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Scaling Ethereum
• Each operation on Ethereum costs some gas

• Minimum transaction gas cost = 21,000 gas
• ETH transfer = 21,000 gas; ERC-20 transfer = 65,000 gas

• Ethereum block gas limit = 30 million gas
• One Ethereum block can accommodate 1,428 ETH transfers

• Average inter-block time = 12 seconds
• Ethereum can support 119 ETH transfers per second
• Actual throughput is 15 txs/sec

• High demand for ETH block space = High transaction fees
• Challenge: How to increase Ethereum throughput?

• Previous attempt: Plasma
• Move computation and state off-chain; only state roots stored on-chain
• Needed trust on plasma operator to guarantee data availability of off-chain state
• Limited market adoption

• Rollup
• Move computation and state off-chain (like Plasma)
• Data needed to reconstruct off-chain state is posted on Ethereum as calldata or blobs
• Has mechanism to ensure correctness of state roots that are stored on-chain

• Fault proofs or validity proofs

• User experience is slightly degraded (more latency and/or extra on-boarding steps)
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Data Locations in Ethereum Contracts
• Three types of data locations

• storage: Contract state variables that persist for contract lifetime
• memory: Variables that persist only during a contract method execution
• calldata: Read-only locations containing function arguments

contract DataLocations {
// storage array
uint[] public arr;

// memory array in function argument
function g(uint[] memory _arr) public returns (uint[] memory) {

// do something with memory array
}

// calldata array in function argument
function h(uint[] calldata _arr) external {

// do something with calldata array
}

}

• Gas costs of different types of data
• storage: Upto 690 gas per byte
• memory: Scales quadratically with number of 32 byte words
• calldata: 16 gas per non-zero byte and 4 gas per zero byte

• Calldata is much cheaper than storage for storing state on Ethereum
• Contract methods can only access the calldata of the current call, not past calls
• Rollups store only essential state in storage and the full data in calldata
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EIP-4844 aka Proto-Danksharding
• In March 2024, EIP-4844 was activated on Ethereum
• Users can post a blob of data of size approx 125 KB along with a

block
• Blob = 4096 field elements of 32 bytes each
• Upto 6 blobs per block allowed
• Data is only stored for 4096 epochs (18 days)
• Rollup operators can store their transaction data in blobs instead

of calldata
• Assumes that blobs will be stored by the ecosystem if they are

needed later
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Total Value Locked in Ethereum Layer 2

Source: https://l2beat.com/scaling/summary
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Fees in Ethereum Layer 2

Source: https://l2fees.info/
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Ethereum Scaling Solutions
Rollups

Ethereum Scaling

Rollups
(On-chain DA)

Plasma, Validiums
(Off-chain DA)

Application-Specific General Purpose

Optimistic
Rollup

Validity
Rollup Hybrid

Fuel v1,
Hubble

zkSync 1.0,
Polygon Hermez 1.0,

Loopring,
zk.money

dYdX (StarkEx)

Polygon Nightfall,
Zkopru∗

Optimistic
Rollup

Validity
Rollup

Arbitrum,
Optimism

StarkNet,
zkSync 2.0,

Polygon Hermez 2.0,
Scroll

• Application-specific rollups have limited functionality on L2, like ETH/ERC20
transfers

• General purpose rollups support arbitrary smart contracts on L2
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Main Rollup Components
Bridge

Contract
L1 User
Wallet

Rollup
Operator

L2 User
Wallet

Send L2 transactions
Read transactions

Create
L2 blocks

Send L1 deposits

Send L2 state roots
with L2 blocks as calldata

Verify roots
using fault or
validity proofs

Read finalized L2 state
and expose it via RPC

• Rollup operator
• Also called sequencer or validator
• Exposes RPC endpoint for accepting L2 transactions; no P2P network on L2
• Reads or receives L2 transactions and produces L2 blocks
• Monitors the bridge contract for L1 asset deposits and mints them on L2

• Bridge contract
• L1 smart contract for coordinating asset movement between L1 and L2
• Receives L2 transactions as calldata, stores sequence of L2 state roots
• Facilitates verification of state roots using fault or validity proofs
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Layer 2 State
• On L2, the rollup operator maintains a blockchain of L2 transactions

• General-purpose rollups
• L2 state includes

• the set of all L2 accounts and their token balances
• the set of all contracts installed on L2, their code and storage

• L2 state root is the hash of the entire L2 state
• Example: In Optimism, the L2 state is maintained by a modified version of geth.

L2 state root = Root hash of world state trie

• Application-specific rollups
• L2 state needs to only express application state
• Consider an application that supports token transfers
• If application is account-based, a Merkle tree of account balances is sufficient

• L2 state root = Root hash of Merkle tree
• Examples: zkSync 1.0, Hermez 1.0

• If application is UTXO-based, the application state is the set of all UTXOs
• The set of all L2 blocks is needed to determine the state
• L2 state root = Hash of latest L2 block header
• Example: Fuel v1
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L2 State in zkSync 1.0
• A sparse Merkle tree (SMT) with account state hashes as leaves

• Account state
• Root hash of an SMT holding token balances in its leaves (balance root)
• 32-bit nonce
• Ethereum address associated with account
• Rescue hash of L2 public key (point on BN256 curve)
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Verifying L2 State Updates in Validity Rollups
• Validity rollups use zero-knowledge proofs to prove correctness of L2 state

updates
• Ethereum supports ZK proofs based on SNARKs or STARKs

Rcurrent
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π

• Proof π proves correctness of L2 state root transition from Rcurrent to Rnew

• New root represents the state after executing a block of L2 txs
• Proofs are generated off-chain and sent to bridge contract for on-chain

verification
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Verifying L2 State Updates in Optimistic Rollups
• Each state root submitted to bridge contract is accompanied by an ETH deposit

• For example, in Arbitrum the base deposit is 5 ETH

• If a state root is proved to be faulty, the submitter loses their deposit
• A successful fault prover gets half the deposit and the other half is burnt
• Once a state root is proved faulty, it and its successors are marked invalid
• If half the deposit was not burnt, malicious parties could delay L2 chain progress

at no cost
• AS and GP optimistic rollups: Different mechanisms for proving faults

• Application-specific optimistic rollups
• State root can be faulty in a small number of ways which can be exhaustively

enumerated
• State root faultiness can be proved using a small number of L1 transactions
• Example: Fuel v1 is a payments-only optimistic rollup

• Faulty state roots can be due to double spending, invalid input, malformed
block, and a few other cases

• Two L1 transactions required to prove faults
• First L1 tx posts only hash of the fault proof to prevent frontrunning
• Second L1 tx posts the actual fault proof
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Verifying L2 State Updates in Optimistic Rollups
• General-purpose optimistic rollups

• General-purpose rollups support arbitrary contracts
• Challenge: Infeasible to enumerate all possible ways in which a state root can be

faulty

• The setup
• Asserter = Party posting a new state root Rnew to the bridge contract
• Challenger = Party challenging the correctness of Rnew
• Asserter and challenger agree on Rprev, the predecessor of Rnew

• Challenger claims Rch
new should be the next root

• Both agree on the L2 block of transactions, which is a sequence of L2 opcodes

Rprev Rprev
Execute block of
L2 transactions

Execute block of
L2 transactions Rch

newRnew

Asserter’s Claim Challenger’s Claim

Block of
L2 transactions = Op1 Op2 Op3 Op4 Op5 · · · OpN

• Fault proof strategy: Identify the first L2 opcode where fault occurs and prove the fault
on-chain

• Main Insight: Number of L2 opcodes is limited; Can be exhaustively enumerated and
simulated in an L1 contract
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Interactive Game for Proving Faults
• The interactive game between asserter and challenger has two stages

• n-ary search
• one-step proof

• In the n-ary search stage, the challenger first publishes intermediate state roots
R1,R2, . . . ,Rn−1 between Rprev and Rch

new
• Root locations are chosen such that the amount of computation between

consecutive intermediate roots is approximately the same

Op1 Op2 · · · OpM OpM+1 OpM+2 · · · Op2M · · · Op(n−1)M · · · OpN

Rprev R1 R2 Rn−1 Rnew/Rch
new

State
roots

L2
Opcodes

• Since Rnew ̸= Rch
new, the asserter disagrees with the challenger in at least one

root in the sequence R1,R2, . . . ,Rn−1,Rn = Rch
new

• The asserter chooses first root Ri where it disagrees and publishes n − 1 state
roots between Ri−1 and Ri
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Interactive Game for Proving Faults
• The asserter chooses first root Ri where it disagrees and publishes n − 1 state

roots between Ri−1 and Ri
• Suppose R2 is the first root where the asserter disagrees with the challenger
• Asserter publishes roots Q1, Q2, . . . , Qn−1 between R1 and R2

Op1 Op2 · · · OpM OpM+1 OpM+2 · · · Op2M · · · Op(n−1)M · · · OpN

Rprev R1 R2 Rn−1 Rnew/Rch
new

State
roots

L2
Opcodes

OpM+1 · · · OpM+k · · · OpM+2k · · · OpM+3k · · · OpM+(n−1)k · · · Op2M

R1 Q1 Q2 Q3 Qn−1 R2
State
roots

L2
Opcodes

• This dissection process alternates between the asserter and challenger
• At the end, a single L2 opcode is identified

• Both parties agree on the input but disagree on the output of this opcode
• One-step proof: The opcode is re-executed in an L1 contract and the winner

identified
• Losing party’s deposit is confiscated and the winner is rewarded
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Interactive Game for Proving Faults

Bridge
ContractChallenger

Rollup
Operator
(Asserter)

Submit root Rprev

Submit root Rnew

Send intermediate state roots
R1,R2, . . . ,Rn−1

dissecting Rprev and Rnew

Send intermediate state roots
Q1,Q2, . . . ,Qn−1

dissecting Ri−1 and Ri

Send intermediate state roots
P1,P2, . . . ,Pn−1

dissecting Qj−1 and Qj

... ...

Send one-step proof

• The fault proof protocol involves multiple L1 transactions which could be
censored by malicious miners

• Asserter and challenger are each given one week of time in a chess-style clock
• So the entire fault proof protocol can take upto two weeks
• A state root is considered finalized if it is not challenged for one week
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Rollup User Experience (1/9)
Depositing L1 tokens to L2

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Deposit Tokens

Read deposit txs

Create L2 blocks

Send L2 state roots

Verify roots
using fault or
validity proofs

Read finalized L2 state Read updated
user balance

• Users send their assets to the bridge contract on L1
• Rollup operator monitors bridge contract for deposits
• For each L1 deposit, an L2 transaction will mint the asset for the user on L2

• Once a state root is verified in the bridge contract, assets appear on user’s L2
wallet (typically in less than an hour)

• While fault proofs have a 7-day waiting period, this does not apply to L1 deposits
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Rollup User Experience (2/9)
Setting the L2 Public Key in Validity Rollups

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Send set pubkey tx

Create L2 blocks
Send L2 state roots

with L2 blocks as calldata

Generate
validity proofs

Send transition proofs

Verify proofs
Read finalized L2 state Get confirmation of

pubkey setting

• This step applies only to validity rollups
• Validity rollups use zero-knowledge proofs to prove correctness of L2 state roots
• For efficiency reasons, some validity rollups require an L2 public key

• Required in zkSync 1.0, Polygon Hermez 1.0
• Not needed in zkEVMs (zkSync 2.0, Polygon Hermez 2.0)

• User sends an L2 tx to register the L2 pubkey (costs L2 fees)
• Once the L2 block containing the tx is verified on-chain, the public key change is

confirmed
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Rollup User Experience (3/9)
Transacting on L2

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Send transfer tx

Create L2 blocks
Send L2 state roots

with L2 blocks as calldata

Verify roots
using fault or
validity proofs

Read finalized L2 state Read updated
user balance

• Users send their L2 transactions to the operator’s RPC endpoint
• There is no P2P network on L2

• L2 users experience latency between transaction submission and finalization
• The fundamental tradeoff of rollups: lower cost for higher latency
• Validity and optimistic rollups have different L2 transaction finalization trust models and

latencies
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L2 Transaction Finalization Latency
• Validity Rollups

• L2 transactions are finalized once proofs are verified on-chain
• To amortize on-chain verification fees, several L2 state roots are verified together
• zkSync 1.0 latency = 1 hour, StarkEx latency = 7 to 10 hours, Hermez 1.0 latency = 6

hours

• Optimistic Rollups
• 1-of-N trust model: At least one honest party exists that can submit a fault proof

• L2 transactions are finalized if no challenges in the 7 days after submission
• Latency = 7 days

• 1-of-1 trust model: User trusts the sequencer or user trusts a party that reads the
sequence of L2 blocks submitted to bridge contract and calculates L2 state

• The sequence of L2 blocks is frozen once the submitting transactions have
enough confirmations

• If the trusted party confirms correctness of submitted state roots, the user will
accept them as final

• Example of trusted party : L2 wallet provider
• Latency = few minutes (L1 confirmation time of transactions submitting L2

state roots)
• Sequencer mode: Only the sequencer is allowed to add L2 blocks and the user trusts

the sequencer to submit only correct state roots
• Latency = a few seconds (sequencer response time); No need to wait for L1

block containing L2 state root
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Rollup User Experience (4/9)
Withdrawals from L2 to L1 in Validity Rollups

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Send withdrawal tx

Create L2 blocks
Send L2 state roots

with L2 blocks as calldata

Generate
validity proofs

Send transition proofs

Verify proofs

Send withdrawal tx

Tokens transferred

• When a user wants to withdraw their assets back to L1, they send an L2
transaction to the operator requesting the withdrawal

• User waits for the L2 transaction to be finalized on L1
• User sends an L1 transaction to withdraw their assets from the bridge contract
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Rollup User Experience (5/9)
Withdrawals from L2 to L1 in Optimistic Rollups (without LPs)

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Send L2 withdrawal tx

Create L2 blocks
Send L2 state roots

with L2 blocks as calldata

Confirm L2 state root
containing L2 withdrawal tx

Time ≥ 7 days

Send L1 withdrawal tx

Tokens transferred

• Two possible workflows: One without liquidity providers (LPs) and other with them
• Consider the no LP case first
• User sends an L2 transaction to the operator requesting the withdrawal to L1
• Operator posts a state root including the effects of the L2 withdrawal tx to the

bridge contract
• If 7 days pass without a challenge, the state root is confirmed on L1
• User sends an L1 transaction to withdraw their assets from the bridge contract
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Rollup User Experience (6/9)
Withdrawals from L2 to L1 in Optimistic Rollups (with LPs)

LP L1
Wallet

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Send tx transferring
funds to LP’s L2 address

Create L2 blocksSend L2 state roots
with L2 blocks as calldata

Time ≥ L1 confirmation time

Send amount equal to
funds received on L2

minus fee

• Liquidity providers speed up users’ L2-to-L1 withdrawals for a fee
• Waiting times for withdrawals reduce from 7 days to a few minutes
• User sends their L2 assets to the LP’s address on L2
• Operator posts a state root including the effects of the L2 transfer tx to the bridge

contract
• LP waits (a few minutes) for the L1 transaction that submitted the state root to

confirm
• LP sends the amount it received on L2 minus a fee to the user’s L1 address
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Rollup User Experience (7/9)
Censorship by Operator on L2

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

Send transfer tx
XRequest asset withdrawal

Read slow path txs

Create L2 blocksSend L2 state roots
with L2 blocks as calldata

Verify roots
using fault or
validity proofs

Send withdrawal tx

Tokens transferred

• Suppose the operator censors a user’s L2 transactions at the RPC endpoint

• Rollups offer users a slow path to force include their L2 transactions
• Arbitrum allows any arbitrary L2 tx on the slow path
• zkSync allows only asset withdrawals

• Operator is forced to include slow path transactions within a deadline
• Once state root of withdrawal tx is finalized, users can withdraw via an L1 tx
• Slow Path Cons: Delays, L1 tx fees

24 / 28



Rollup User Experience (8/9)
Dealing with an Offline Operator: Validity Rollups

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

X
Send L2 state roots

with L2 blocks as calldata

Request full exit

Activate exodus mode

Time ≥ 14 days

Generate
validity proofs

Send exodus tx

Verify proofs
Tokens transferred

• Suppose the operator goes offline and stops generating L2 blocks

• Example: zkSync 1.0
• Users can request a full exit of their L2 assets
• If exit tx has not been processed in 14 days, anyone can activate exodus mode
• In exodus mode, normal rollup operations are not allowed (no deposits or withdrawals,

no new L2 state roots added)
• Users can withdraw their funds (perform exodus) by generating individual validity

proofs of asset ownership and submitting them to the bridge contract
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Rollup User Experience (9/9)
Dealing with an Offline Operator: Optimistic Rollups

L1 User
Wallet

Bridge
Contract

Rollup
Operator

L2 User
Wallet

X
Send L2 state roots

with L2 blocks as calldata

Send slow path
L2-to-L1 withdrawal tx

Force include withdrawal
tx in L2 tx sequence

Time ≥ 1 day

Confirm root incl. withdrawal tx

Time ≥ 7 days

Send withdrawal tx

Assets transferred

• Suppose the operator goes offline and stops generating L2 blocks

• Example: Arbitrum
• Users can request a full withdrawal of their L2 assets via the slow path
• After a 1 day delay, withdrawal tx can be forced into the L2 tx sequence
• After another 7 days, the L2 root containing the withdrawal tx can be confirmed (by

user or anyone else)
• User can then withdraw assets from bridge contract via an L1 tx
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Effect of Miner Censorship or Congestion
• Ethereum miners could potentially censor transactions submitted to the bridge

contract
• Congestion on Ethereum could also cause censorship
• If new L2 state roots are not submitted, L2 chain progress stalls

• Validity Rollups
• Only liveness of L2 chain is affected; user funds on L2 are secure
• Censorship by L1 miners is indistinguishable from an offline operator
• Users can use fallback mechanisms to withdraw their L2 funds

• Optimistic Rollups
• Miners could selectively censor transactions involving fault proofs
• Both liveness and security are affected
• If fault proof transactions are censored for 1 week, an invalid state root can be

confirmed
• Unlikely but possible

• Operator would need to clone the bridge contract and restart operation from a correct
state
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