Group Theory

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 23, 2024

Groups

Definition

A set G with a binary operation \star defined on it is called a group if

- the operation \star is closed,
- the operation \star is associative,
- there exists an identity element *e* ∈ *G* such that for any *a* ∈ *G*

 $a \star e = e \star a = a$,

• for every $a \in G$, there exists an element $b \in G$ such that

 $a \star b = b \star a = e$.

Example

• Modulo *n* addition on $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$

Definition

A group is abelian if for all $a, b \in G$, we have $a \star b = b \star a$

Cyclic Groups

Definition

A finite group is a group with a finite number of elements. The order of a finite group G is its cardinality.

Definition

A cyclic group is a finite group G such that each element in G appears in the sequence

 $\{g,g\star g,g\star g\star g\star g,\ldots\}$

for some particular element $g \in G$, which is called a generator of G.

Examples

- For an integer $n \ge 1$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
 - Operation is addition modulo n
 - Z_n is cyclic with generator 1

• For an integer $n \ge 2$, $\mathbb{Z}_n^* = \{i \in \mathbb{Z}_n \setminus \{0\} \mid \gcd(i, n) = 1\}$

- Operation is multiplication modulo *n*
- \mathbb{Z}_n^* is cyclic if *n* is a prime

Subgroups

- **Definition:** If *G* is a group, a nonempty subset *H* ⊆ *G* is a *subgroup* of *G* if *H* itself forms a group under the same operation associated with *G*.
- Example: Consider the subgroups of $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}.$
- Lagrange's Theorem: If *H* is a subgroup of a finite group *G*, then |*H*| divides |*G*|.
- Example: Check the cardinalities of the subgroups of \mathbb{Z}_6 .
- **Corollary:** If a group has prime order, then every non-identity element is a generator.

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any *a*, *b*, *c* ∈ *F*

$$a*(b+c) = a*b + a*c$$

Definition

A finite field is a field with a finite cardinality.

Prime Fields

- $\mathbb{F}_{p} = \{0, 1, 2, \dots, p-1\}$ where p is prime
- + and * defined on \mathbb{F}_p as

$$x + y = x + y \mod p,$$

$$x * y = xy \mod p.$$

• F₅

+	0	1	2	3	4	*	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0	1	2	3	4
2	2	3	4	0	1	2	0	2	4	1	3
3	3	4	0	1	2	3	0	3	1	4	2
4	4	0	1	2	3	4	0	4	3	2	1

· In fields, division is multiplication by multiplicative inverse

$$\frac{x}{y} = x * y^{-1}$$

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\dots+1+1}_{p \text{ times}} = 0$$

Examples

- \mathbb{F}_2 has characteristic 2
- F₅ has characteristic 5

Theorem

The characteristic of a finite field is prime

References

- Sections 9.1, 9.3 of *Introduction to Modern Cryptography*, J. Katz, Y. Lindell, 3rd edition
- Chapter 2 of An Introduction to Bitcoin, S. Vijayakumaran, www.ee.iitb.ac.in/~sarva/bitcoin.html