash
n
scriptSigLen
scriptSig
nSequence

...
hash
n
scriptSigLen
scriptSig
nSequence
Number of Outputs M
nValue
scriptPubkeyLen
scriptPubkey

...
nValue
scriptPubkeyLen
scriptPubkey
nLockTime

Regular Transaction

Input 0

Input N − 1

Output 0

Output M − 1

Double
SHA-256

Hash
Tx ID

26 / 30



Refund Protocol
• Alice wants to teach Bob about transactions
• Bob does not own any bitcoins
• Alice decides to transfer some bitcoins to Bob
• Alice does not trust Bob
• She wants to ensure refund

27 / 30



Refund Protocol

Input unlocking
x bitcoins from
Alice’s UTXO

Output locked by
2-of-2 multisig

challenge script

Transaction t1
with TXID i1

Input with hash = i1 and
n = 0 unlocking the

2-of-2 multisig output in t1

Output returning
funds to Alice

Transaction t2

Input 0

Output 0

Input 0

Output 0

Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig 5. Broadcast t1

t1 confirmation

6. Broadcast t2

t2 confirmation

28 / 30



Exploiting Transaction Malleability
Bob Alice Network

1. Create t1
2. Create t2

3. Send t2 with A’s sig

4. Send t2 with B’s sig

5. Broadcast t1

5. Broadcast t1

6. Broadcast t ′1

t′1 confirmation

• If (r , s) is a valid ECDSA signature, so is (r ,n − s)
• The t ′1 transaction cannot be spent by t2
• SegWit = Segregated Witness

• Activated in August 2017
• Solves problems arising from transaction malleability

29 / 30



References
• Chapter 1 of Rational Points on Elliptic Curves, Joseph

H. Silverman, John T. Tate, 2nd Edition, 2015
• Sections 9.3 of Introduction to Modern Cryptography, J. Katz,

Y. Lindell, 2nd edition
• Chapters 2, 5 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

• Section 19.1 of A Graduate Course in Applied Cryptography,
D. Boneh, V. Shoup, www.cryptobook.us

30 / 30

www.ee.iitb.ac.in/~sarva/bitcoin.html
www.cryptobook.us

	Some Context on Diophantine Equations
	Elliptic Curves Over Real Numbers
	Elliptic Curves Over Finite Fields
	Elliptic Curve Digital Signature Algorithm
	Transaction Malleability

