Monero

Saravanan Vijayakumaran

Department of Electrical Engineering Indian Institute of Technology Bombay

April 16, 2024

Monero

- Privacy-oriented cryptocurrency launched in April 2014
- Transaction amounts are hidden
- Transaction inputs and outputs have one-time addresses
- Ring signatures are used to weaken blockchain analysis
- Based on CryptoNote protocol by Nicolas van Saberhagen
- Initial proposal had amounts in the clear
- Popular for cryptojacking, ransomware, compute-based donations

One-Time Addresses

- Also called stealth addresses
- Each user has two private-public key pairs from an elliptic curve group with base point G and cardinality p
- Let Bob's private keys be (x_{1}, x_{2}) with public keys $\left(P_{1}, P_{2}\right)$ given by $\left(x_{1} G, x_{2} G\right)$
- Let H_{s} be a scalar-valued cryptographic hash function
- Suppose Alice wants to send a payment to Bob

1. Alice generates a random $r \in \mathbb{Z}_{p}^{*}$ and computes a one-time public key $P=H_{s}\left(r P_{1}\right) G+P_{2}$
2. Alice specifies P as destination address and $R=r G$ in transaction output
3. Bob reads every transaction and computes $P^{\prime}=H_{s}\left(x_{1} R\right) G+P_{2}$
4. If $P^{\prime}=P$, the Bob knows the private key $x=H_{s}\left(x_{1} R\right)+x_{2}$ such that $P=x G$
5. Bob can spend the coins in the one-time address P using x

- The pair $\left(x_{1}, P_{2}\right)$ is called the tracking key
- Tracking key can be safely shared with third parties

Ring Signatures

- Traditional digital signatures prove knowledge of a private key
- Ring signatures prove signer knows 1 out of N private keys
- Example application of ring signatures
- Suppose a whistleblower in a corporation wants to leak info to a journalist
- Whistleblower wants to keep his/her identity secret
- An anonymous message will not convince journalist
- Suppose a public key corresponding to each employee is made public
- The whistleblower can sign his/her message using a ring signature
- Linkable ring signatures are ring signatures which reveal a key image of the private key
- Example: For public key $P=x G$, the key image could be $x H_{p}(P)$ where H_{p} is a point-valued hash function
- Key image does not reveal identity of signer but links signatures from same signer
- Example application of linkable ring signatures
- Suppose the board of directors of a corporation wants to vote on an issue
- The directors do not want to reveal their votes (yes/no/abstain)
- Suppose each director has a public key which is known to the others
- Each director can sign his/her message using a linkable ring signature
- Multiple votes by same director will be detected

Ring Signatures

- Consider an elliptic curve group E with cardinality p and base point G
- Let $x_{i} \in \mathbb{Z}_{p}^{*}, i=0,1, \ldots, n-1$ be private keys with public keys $P_{i}=x_{i} G$
- Suppose a signer knows only x_{j} and not any of x_{i} for $i \neq j$
- For a given message m, the signer generates the ring signature as follows:

1. Signer picks $\alpha, s_{i}, i \neq j$ randomly from \mathbb{Z}_{p}
2. Signer computes $L_{j}=\alpha G$ and $c_{j+1}=H_{s}\left(m, L_{j}\right)$
3. Increasing j modulo n, signer computes

$$
\begin{aligned}
L_{j+1} & =s_{j+1} G+c_{j+1} P_{j+1} \\
c_{j+2} & =H_{s}\left(m, L_{j+1}\right) \\
\vdots & \\
L_{j-1} & =s_{j-1} G+c_{j-1} P_{j-1} \\
c_{j} & =H_{s}\left(m, L_{j-1}\right)
\end{aligned}
$$

4. Signer computes $s_{j}=\alpha-c_{j} x_{j}$ which implies $L_{j}=s_{j} G+c_{j} P_{j}$
5. The ring signature is $\sigma=\left(c_{0}, s_{0}, s_{1}, \ldots, s_{n-1}\right)$

- Verifier computes L_{j} 's, remaining c_{j} 's, and checks that $H_{s}\left(m, L_{n-1}\right)=c_{0}$

Linkable Ring Signatures

- Consider an elliptic curve group E with cardinality p and base point G
- Let $x_{i} \in \mathbb{Z}_{p}^{*}, i=0,1, \ldots, n-1$ be private keys with public keys $P_{i}=x_{i} G$
- Suppose a signer knows only x_{j} and not any of x_{i} for $i \neq j$
- The key image corresponding to P_{j} is $I=x_{j} H_{p}\left(P_{j}\right)$
- For a given message m, the signer generates the LSAG signature as follows:

1. Picks $\alpha, s_{i}, i \neq j$ randomly from \mathbb{Z}_{p}
2. Computes $L_{j}=\alpha G, R_{j}=\alpha H_{p}\left(P_{j}\right)$, and $c_{j+1}=H_{s}\left(m, L_{j}, R_{j}\right)$
3. Increasing j modulo n, computes

$$
\begin{aligned}
L_{j+1} & =s_{j+1} G+c_{j+1} P_{j+1} \\
R_{j+1} & =s_{j+1} H_{p}\left(P_{j+1}\right)+c_{j+1} l \\
c_{j+2} & =H_{s}\left(m, L_{j+1}, R_{j+1}\right) \\
\vdots & \\
L_{j-1} & =s_{j-1} G+c_{j-1} P_{j-1} \\
R_{j-1} & =s_{j-1} H_{p}\left(P_{j-1}\right)+c_{j-1} l \\
c_{j} & =H_{s}\left(m, L_{j-1}, R_{j-1}\right)
\end{aligned}
$$

4. Computes $s_{j}=\alpha-c_{j} x_{j} \Longrightarrow L_{j}=s_{j} G+c_{j} P_{j}, R_{j}=s_{j} H_{p}\left(P_{j}\right)+c_{j} I$
5. The ring signature is $\sigma=\left(I, c_{0}, s_{0}, s_{1}, \ldots, s_{n-1}\right)$

- Verifier computes L_{j}, R_{j}, remaining c_{j} 's, and checks that $H_{s}\left(m, L_{n-1}, R_{n-1}\right)=c_{0}$
- Signatures with duplicate key images / will be rejected

Source Address Obfuscation

- Suppose Alice wants to spend coins from an address P she owns
- Alice assembles a list $\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$ where $P_{j}=P$ for exactly one j
- Alice knows x_{j} such that $P_{j}=x_{j} G$
- Key image of P_{j} is $I=x_{j} H_{p}\left(P_{j}\right)$ where H_{p} is a point-valued hash function
- Distinct public keys will have distinct key images
- A linkable ring signature over $\left\{P_{1}, P_{2}, \ldots, P_{N}\right\}$ will have the key image $/$ of P_{j}
- Signature proves Alice one of the private keys
- Double spending is detected via duplicate key images
- One cannot say if a Monero address belongs to the UTXO set or not

Confidential Transactions

Balance Condition

- Each one-time address has some amount of coins associated with it
- Suppose a transaction has input amounts a_{1}, a_{2}, a_{3} and output amounts b_{1}, b_{2}
- For transaction validity, we require

$$
a_{1}+a_{2}+a_{3} \geq b_{1}+b_{2}
$$

- In the first version of Monero, the amounts were not hidden
- To spend from an address using a linkable ring signature, user had to choose ring members from other addresses which had the same amount
- Unencrypted amounts are bad for privacy
- Encryption method should allow third-party verification of the balance condition using only the ciphertexts

Pedersen Commitments

- Let a denote an amount we want to hide
- Let G be the base point of an elliptic curve E of prime order p
- Let H be another curve point in E with an unknown discrete logarithm with respect to G
- No one knows $k \in\{1,2, \ldots, p-1\}$ such that $H=k G$
- The Pedersen commitment to amount $a \in \mathbb{Z}_{p}$ with blinding factor $x \in \mathbb{Z}_{p}$ is

$$
C(a, x)=x G+a H
$$

- Hiding: If x is chosen uniformly from \mathbb{Z}_{p}, then $C(a, x)$ reveals nothing about a
- Binding: If $\log _{G} H$ is unknown, $C(a, x)$ cannot be revealed to be a commitment to some $a^{\prime} \neq a$
- If an adversary finds x^{\prime}, a^{\prime} such that $C(a, x)=x^{\prime} G+a^{\prime} H$ with $a^{\prime} \neq a$, then

$$
x G+a H=x^{\prime} G+a^{\prime} H \Longrightarrow H=\left(a-a^{\prime}\right)^{-1}\left(x^{\prime}-x\right) G
$$

- Homomorphic: $C\left(a_{1}, x_{1}\right)+C\left(a_{2}, x_{2}\right)=C\left(a_{1}+a_{2}, x_{1}+x_{2}\right)$

$$
x_{1} G+a_{1} H+x_{2} G+a_{2} H=\left(x_{1}+x_{2}\right) G+\left(a_{1}+a_{2}\right) H
$$

Proving Statements About Commitments

- How to prove that C is a commitment to the zero amount without revealing blinding factor?

Ans: If $C=C(0, x)=x G$, then give a digital signature verifiable by C as the public key

If C is a commitment to a non-zero amount a, signature with C as public key will mean discrete log of H is known

$$
C=x G+a H=y G \Longrightarrow H=a^{-1}(y-x) G
$$

- How to prove that C is a commitment to the an amount a without revealing blinding factor?

Ans: If $C=C(a, x)=x G+a H$, then give a digital signature verifiable by $C-\mathrm{aH}$ as the public key

- How to prove that two commitments C_{1} and C_{2} are commitments to the same amount a without revealing blinding factors?

Ans:

$$
\begin{aligned}
& C_{1}=C\left(a, x_{1}\right)=x_{1} G+a H \\
& C_{2}=C\left(a, x_{2}\right)=x_{2} G+a H
\end{aligned}
$$

Give a digital signature verifiable by $C_{1}-C_{2}$ as the public key

Communicating the Commitment Opening

- Suppose Alice want to send coins to Bob
- To send coins with amount hidden in a Pedersen commitment, the opening has to be communicated to him
- Let Bob's public keys be $\left(P_{1}, P_{2}\right)$
- Suppose $C(a, y)$ is the commitment Alice creates for Bob
- To communicate a and y to Bob, Alice includes

$$
\begin{aligned}
& a^{\prime}=a \oplus H_{K}\left(H_{K}\left(r P_{1}\right)\right) \\
& y^{\prime}=y \oplus H_{K}\left(r P_{1}\right)
\end{aligned}
$$

in the transaction, where \oplus is bitwise XOR and H_{K} is the Keccak hash function.

- As the point R is contained in the transaction, Bob can use his private key x_{1} to recover a and y from a^{\prime} and y^{\prime} as

$$
\begin{aligned}
& a=a^{\prime} \oplus H_{K}\left(H_{K}\left(x_{1} R\right)\right), \\
& y=y^{\prime} \oplus H_{K}\left(x_{1} R\right) .
\end{aligned}
$$

Proving the Balance Condition

- Suppose $C_{1}^{\text {in }}, C_{2}^{\text {in }}, C_{3}^{\text {in }}$ are commitments to input amounts a_{1}, a_{2}, a_{3}
- Suppose $C_{1}^{\text {out }}, C_{2}^{\text {out }}$ are commitments to output amounts b_{1}, b_{2}
- To prove $a_{1}+a_{2}+a_{3} \geq b_{1}+b_{2}$, we will prove

$$
a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+f
$$

for some $f \geq 0$

- A digital signature with

$$
C_{1}^{\text {in }}+C_{2}^{\text {in }}+C_{3}^{\text {in }}-C_{1}^{\text {out }}-C_{2}^{\text {out }}-f H
$$

as public key is enough

- Almost enough! It only shows that

$$
\begin{array}{r}
a_{1} H+a_{2} H+a_{3} H=b_{1} H+b_{2} H+f H \\
\Longrightarrow a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+f \bmod p,
\end{array}
$$

since $\mathrm{pH}=\mathcal{O}$ (the identity of the elliptic curve group)

Exploiting the Modular Balance Condition

- Using only the modular balance check is risky

$$
a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+f \bmod p
$$

- Example: $a_{1}=1, a_{2}=1, a_{3}=1$ and $b_{1}=p-4, b_{2}=6, f=1$
- Attacker can create $C_{1}^{\text {out }}$ as a commitment to the amount $p-4$
- Typically $p \approx 2^{256} \Longrightarrow p-4$ is much larger than the sum of the input amounts
- Attacker can now spend large amounts from $C_{1}^{\text {out }}$

Solution using Range Proofs

- Example: $a_{1}=1, a_{2}=1, a_{3}=1$ and $b_{1}=p-4, b_{2}=6, f=1$
- Typically $p \approx 2^{256}$ and amounts are in a smaller range like $\left\{0,1,2, \ldots, 2^{64}-1\right\}$
- Proving that $C_{1}^{\text {out }}$ and $C_{2}^{\text {out }}$ commit to amounts in the range $\left\{0,1,2, \ldots, 2^{64}-1\right\}$ solves the problem
- How to prove that C is a commitment to the an amount a in the range $\{0,1,2,3,4,5\}$?

Ans: Give a ring signature verifiable by the public keys

$$
\{C, C-H, C-2 H, C-3 H, C-4 H, C-5 H\}
$$

- A naïve ring signature over the keys $\left\{C-i H \mid i=0,1, \ldots, 2^{64}-1\right\}$ would be very inefficient

A Better Range Proof

- Let $a=\sum_{i=0}^{63} a_{i} 2^{i}$ where each a_{i} is either 0 or 1
- Create commitments $C_{i}=C\left(a_{i} 2^{i}, x_{i}\right)=x_{i} G+a_{i} 2^{i} H$
- If we consider $\left\{C_{i}, C_{i}-2^{i} H\right\}$ as a pair of public keys, we know exactly one of the corresponding private keys
- A ring signature for each i proves that either C_{i} or $C_{i}-2^{i} H$ is a commitment to 0
- By picking blinding factors such that $x=\sum_{i=0}^{63} x_{i}$, we have

$$
C(a, x)=\sum_{i=0}^{63} C_{i}=\sum_{i=0}^{63} x_{i} G+\sum_{i=0}^{63} a_{i} 2^{i} H
$$

- This proves $C(a, x)$ is a commitment to an amount in $\left\{0,1,2, \ldots, 2^{64}-1\right\}$
- Bulletproofs improve this even further and reduce proof sizes to $\mathcal{O}\left(\log _{2} n\right)$ for an n-bit range proof

Monero RingCT

- Each output in Monero has a one-time address P and a Pedersen commitment C
- Consider a transaction which unlocks funds in m one-time addresses
- MLSAG signatures are linkable ring signatures over a set of n key-vectors
- Spender assembles an $m \times n$ matrix of one-time addresses

$$
\left[\begin{array}{cccccc}
P_{1,1} & P_{1,2} & \cdots & P_{1, \pi} & \cdots & P_{1, n} \\
P_{2,1} & P_{2,2} & \cdots & P_{2, \pi} & \cdots & P_{2, n} \\
\vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
P_{m, 1} & P_{m, 2} & \cdots & P_{m, \pi} & \cdots & P_{m, n}
\end{array}\right]
$$

where the signer knows $x_{i, \pi}$ such that $P_{i, \pi}=x_{i, \pi} G$ for $i=1,2, \ldots, m$

- Each one-time address has a Pedersen commitment $C_{i, j}$ associated with it
- Spender creates commitments $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{m}^{\prime}$ such that C_{i}^{\prime} and $C_{i, \pi}$ commit to the same amount
- The j th column in above matrix is appended with the column vector $\left[\begin{array}{llll}C_{1}^{\prime}-C_{1, j} & C_{2}^{\prime}-C_{2, j} & \cdots & C_{m}^{\prime}-C_{m, j}\end{array}\right]^{T}$
- Prover proves knowledge of private keys of all public keys in one of the columns
- For fees f and output commitment $C^{\text {out }}$, the following condition is checked along with range proofs

$$
\left(\sum_{i=1}^{m} C_{i}^{\prime}\right)-C^{\mathrm{out}}-f H=0
$$

References

- Monero Wikipedia page https://en.wikipedia.org/wiki/Monero_(cryptocurrency)
- UNICEF cryptomining donation https://www.thehopepage.org/
- Monero website https://getmonero.org/
- CryptoNote Protocol https://bytecoin.org/old/whitepaper.pdf
- Zero to Monero https://www.getmonero.org/library/Zero-to-Monero-2-0-0.pdf
- Monero's Building Blocks by Bassam El Khoury Seguias (10 articles) https://delfr.com/category/monero/
- A first look at browser-based cryptojacking https://arxiv.org/abs/1803.02887
- Monero block explorers https://xmrchain.net/, https://moneroblocks.info/
- Confidential transactions writeup, Greg Maxwell https://people.xiph.org/~greg/confidential_values.txt
- An investigation into confidential transactions, Adam Gibson https://github.com/AdamISZ/ConfidentialTransactionsDoc
- Bulletproofs https://crypto.stanford.edu/bulletproofs/

