
Mining Miscellanea

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

February 6, 2024

1 / 24

mailto:sarva@ee.iitb.ac.in

Choosing Between Chain Forks

Difficulty Adjustment

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

Block Header =

4 bytes
32 bytes
32 bytes
4 bytes
4 bytes
4 bytes

• Let b1b2b3b4 be the 4 bytes in nBits. The 256-bit target threshold is given by

T = b2b3b4 × 256b1−3.

• Miner who can find nNonce such that

SHA256 (SHA256 (nVersion ∥ · · · ∥ nNonce)) ≤ T

can add a new block
• Every 2016 blocks, the mining target T is recalculated
• Let tsum = Number of seconds taken to mine last 2016 blocks

Tnew =
tsum

2016 × 10 × 60
× T

3 / 24

Choose the Most Difficult-to-Produce Chain
• Given a mining target T , the probability of success in a single

trial is approximately

T
2256 − 1

• Expected number of hashes to find valid block is 2256−1
T

• Sum of the expected number of hashes in all blocks in a chain is
called its chainwork

• Given two valid forks, the Bitcoin nodes choose the chain which
has more chainwork

• Remarks
• Within a difficulty adjustment period, all chains of same length have

the same chainwork
• Forks which span the difficulty transition will have different

chainwork

4 / 24

Finding and Distributing Mining Nonces

Bitcoin Mining
nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

Block Header =

4 bytes
32 bytes
32 bytes
4 bytes
4 bytes
4 bytes

• A $4000 mining rig can perform 200 TH/s
• A 4-byte nNonce field means 232 ≈ 4 × 109 possibilities

• What should a miner do if all the 232 nNonce values fail threshold test?
• Changing hashPrevBlock and nBits fields invalidates block
• Change bits in the nVersion field?
• Change timestamp to change nTime field?
• Change transactions to change hashMerkleRoot field?

6 / 24

Modifying nVersion and nTime
• nVersion

• Three bits of the 32-bit nVersion are set to 001
• Remaining 29 bits are used by miners to signal support for soft forks
• Changing the signaling bits can interfere with protocol upgrades
• Some miners still do it (see block 541,604)

• nTime
• Timestamps can be changed only by increments of a second
• In block at height N, the nTime value needs to be greater than median of

nTime values of blocks N − 1,N − 2, . . . ,N − 11
• A node rejects a block if the nTime field specifies a time which exceeds its

network-adjusted time by more than 2 hours
• Miners cannot risk invalidating their mined blocks by modifying nTime

indiscriminately

7 / 24

Transaction Merkle Root

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

• hashMerkleRoot contains root hash of transaction Merkle tree
• Modifying any transaction or the transaction order will modify the root hash

h = H(h0 ∥ h1)

h0 = H(h00 ∥ h01)

h00 = H(t0)

t0

h01 = H(t1)

t1

h1 = H(h10 ∥ h10)

h10 = H(t2)

t2

h10

8 / 24

The Extra Nonce Solution
• Although coinbase transaction do not unlock previous outputs, they contain a

dummy input

nVersion
Number of Inputs = 1

Dummy Input

Number of Outputs M

Output 0

...

Output M − 1

nLockTime

hash
n
scriptSigLen
scriptSig
nSequence

Coinbase Transaction Format

• Dummy input fields
• hash is set to all zeros (0x000. . . 000)
• n is set to 0xFFFFFFFF
• scriptSig field can be at most 100 bytes long; also called coinbase field
• Since March 2013, the first 4 bytes of scriptSig encode the block height
• The remaining scriptSig space is used as an extra nonce by miners

9 / 24

Genesis Block Coinbase Field
• Satoshi put the following text in the genesis block coinbase field

The Times 03/Jan/2009 Chancellor on brink of second bailout for banks

10 / 24

Coinbase Markers
• Miners identify themselves in the coinbase field

Source: https://explorer.btc.com/btc/blocks

11 / 24

https://explorer.btc.com/btc/blocks

Block Distribution
• The percentage of blocks mined by each miner can be calculated from coinbase

markers

Image credit: https://explorer.btc.com/btc/insights-pools

12 / 24

https://explorer.btc.com/btc/insights-pools

Mining Pools
• The network hashrate is 500 Exahashes/s = 500× 1018 hashes/s
• A $4000 mining rig can perform 200 TH/s
• The probability of an individual rig owner winning a block is low
• Rig owners join mining pools
• Mining pool operation

• Pool owner “distributes” the mining search space among the pool
miners (participants)

• When a pool miner finds a hash starting with 32 zeros, it submits
the block header to the pool as proof of its efforts. This is called a
share.

• If one of the pool miners finds a valid block, the block reward is
distributed to all pool miners proportional to the number of
submitted shares

• Pool takes a portion of the block reward as coordination fee

13 / 24

Distributing Search Space
• Pool owner can distribute search space by having a different

extra nonce for each pool miner
• Rolling of extra nonce by pool owner for every pool miner does

not scale
• Pool owner recomputes hashMerkleRoot for every extra nonce

change
• Pool miners only change nNonce and nTime (assuming nVersion is

not changed)
• Instead, extra nonce is split into two parts

• ExtraNonce1 is used to distribute search space
• ExtraNonce2 is changed by the individual pool miners

14 / 24

Transaction Merkle Root

nVersion
Number of Inputs = 1

Dummy Input

Number of Outputs M

Output 0

...

Output M − 1

nLockTime

hash
n
scriptSigLen
scriptSig
nSequence

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

Coinbase Transaction Format
Block Header

• Pool owner sends each pool miner the following
• nVersion, hashPrevBlock, nTime, nBits fields of block header
• Coinbase1 = Part of the coinbase transaction before extra nonce
• ExtraNonce1 = Miner-specific extra nonce
• ExtraNonce2_size = The number of bytes in ExtraNonce2 the

miner can change
• Coinbase2 = Part of the coinbase transaction after extra nonce
• Merkle_branch = List of hashes used to calculate hashMerkleRoot

15 / 24

Merkle Branch

h = H(h0∥h1)

h0 = H(h00∥h01)

h00 = H(t0)

t0

h01

t1

h1

h10 = H(t2)

t2

h11 = H(t3)

t3

• Every time ExtraNonce2 is changed, the hashMerkleRoot has to
be recalculated

• Instead of sending all the transactions, only necessary hashes
are sent

16 / 24

AsicBoost

SHA-256
• SHA = Secure Hash Algorithm, 256-bit output length
• Accepts bit strings of length upto 264 − 1
• Output calculation has two stages

• Preprocessing
• Hash Computation

• Preprocessing
1. A 256-bit state variable H(0) is set to

H(0)
0 = 0x6A09E667, H(0)

1 = 0xBB67AE85,

H(0)
2 = 0x3C6EF372, H(0)

3 = 0xA54FF53A,

H(0)
4 = 0x510E527F, H(0)

5 = 0x9B05688C,

H(0)
6 = 0x1F83D9AB, H(0)

7 = 0x5BE0CD19.

2. The input M is padded to a length which is a multiple of 512

18 / 24

SHA-256 Hash Computation
1. Padded input is split into N 512-bit blocks M(1),M(2), . . . ,M(N)

2. Given H(i−1), the next H(i) is calculated using a function f

H(i) = f (M(i),H(i−1)), 1 ≤ i ≤ N.

H(i−1) f

M(i)

H(i)· · · · · ·H(1)fH(0)

M(1)

H(N−1) f H(N)

M(N)

3. f is called a compression function
4. H(N) is the output of SHA-256 for input M

19 / 24

SHA-256 Compression Function Building Blocks
• U, V , W are 32-bit words
• U ∧ V ,U ∨ V , U ⊕ V denote bitwise AND, OR, XOR
• U + V denotes integer sum modulo 232

• ¬U denotes bitwise complement
• For 1 ≤ n ≤ 32, the shift right and rotate right operations

SHRn(U) = 000 · · · 000︸ ︷︷ ︸
n zeros

u0u1 · · · u30−nu31−n,

ROTRn(U) = u31−n+1u31−n+2 · · · u30u31u0u1 · · · u30−nu31−n,

• Bitwise choice and majority functions

Ch(U,V ,W) = (U ∧ V)⊕ (¬U ∧ W),

Maj(U,V ,W) = (U ∧ V)⊕ (U ∧ W)⊕ (V ∧ W),

• Let

Σ0(U) = ROTR2(U)⊕ ROTR13(U)⊕ ROTR22(U)

Σ1(U) = ROTR6(U)⊕ ROTR11(U)⊕ ROTR25(U)

σ0(U) = ROTR7(U)⊕ ROTR18(U)⊕ SHR3(U)

σ1(U) = ROTR17(U)⊕ ROTR19(U)⊕ SHR10(U)

20 / 24

SHA-256 Compression Function Calculation
• Maintains internal state of 64 32-bit words {Wj | j = 0, 1, . . . , 63}
• Also uses 64 constant 32-bit words K0,K1, . . . ,K63 derived from the first 64 prime

numbers 2, 3, 5, . . . , 307, 311

• f (M(i),H(i−1)) proceeds as follows

1. Internal state initialization

Wj =

{
M(i)

j 0 ≤ j ≤ 15,
σ1(Wj−2) + Wj−7 + σ0(Wj−15) + Wj−16 16 ≤ j ≤ 63.

2. Initialize eight 32-bit words

(A,B,C,D,E ,F ,G,H) =
(

H(i−1)
0 ,H(i−1)

1 , . . . ,H(i−1)
6 ,H(i−1)

7

)
.

3. For j = 0, 1, . . . , 63, iteratively update A,B, . . . ,H

T1 = H +Σ1(E) + Ch(E ,F ,G) + Kj + Wj

T2 = Σ0(A) + Maj(A,B,C)

(A,B,C,D,E ,F ,G,H) = (T1 + T2,A,B,C,D + T1,E ,F ,G)

4. Calculate H(i) from H(i−1)

(H(i)
0 ,H(i)

1 , . . . ,H(i)
7) =

(
A + H(i−1)

0 ,B + H(i−1)
1 , . . . ,H + H(i−1)

7

)
.

21 / 24

AsicBoost
• A method to speedup Bitcoin mining by a factor of 20%
• Proposed by Timo Hanke and Sergio Demian Lerner
• Exploits the fact that SHA256 operates on 64 byte chunks
• The Bitcoin block header is 80 bytes long

Image source: https://arxiv.org/abs/1604.00575

• If two transaction Merkle roots collide in the last 4 bytes, some of
the SHA-256 work in the second chunk can be reused

• Recall that the internal state initialization (Wj calculation) does
not depend on the previous hash H(i−1)

22 / 24

https://arxiv.org/abs/1604.00575

AsicBoost Loop

Image source: https://arxiv.org/abs/1604.00575

• In the above figure, the grey and green blocks represent
computation that can be reused

• If two transaction Merkle roots coincide in the last 4 bytes, then
the output of Expander 1 can be reused

23 / 24

https://arxiv.org/abs/1604.00575

References
• What is chainwork? https://bitcoin.stackexchange.com/questions/
26869/what-is-chainwork/26894

• Sections 4.2, 4.3, 5.3 of An Introduction to Bitcoin, S. Vijayakumaran,
www.ee.iitb.ac.in/~sarva/bitcoin.html

• BIP 34: Block v2, Height in Coinbase https:
//github.com/bitcoin/bips/blob/master/bip-0034.mediawiki

• Bitcoin Genesis Block https://en.bitcoin.it/wiki/Genesis_block
• Bitcoin Blocks with Coinbase Markers https://btc.com/block
• Bitcoin Block Distribution https://btc.com/stats/pool

• Bitmain Mining Rigs https://shop.bitmain.com/
• Slushpool Documentation
https://slushpool.com/help/hashrate-proof/

• Hardening Stratum, the Bitcoin Pool Mining Protocol
https://arxiv.org/abs/1703.06545

• AsicBoost https://arxiv.org/abs/1604.00575

24 / 24

https://bitcoin.stackexchange.com/questions/26869/what-is-chainwork/26894
https://bitcoin.stackexchange.com/questions/26869/what-is-chainwork/26894
www.ee.iitb.ac.in/~sarva/bitcoin.html
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki
https://en.bitcoin.it/wiki/Genesis_block
https://btc.com/block
https://btc.com/stats/pool
https://shop.bitmain.com/
https://slushpool.com/help/hashrate-proof/
https://arxiv.org/abs/1703.06545
https://arxiv.org/abs/1604.00575

	Choosing Between Chain Forks
	Finding and Distributing Mining Nonces
	AsicBoost

