
Ethereum Transactions

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

February 15, 2024

1 / 17

World State and Transactions
• World state consists of a trie storing key/value pairs

• For accounts, key is 20-byte account address
• Account value is [nonce, balance, storageRoot, codeHash]

• Transactions cause state transitions
• σt = Current state, σt+1 = Next state, T = Transaction

σt+1 = Υ(σt ,T)

• Transactions are included in the blocks
• Given genesis block state and blockchain, current state can be

reconstructed
• A transaction can only be initiated by an EOA, not a contract
• Ethereum transactions are of two types

• Contract creation
• Message calls (ETH transfers or contract method invocations)

• A message call transaction can result in further message calls
• As of the London upgrade (block 12965000), there are three

types of transactions in Ethereum
2 / 17

Legacy Transaction Format

Legacy Transaction Format
• Type 0 or legacy transaction

• rlp([nonce, gasPrice, gasLimit, to, value, data,
v, r, s])

• nonce
• Number of transactions sent by the sender address
• Prevents transaction replay
• First transaction has nonce equal to 0

• gasPrice, gasLimit
• Each operation in a transaction execution costs some gas
• gasprice = Number of Wei to be paid per unit of gas used during

transaction execution
• gasLimit = Maximum gas that can be consumed during

transaction execution
• gasprice × gasLimit Wei are deducted from sender’s account
• Any unused gas is refunded to sender’s account at same rate
• Any unrefunded Ether goes to miner

4 / 17

Legacy Transaction Format
• Type 0 or legacy transaction

• rlp([nonce, gasPrice, gasLimit, to, value, data,
v, r, s])

• to
• For contraction creation transaction, to is empty

• RLP encodes empty byte array as 0x80
• Contract address = Right-most 20 bytes of Keccak-256 hash of
RLP([senderAddress, nonce])

• For message calls, to contains the 20-byte address of recipient
• value

• The number of Wei being transferred to recipient
• In message calls, the receiving contract should have payable

functions

5 / 17

Legacy Transaction Format
• Type 0 or legacy transaction

• rlp([nonce, gasPrice, gasLimit, to, value, data,
v, r, s])

• init/data
• This field is also called calldata
• Contract creation transactions have EVM code in init field
• Execution of init code returns a body which will be installed
• Message calls specify a function and its inputs in data field

• The first 4 bytes of the data field specify the function
• The remaining bytes specify the inputs to the function
• The first 4 bytes of the Keccak hash of the function signature is used

• Transfer of ether between EOAs is considered a message call
• Sender can insert arbitrary info in data field

• v, r, s
• (r, s) is the ECDSA signature on hash of remaining Tx fields
• Note that the sender’s address is not a header field
• v enables recovery of sender’s public key

6 / 17

secp256k1 Revisited
• Ethereum uses the same curve as Bitcoin for signatures
• y2 = x3 + 7 over Fp where

p = FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F

= 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

• E ∪ O has cardinality n where

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE

BAAEDCE6 AF48A03B BFD25E8C D0364141

• Private key is k ∈ {1,2, . . . ,n − 1}
• Public key is kP where P is the base point of secp256k1
• Note that p ≈ 2256 and n > 2256 − 2129

7 / 17

Public Key Recovery in ECDSA
• Signer: Has private key k and message m

1. Compute e = H(m)
2. Choose a random integer j from Z∗

n

3. Compute jP = (x , y)
4. Calculate r = x mod n. If r = 0, go to step 2.
5. Calculate s = j−1(e + kr) mod n. If s = 0, go to step 2.
6. Output (r , s) as signature for m

• Verifier: Has public key kP, message m, and signature (r , s)
1. Calculate e = H(m)
2. Calculate j1 = es−1 mod n and j2 = rs−1 mod n
3. Calculate the point Q = j1P + j2(kP)
4. If Q = O, then the signature is invalid.
5. If Q ̸= O, then let Q = (x , y) ∈ F2

p. Calculate t = x mod n. If t = r ,
the signature is valid.

• If Q = (x , y) was available, then

kP = j−1
2 (Q − j1P)

• But we only have r = x mod n where x ∈ Fp

8 / 17

Recovery ID
• Since p < 2256 and n > 2256 − 2129, four possible choices for
(x , y) given r

• Recall that (x , y) on the curve implies (x ,−y) on the curve
• Recovery ID encodes the four possibilities

Rec ID x y
0 r even
1 r odd
2 r + n even
3 r + n odd

• For historical reasons, recovery id is in range 27, 28, 29, 30
• Prior to Spurious Dragon hard fork at block 2,675,000 v was

either 27 or 28
• Chances of 29 or 30 is less than 1 in 2127

• v was not included in transaction hash for signature generation

9 / 17

Chain ID
• In EIP 155, transaction replay attack protection was proposed
• Chain IDs were defined for various networks

CHAIN_ID Chain
1 Ethereum mainnet
4 Rinkeby

61 Ethereum Classic mainnet
62 Ethereum Classic testnet

• After block 2,675,000, Tx field v equals 2 × CHAIN_ID + 35 or 2
× CHAIN_ID + 36

• Transaction hash for signature generation included CHAIN_ID
• Transactions with v equal to 27 to 28 still valid but insecure

against replay attack

10 / 17

Blockchain Forks
• Temporary Forks

• When two miners mine a block at almost the same time
• Soft forks and hard forks

• Caused by changes to the consensus rules
• Consensus rules = Rules determining validity of blocks and

transactions
• Soft forks

• Backward compatible rule changes
• Nodes which do not upgrade still consider blocks produced under

new rules valid
• Example: Block size limit reduced to 500 KB from 1 MB

• Sub-500 KB blocks produced by upgraded miners will be considered
valid by non-upgraded nodes

• Blocks with size larger than 500 KB produced by non-upgraded
miners will be rejected by upgraded nodes

• Soft fork success requires nodes controlling a majority of the
hashpower to upgrade to new rules

• Hard forks
• Not backward compatible rule changes
• Hard fork success requires all nodes to upgrade

11 / 17

Type 1 Transaction Format

Type 1 Transaction Format
• Type 1 transaction

• 0x01 || rlp([chainId, nonce, gasPrice, gasLimit,
to, value, data, accessList, signatureYParity,
signatureR, signatureS])

• Proposed in EIP 2930; included in Berlin hard fork (Apr 2021)
• New fields

• chainId
• signatureYParity
• accessList

• The chain ID and y -coordinate parity fields were unbundled for
simplicity

• The accessList is a list of contract addresses and storage
slots

• Each address costs 2400 gas and each storage slot costs 1900 gas
• Subsequent accesses cost 100 gas each (warm access cost)

• Motivation
• SLOAD cost was increased from 800 to 2100 gas in Berlin
• Some contracts which assumed the lower gas cost broke

13 / 17

Access List
• Has form [[20 bytes, [32 bytes...]]...]

• Example

[
[

"0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae",
[

"0x0000000000000..000000000000000000000000003",
"0x0000000000000..000000000000000000000000007"

]
],
[

"0xbb9bc244d798123fde783fcc1c72d3bb8c189413",
[]

]
]

• Two addresses and two storage slots are specified
• Gas cost = 2 × 2400 + 2 × 1900

14 / 17

Type 2 Transaction Format

Type 2 Transaction Format
• Type 2 transaction

• 0x02 || rlp([chain_id, nonce,
max_priority_fee_per_gas, max_fee_per_gas,
gas_limit, destination, amount, data,
access_list, signature_y_parity, signature_r,
signature_s])

• Proposed in EIP 1559; included in London hard fork (Aug 2021)
• New fields

• max_priority_fee_per_gas
• max_fee_per_gas

• EIP 1559 introduced a base fee per block
• Every transaction has to pay the base fee which is burned
• The max_priority_fee_per_gas specifies a tip to the miner
• The max_fee_per_gas specifies the maximum value of base

fee plus tip the transaction is willing to pay

16 / 17

References
• Yellow paper https://ethereum.github.io/yellowpaper/paper.pdf
• EIP-2718 https://eips.ethereum.org/EIPS/eip-2718

• EIP-1559 https://eips.ethereum.org/EIPS/eip-1559

• EIP-2930 https://eips.ethereum.org/EIPS/eip-2930

• EIP-1559 https://eips.ethereum.org/EIPS/eip-1559

• Understanding gas costs after Berlin
https://hackmd.io/@fvictorio/gas-costs-after-berlin

• Berlin upgrade announcement https://blog.ethereum.org/2021/03/08/
ethereum-berlin-upgrade-announcement

• London upgrade announcement https:
//blog.ethereum.org/2021/07/15/london-mainnet-announcement

• EVM Opcodes https://www.evm.codes/
• Spurious Dragon hard fork https://blog.ethereum.org/2016/11/18/
hard-fork-no-4-spurious-dragon/

• EIP 155: Simple replay attack protection https:
//github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

• Online Keccak hash
https://emn178.github.io/online-tools/keccak_256.html

17 / 17

https://ethereum.github.io/yellowpaper/paper.pdf
https://eips.ethereum.org/EIPS/eip-2718
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-2930
https://eips.ethereum.org/EIPS/eip-1559
https://hackmd.io/@fvictorio/gas-costs-after-berlin
https://blog.ethereum.org/2021/03/08/ethereum-berlin-upgrade-announcement
https://blog.ethereum.org/2021/03/08/ethereum-berlin-upgrade-announcement
https://blog.ethereum.org/2021/07/15/london-mainnet-announcement
https://blog.ethereum.org/2021/07/15/london-mainnet-announcement
https://www.evm.codes/
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://blog.ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://emn178.github.io/online-tools/keccak_256.html

	Legacy Transaction Format
	Type 1 Transaction Format
	Type 2 Transaction Format

