
Ethereum Blocks

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

February 19, 2024

1 / 16

Ethereum Blocks
• Ethereum launched as a PoW chain in July 2015
• In Sept 2022, it transitioned to proof-of-stake (the Merge)
• Ethereum node components

• Execution client: Executes transactions and updates world state
• Beacon chain client: Implements the PoS algorithm to achieve

consensus on the execution client blocks
• Ethereum blocks

Source: Ethereum Blog

2 / 16

https://blog.ethereum.org/2021/11/29/how-the-merge-impacts-app-layer

The Merge

Source: Ethereum Blog

3 / 16

https://blog.ethereum.org/2022/08/24/mainnet-merge-announcement

Ethereum 1.0 Block Header
Block = (Header, Transactions, Uncle Headers)

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed
timestamp
extraData
mixHash
nonce

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
≥ 1 byte
≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

4 / 16

Uncle Blocks in Ethereum 1.0
• Block = (Header, Transactions, Uncle Header List)
• ommersHash in block header is hash of uncle header list
• Ommer = Gender-neutral term that means “sibling of parent”
• Problem: Low inter-block time leads to high stale rate

• Stale blocks do not contribute to network security
• Solution: Reward stale block miners and also miners who

include stale block headers
• Rewarded stale blocks are called uncles or ommers

• Transactions in uncle blocks are invalid
• Only a fraction of block reward goes to uncle creator; no

transaction fees
• How to resolve forks in the presence of uncle blocks?

• Greedy Heaviest Observed Subtree (GHOST) protocol proposed
by Sompolinsky and Zohar in December 2013

• Ethereum 1.0 used a simpler version of GHOST
• Ethereum 2.0 also uses a version of GHOST called LMD GHOST

5 / 16

GHOST Protocol

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

• A policy for choosing the main chain in case of forks
• Given a block tree T , the protocol specifies GHOST(T) as the

block representing the main chain
• Mining nodes calculated GHOST(T) locally and mine on top of it
• Heaviest subtree rooted at fork is chosen

6 / 16

GHOST Protocol

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

function CHILDRENT (B)
return Set of blocks with B as immediate parent

end function
function SUBTREET (B)

return Subtree rooted at B
end function
function GHOST(T)

B ← Genesis Block
while True do

if CHILDRENT (B) = ∅ then return B and exit
elseB ← argmaxC∈CHILDRENT (B) |SUBTREET (C)|
end if

end while
end function

7 / 16

GHOST Protocol Example

0

1B

1A 2A 3A 4A 5A 6A

2B

2C

2D

3A

3B

3C

3D

3E

3F

4B

4C 5B

• Suppose an attacker secretly constructs the chain 1A, 2A,. . . , 6A
• All other blocks are mined by honest miners
• Honest miners’ efforts are spread over multiple forks
• Longest chain rule gives 0,1B,2D,3F,4C,5B as main chain

• Shorter than attacker’s chain
• GHOST rule gives 0,1B,2C,3D,4B as main chain

8 / 16

Eth2 Execution Client Block Header
Block = (Header, Transactions, Uncle Headers)

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
prevRandao

nonce
baseFeePerGas

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
1 byte

≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

≥ 1 byte

9 / 16

Block Header Fields Deprecated in Eth2

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
prevRandao

nonce
baseFeePerGas

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
1 byte

≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

≥ 1 byte

• ommersHash = Hash of an empty list
• difficulty = Set to zero
• nonce = Set to 8 zero bytes

• mixHash is replaced with prevRandao
• RANDAO is a pseudorandom value generated by validators in the PoS

consensus algorithm

10 / 16

Fields in the Execution Client Header

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
prevRandao

nonce
baseFeePerGas

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
1 byte

≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

≥ 1 byte

• parentHash = Keccak-256 hash of parent block header
• beneficiary = Destination address of block reward and transaction fees
• stateRoot = Root hash of world state trie after all transactions are applied
• transactionsRoot = Root hash of trie populated with all transactions in the

block
• number = Number of ancestor blocks
• timestamp = Unix time at block creation
• extraData = Arbitrary data; validators identify themselves in this field

11 / 16

receiptsRoot

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
prevRandao

nonce
baseFeePerGas

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
1 byte

≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

≥ 1 byte

• receiptsRoot is the root hash of transaction receipts trie
• A transaction receipt contains logs emitted by smart contracts
• Smart contracts can write to logs using events

event Transfer(address indexed from, address indexed to,
uint256 value);

12 / 16

logsBloom

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
prevRandao

nonce
baseFeePerGas

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
1 byte

≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

≥ 1 byte

• Bloom filter = Probabilistic data structure for set membership queries
• Each transaction receipt contains Bloom filter of addresses and “topics”
• logsBloom is the OR of all transaction receipt Bloom filters
• KECCAK-256 of the logger’s address and indexed topics are used to set 3 bits

out of 2048
• Light clients can efficiently retrieve only transactions of interest

13 / 16

Fee-related Fields

parentHash
ommersHash
beneficiary
stateRoot

transactionsRoot
receiptsRoot
logsBloom
difficulty

number
gasLimit
gasUsed

timestamp
extraData
prevRandao

nonce
baseFeePerGas

Block Header

32 bytes
32 bytes
20 bytes
32 bytes
32 bytes
32 bytes

256 bytes
1 byte

≥ 1 byte
≥ 1 byte
≥ 1 byte

≤ 32 bytes
≤ 32 bytes

32 bytes
8 bytes

≥ 1 byte

• gasUsed is the total gas used by all transactions in the block
• gasLimit is the maximum gas which can be used (currently 30 million)

• baseFeePerGas is the minimum required transaction fees per unit of gas
• Burned by the protocol
• Updated every block depending of how far gasUsed is from a target limit of

15 million

14 / 16

Base Fee Calculation
• Proposed in EIP 1559; included in London hard fork (Aug 2021)

gasTarget =
gasLimit

2

δ =
gasUsed − gasTarget

4 × gasLimit
× baseFeePerGas

baseFeePerGasnew = baseFeePerGas + δ

• Previously gas prices were a first-price auction
• Users had to guess the gas price which would result in block

inclusion of their transactions
• Base fees gives an indication of blockspace demand
• Users can pay a tip to miners via priority fee

15 / 16

References
• Yellow paper https://ethereum.github.io/yellowpaper/paper.pdf
• GHOST paper https://eprint.iacr.org/2013/881
• Ethereum blog post https://blog.ethereum.org/2021/11/29/
how-the-merge-impacts-app-layer

• Solidity events and logs
• Upgrading Ethereum book https://eth2book.info/
• An Economic Analysis of EIP-1559
https://timroughgarden.org/papers/eip1559.pdf

16 / 16

https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2013/881
https://blog.ethereum.org/2021/11/29/how-the-merge-impacts-app-layer
https://blog.ethereum.org/2021/11/29/how-the-merge-impacts-app-layer
https://ethereum.stackexchange.com/questions/12950/what-are-solidity-events-and-how-they-are-related-to-topics-and-logs
https://eth2book.info/
https://timroughgarden.org/papers/eip1559.pdf

