Tendermint Protocol

Saravanan Vijayakumaran

Associate Professor Department of Electrical Engineering Indian Institute of Technology Bombay

March 21, 2024

Tendermint

- Widely used consensus protocol that achieves consistency and eventual (post-GST) liveness when $f < \frac{n}{3}$
 - See www.mintscan.io for real-world deployments
- Assumptions
 - Partially synchronous network model
 - Permissioned, PKI
- Main ideas
 - Iterated single-shot consensus
 - Rotating leaders
 - Restarts after a timeout if messages are delayed
 - Two stages of voting
- We will describe the case when each node has a single vote
 - In practice, nodes cast weighted votes proportional to their stake

Rounds

- In the partially synchronous model, there is a known upper bound Δ on the message delays after GST
- In Tendermint, a **round** corresponds to 4Δ time steps
 - First round begins at *t* = 0 and ends at *t* = 4∆
 - Second round begins at $t = 4\Delta$ and ends at $t = 8\Delta$, and so on
- All nodes know the current round number r
- Each round has four phases each lasting Δ time steps
- Each round also has two stages of voting
 - Stage-1 voting happens in the second phase that begins at $t = 4\Delta r + \Delta$
 - Stage-2 voting happens in the third phase that begins at $t = 4\Delta r + 2\Delta$
- Each round has a unique leader whose ID is known to all nodes
- The leader proposes a block of transactions in a round
- A round may occur before GST has passed
- If a round does not conclude with consensus on the block, the nodes move on to the next round

Quorum Certificates

- Nodes vote on blocks. Each vote has five attributes
 - Identity i of the voter
 - The block *B* the vote is for
 - The block height h
 - The round number r
 - The voting stage *s* (first or second)
- Let us call the triple (*h*, *r*, *s*) a **referendum** (think of it as an election)
- Definition: A quorum certificate (QC) is a set of votes from at least ²/₃ n distinct voters that are all for the same block in the same referendum
- Lemma: Every pair of QCs overlaps in at least $\frac{n}{3}$ nodes
- Corollary: If f < n/3, then every pair of QCs overlaps in at least one honest node
- Corollary: Suppose that every honest node votes at most once per referendum and that *f* < ^{*n*}/₃. Then if *Q*₁ and *Q*₂ are QCs for the same referendum, then *Q*₁ and *Q*₂ support the same block.

Ordering Quorum Certificates

- Given two QCs for a block height *h*, we want to say that one is newer than the other
- Every honest node *i* maintains two local variables for height *h*
 - A block B_i
 - A QC Q_i that supports B_i
 - For new blocks, Q_i is set to null
- *B_i* is node *i*'s current belief about what the next block (at some height *h*) should be
- Node will change their beliefs as new information becomes available
- QCs are ordered by age as follows
 - Any non-null QC is more recent than a null QC
 - A non-null QC Q_1 with referendum (h, r_1, s_1) is **more recent** than another non-null QC Q_2 with referendum (h, r_2, s_2) if
 - 1. Q_1 is from a later round, i.e. $r_1 > r_2$, or
 - 2. Q_1 , Q_2 are from the same round but Q_1 is from a later stage, i.e. $r_1 = r_2$ and $s_1 > s_2$
- If f < ⁿ/₃, QCs with r₁ = r₂ and s₁ = s₂ support the same block; no ordering required

Protocol Pseudocode: Phases 1, 2

Assumptions

- Node *i* is working on block height h_i with local variables B_i and Q_i
- Messages for older block heights are ignored
- QCs for block heights $h_i + 1$, $h_i + 2$ are stored for future use
- Current round is r with leader /
- **Phase 1** executed at time $t = 4\Delta r$

```
if i = l then
```

// node is current leader

if I has received a height- h_i QC newer than (B_i, Q_i) then $B_l := B_i, Q_l := Q_i$

end

broadcast(B_l, Q_l) to all nodes

```
// (B_i, Q_i) is the newest QC
```

// annotated with h_i , r, signature

end

```
• Phase 2 executed at time t = 4\Delta r + \Delta
if i has received (B_l, Q_l) from l then
                                                     // must be signed by leader
    if Q_i is at least as recent as Q_i then
        B_i := B_l, Q_i := Q_l
        broadcast(B_i, Q_i)
                                                    // keep all nodes up-to-date
        broadcast first-stage vote for B_i // annotated with h_i, r, signature
    end
end
```

Protocol Pseudocode: Phases 3, 4

• **Phase 3** executed at time $t = 4\Delta r + 2\Delta$

if i has received at least $\frac{2}{3}$ n round-r first-stage votes for B then $B_i := B$ // may or may not change the value of B_i $Q_i :=$ the votes received// constitute a round-r stage-1 QCbroadcast(B_i, Q_i)// keep all nodes up-to-date

broadcast second-stage vote for B_i // annotated with h_i , r, signature end

• **Phase 4** executed at time $t = 4\Delta r + 3\Delta$

- if i has received at least $\frac{2}{3}n$ round-r second-stage votes for B then $B_i := B$ $Q_i :=$ the votes received// constitute a round-r stage-2 QCbroadcast(B_i, Q_i)// keep all nodes up-to-datecommit B_i to local history as block at height h_i increment h_i // start working on next block heightreset B_i to list of not-yet-executed transactionsreset Q_i to null
- Addendum: If height- h_i stage-2 QCs are available, execute phase 4 as needed before the first phase of round r + 1

Proof of Consistency

- Theorem: In the Tendermint protocol, if *f* < ^{*n*}/₃ and two honest nodes commit blocks *B* and *B'* to their local histories at the same block height *h*, then *B* = *B'*.
- As soon as a single honest node commits a block *B* to its local history at height *h*, *B* is considered **finalized**
- What can go wrong?
 - Nodes i and j may commit different blocks B, B'
 - Node *i* commits block *B* but node *j* does not commit any block
- Proof
 - Let r denote the first round in which > n/3 honest nodes contribute height-h stage-2 votes in support of a common block B*
 - Such an event is a prerequisite for a stage-2 QC as $f < \frac{n}{3}$
 - Denote this set of honest nodes by S
 - To support a different block $B \neq B^*$ in the referendum (h, r, 2), at least one node from *S* must contribute a vote
 - Not possible as honest nodes do not vote twice in the same referendum
 - But what if a stage-2 QC supports a block B ≠ B* for block height h in round r + 1?
 - (h, r + 1, s) is a new referendum which can receive votes from S

Proof of Consistency (contd)

- State at the end of round *r* and before round *r* + 1 begins
 - Some nodes in *S* may have already committed *B*^{*} at height *h*
 - If $i \in S$ has not already committed B^* at height h, then $B_i = B^*$ and Q_i is a stage-1 QC for referendum (h, r, 1) supporting B^*
 - Every QC for referendums (*h*, *r*, 1) and (*h*, *r*, 2) supports *B*^{*}
- For a different block B ≠ B* to be committed in round r + 1, some node i in S has to vote for B at height h
 - This node did not commit B* in round r
 - If node *i* is the leader of round *r* + 1, it will broadcast (*B*^{*}, *Q_i*) to all nodes
 - If node *i* is not the leader of round r + 1, it will cast a first stage vote only if it receives a QC which is at least as recent as Q_i.
 - But Q_i is a round-r QC and all QCs in round r support B*
 - So node *i* can cast a first-stage vote only for *B**
 - As $|S| > \frac{n}{3}$, the referendum (h, r + 1, 1) cannot produce a QC for any block $B \neq B^*$
 - Node *i* can only vote for *B** in the second stage
 - As |S| > ⁿ/₃, the referendum (h, r + 1, 2) cannot produce a QC for any block B ≠ B*
- The end of round r + 1 satisfies the same three properties as the end of round r

References

- · Foundations of Blockchains: Video lectures by Tim Roughgarden
- Lecture 7 from 2021 FoB course https://timroughgarden.github.io/fob21/1/16.pdf
- E. Buchman, J. Kwon, Z. Milosevic, *The latest gossip on BFT consensus*, https://arxiv.org/abs/1807.04938