Group Theory

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 23, 2024

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation \star is closed,
- the operation \star is associative,
- there exists an identity element $e \in G$ such that for any $a \in G$

$$
a \star e=e \star a=a
$$

- for every $a \in G$, there exists an element $b \in G$ such that

$$
a \star b=b \star a=e
$$

Example

- Modulo n addition on $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$

Definition

A group is abelian if for all $a, b \in G$, we have $a \star b=b \star a$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group G is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

$$
\{g, g \star g, g \star g \star g, \ldots\}
$$

for some particular element $g \in G$, which is called a generator of G.

Examples

- For an integer $n \geq 1, \mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$
- Operation is addition modulo n
- \mathbb{Z}_{n} is cyclic with generator 1
- For an integer $n \geq 2, \mathbb{Z}_{n}^{*}=\left\{i \in \mathbb{Z}_{n} \backslash\{0\} \mid \operatorname{gcd}(i, n)=1\right\}$
- Operation is multiplication modulo n
- \mathbb{Z}_{n}^{*} is cyclic if n is a prime

Subgroups

- Definition: If G is a group, a nonempty subset $H \subseteq G$ is a subgroup of G if H itself forms a group under the same operation associated with G.
- Example: Consider the subgroups of $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$.
- Lagrange's Theorem: If H is a subgroup of a finite group G, then $|H|$ divides $|G|$.
- Example: Check the cardinalities of the subgroups of \mathbb{Z}_{6}.
- Corollary: If a group has prime order, then every non-identity element is a generator.

Fields

Definition

A set F together with two binary operations + and $*$ is a field if

- F is an abelian group under + whose identity is called 0
- $F^{*}=F \backslash\{0\}$ is an abelian group under $*$ whose identity is called 1
- For any $a, b, c \in F$

$$
a *(b+c)=a * b+a * c
$$

Definition
A finite field is a field with a finite cardinality.

Prime Fields

- $\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}$ where p is prime
- + and $*$ defined on \mathbb{F}_{p} as

$$
\begin{aligned}
x+y & =x+y \bmod p \\
x * y & =x y \bmod p .
\end{aligned}
$$

- \mathbb{F}_{5}

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

$*$	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- In fields, division is multiplication by multiplicative inverse

$$
\frac{x}{y}=x * y^{-1}
$$

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1 . The characteristic of F is the smallest integer p such that

$$
\underbrace{1+1+\cdots+1+1}_{p \text { times }}=0
$$

Examples

- \mathbb{F}_{2} has characteristic 2
- \mathbb{F}_{5} has characteristic 5
- \mathbb{R} has characteristic 0

Theorem
The characteristic of a finite field is prime

References

- Sections 9.1, 9.3 of Introduction to Modern Cryptography, J. Katz, Y. Lindell, 3rd edition
- Chapter 2 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html

