Projective Geometry

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 23, 2024

The Projective Plane

First Definition

- Let $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ be real numbers
- Consider the equivalence relation \sim given by $[a, b, c] \sim\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$ if there exists a $t \in \mathbb{R} \backslash\{0\}$ such that

$$
a=t a^{\prime}, b=t b^{\prime}, c=t c^{\prime}
$$

- The projective plane \mathbb{P}^{2} is defined as the set of equivalence classes $[a, b, c]$, excluding the triple $[0,0,0]$
- The points in \mathbb{P}^{2} can be interpreted as vectors emanating from the origin in \mathbb{R}^{3}
- The numbers a, b, c are called the homogeneous coordinates of the point $[a, b, c]$
- A line in \mathbb{P}^{2} is defined as the set of points $[a, b, c] \in \mathbb{P}^{2}$ whose coordinates satisfy an equation of the form

$$
\alpha X+\beta Y+\gamma Z=0
$$

for some real constants α, β, γ not all zero

- Any representative of $[a, b, c]$ can be used to check if it lies on a line

Second Definition

- Consider the following geometric facts in the Euclidean plane
- Two distinct points determine a unique line
- Two distinct lines determine a unique point, unless they are parallel
- Can we add points to the Euclidean plane that can become the intersection points of parallel lines?
- Like $\sqrt{-1}$ was added to \mathbb{R} to obtain all the roots of polynomials
- How many points do we need to add?
- Can we add only one point and designate it as the intersection point of all parallel lines?
- No, we need one extra point for each direction
- A direction is a collection of all lines parallel to a given line
- Let the affine plane \mathbb{A}^{2} denote the usual Euclidean plane \mathbb{R}^{2}
- The second definition of the projective plane is given by

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \cup\left\{\text { the set of directions in } \mathbb{A}^{2}\right\}
$$

- The points in \mathbb{P}^{2} not in \mathbb{A}^{2} are called the points at infinity
- The set of all points at infinity is itself considered to be a line, denoted by L_{∞}
- The two geometric facts above hold in \mathbb{P}^{2} without qualification

Refining the Second Definition

- We want to show that the two definitions of the projective plane are equivalent
- We need a more precise definition of the set of directions
- We can use the lines passing through the origin in \mathbb{A}^{2} to specify the directions, i.e. the lines

$$
A y=B x
$$

where both A and B are not both zero

- Every line in \mathbb{A}^{2} is parallel to a unique line through the origin
- Two pairs (A, B) and $\left(A^{\prime}, B^{\prime}\right)$ give the same line if and only if there is a $t \in \mathbb{R} \backslash\{0\}$ such that $A=t A^{\prime}$ and $B=t B^{\prime}$
- The set of directions in \mathbb{A}^{2} is thus specified by the points of the projective line \mathbb{P}^{1}
- The second definition of the projective plane is then given by

$$
\mathbb{P}^{2}=\mathbb{A}^{2} \cup \mathbb{P}^{1}
$$

Equivalence of the Two Definitions of \mathbb{P}^{2}

- Algebraic Definition: Set of equivalence classes $[a, b, c]$, excluding the triple [0, 0, 0]
- Geometric Definition: $\mathbb{A}^{2} \cup \mathbb{P}^{1}$
- Mapping equivalence classes to points in $\mathbb{A}^{2} \cup \mathbb{P}^{1}$

$$
[a, b, c] \rightarrow \begin{cases}\left(\frac{a}{c}, \frac{b}{c}\right) \in \mathbb{A}^{2} & \text { if } c \neq 0 \\ {[a, b] \in \mathbb{P}^{1}} & \text { if } c=0\end{cases}
$$

- Mapping points in $\mathbb{A}^{2} \cup \mathbb{P}^{1}$ to equivalence classes

$$
\begin{aligned}
& (x, y) \in \mathbb{A}^{2} \rightarrow[x, y, 1] \\
& {[A, B] \in \mathbb{P}^{1} \rightarrow[A, B, 0]}
\end{aligned}
$$

Lines in the Projective Plane

- A line L in \mathbb{P}^{2} is the set of points $[a, b, c] \in \mathbb{P}^{2}$ that satisfy

$$
\alpha X+\beta Y+\gamma Z=0
$$

for some real constants α, β, γ not all zero

- Suppose that $\alpha \neq 0$ and $\beta \neq 0$
- Any point $[a, b, c] \in L$ with $c \neq 0$ is sent to the point $\left(\frac{a}{c}, \frac{b}{c}\right)$ on the line

$$
\alpha X+\beta Y+\gamma=0 \text { in } \mathbb{A}^{2}
$$

- The point $[-\beta, \alpha, 0] \in L$ is sent to the point $[-\beta, \alpha] \in \mathbb{P}^{1}$, which corresponds to the direction of the line $-\beta y=\alpha x$
- Suppose both $\alpha=0$ and $\beta=0$
- The line L has the equation $Z=0$
- Every point on L is sent to a direction in \mathbb{P}^{1}
- Thus, the line $Z=0$ corresponds to the line at infinity L_{∞}

Curves in the Projective Plane

- An algebraic curve in the affine plane \mathbb{A}^{2} is defined to be the set of solutions to a polynomial equation in two variables

$$
f(x, y)=0
$$

- A polynomial $F(X, Y, Z)$ is called a homogeneous polynomial of degree d if it satisfies the identity

$$
F(t X, t Y, t Z)=t^{d} F(X, Y, Z)
$$

- A projective curve in \mathbb{P}^{2} is the set of solutions of

$$
F(X, Y, Z)=0
$$

where F is a non-constant homogeneous polynomial

- Examples: $X^{2}+Y^{2}-Z^{2}=0, Y^{2} Z-X^{3}-X Z^{2}=0$
- The affine part of a projective curve is given by the solutions of

$$
f(x, y)=F(x, y, 1)
$$

Example of a Projective Curve

- Consider the projective curve C given by

$$
X^{2}-Y^{2}-Z^{2}=0
$$

- There are two points on C with $Z=0$ namely $[1,1,0]$ and [1, -1, 0]
- These correspond to the points at infinity at $[1,1],[1,-1] \in \mathbb{P}^{1}$
- These points correspond to directions given by $y=x$ and $y=-x$
- The affine part of C is given by the hyperbola

$$
x^{2}-y^{2}-1=0
$$

- The lines $y= \pm x$ correspond to the asymptotes of this hyperbola

Homogenization of Affine Polynomials

- Given a degree d polynomial $f(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j}$, its homogenization is given by

$$
F(X, Y, Z)=Z^{d} f\left(\frac{X}{Z}, \frac{Y}{Z}\right)=\sum_{i, j} a_{i, j} X^{i} Y^{j} Z^{d-i-j}
$$

- Examples
- $y-a x-b$ is homogenized to $Y-a X-Z$
- $x^{2}+y^{2}-1$ is homogenized to $X^{2}+Y^{2}-Z^{2}$
- $y^{2}+x^{3}-1$ is homogenized to $Y^{2} Z+X^{3}-Z^{3}$
- Application
- Suppose we want to find the intersection of $y=a x+b$ and $y=a x+b^{\prime}$ where $b \neq b^{\prime}$
- No intersection points in the affine plane
- Homogenization gives us lines $Y-a X+b Z=0$ and $Y-a X+b^{\prime} Z=0$
- These lines intersect at the point [1, a, 0]

Intersections of Projective Curves

- Claim: A line and a degree-2 curve (a conic) intersect in two points in the projective plane
- The line and conic should not have common components
- We have to allow complex coordinates and count multiplicities of intersection
- Examples
- $x+y+1=0$ and $x^{2}+y^{2}=1$
- $x+y+2=0$ and $x^{2}+y^{2}=1$
- $x+1=0$ and $x^{2}-y=0$
- $x+y=2$ and $x^{2}+y^{2}=2$
- Bezout's Theorem: Let C_{1} and C_{2} be projective curves with no common components. Then they intersect in $\left(\operatorname{deg} C_{1}\right)\left(\operatorname{deg} C_{2}\right)$ points.

References

- Appendix A of Rational Points on Elliptic Curves, Joseph H. Silverman, John T. Tate, 2nd Edition, 2015

