
Tornado Cash
Using SNARKs for Privacy and Scalability

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

April 1, 2024

1 / 17



Motivation
• Consider the following scenario

• You have 100 ETH stored in a self-custodial wallet
• You take your family on a vacation to an exotic country
• The hotel accepts ETH as a mode of payment
• You pay the room rent of 1 ETH while checking in
• The front desk clerk notices that you love your family and that your

ETH address has 99 ETH
• He has friends in the kidnapping industry

• How can you prevent leaking the total amount of ETH you hold?
• Option A: You could store your ETH on an exchange and pay

using their interface.
• You risk losing funds due to exchange hacks
• Hackers can steal customer data and sell it to their kidnapper friends

• Option B: You could send 1 ETH to a fresh address from your 100
ETH address and use that to pay the room rent

• Now suppose you decide to extend your stay
• You make another 1 ETH transfer from your main ETH address
• The clerk can now infer that you control a large amount of ETH

• Tornado Cash is a better Option B
• It is a smart contract on Ethereum which implements a mixer

2 / 17



Tornado Cash Overview
Pre-Nova Version

Tornado Cash
Smart Contract

Alice’s address
100 ETH

Bob’s address
5 ETH

Carol’s address
3 ETH

New address 1
1 ETH

New address 2
1 ETH

Deposit 1 ETH

Deposit 1 ETH

Deposit 1 ETH

Withdraw 1 ETH

Withdraw 1 ETH

• Desired functionality
• Soundness

• Only past depositors should be able to withdraw
• No double withdrawal (only one withdrawal per deposit)

• Privacy: A withdrawal should not be linkable to a particular past
deposit

3 / 17



Deposit Workflow (1/2)
Choose amount and chain

4 / 17



Deposit Workflow (2/2)
Connect wallet, save note, and deposit

5 / 17



Deposit Steps (1/2)
• Anatomy of a Tornado Cash private note

tornado-eth-0.1-5-0x︸ ︷︷ ︸
Header

2ae9829348329423842394823eabc37dedec78f904bb799d73e30159614bfb︸ ︷︷ ︸
31-byte Nullifier

eff45678284749dcbbabce18ecea65351366aec97fd064ec630361fb01db28︸ ︷︷ ︸
31-byte Secret

• The 62 bytes in the nullifier and secret are randomly generated
on the user’s computer

• A commitment (Pedersen hash of the 62 bytes) is calculated
and submitted to the contract

Pedersen hash of bitstring b1b2 . . . bn = gb1
1 gb2

2 . . . gbn
n .

• Contract checks that _commitment has not been seen before
mapping(bytes32 => bool) public commitments;
// <snip>
require(!commitments[_commitment], "The commitment has been submitted");

6 / 17



Deposit Steps (2/2)
• Contract inserts _commitment into a Merkle tree

uint32 insertedIndex = _insert(_commitment);

• Tree has 20 levels
• insertedIndex is the index of new leaf

root

0 1 2 3

• No leaf deletions allowed =⇒ Maximum of 220 deposits
• Stores the fact that _commitment has been seen

commitments[_commitment] = true;

• Checks that ETH being sent equals contract denomination
require(msg.value == denomination, "Please send 1 ETH with transaction");

• Emits an event
emit Deposit(_commitment, insertedIndex, block.timestamp);

7 / 17



Withdrawal Workflow (1/3)
Enter note string and recipient address

8 / 17



Withdrawal Workflow (2/3)
Choose relayer

9 / 17



Withdrawal Workflow (2/3)
Choose relayer

10 / 17



Withdrawal Workflow (2/3)
Choose wallet if you have an unlinkable address with ETH

11 / 17



Withdrawal Workflow (3/3)
Generate proof and confirm withdrawal

12 / 17



Withdrawal Steps (1/2)
• Recall our requirements

• Soundness
• Only past depositors should be able to withdraw
• No double withdrawal (only one withdrawal per deposit)

• Privacy: A withdrawal should not be linkable to a particular past
deposit

• The withdraw method is executed
function withdraw(
bytes calldata _proof,
bytes32 _root,
bytes32 _nullifierHash,
address payable _recipient,
address payable _relayer,
uint256 _fee
// <snip>

)

• _proof is a SNARK proof for the following statement:
I know the secret and nullifier for a commitment which is included
in the Merkle tree with root _root.
Furthermore, _nullifierHash is the Pedersen hash of the
commitment’s nullifier.

13 / 17



Withdrawal Steps (2/2)
• Contract checks that _nullifierHash has not been seen

before.
mapping(bytes32 => bool) public nullifierHashes;
// <snip>
require(!nullifierHashes[_nullifierHash], "Note already spent");

This prevents double withdrawal
• Checks that _root is any of the last 100 Merkle roots

require(isKnownRoot(_root), "Cannot find your merkle root");

• It then verifies the SNARK proof on-chain
require(
verifier.verifyProof(_proof,
[uint256(_root), uint256(_nullifierHash), ...]

),
"Invalid withdraw proof"

);

• Stores the fact that _nullifierHash has been seen
nullifierHashes[_nullifierHash] = true;

• Sends relevant amounts to _recipient and _relayer
_recipient.call.value(denomination - _fee)("");
_relayer.call.value(_fee)("");

• The SNARK proof also “signs” the _recipient, _relayer,
_fee fields to prevent tampering

• The verifier contract is generated using the circom compiler.
14 / 17



withdraw.circom

15 / 17



OFAC Sanctions
• On Aug 8, 2022, the US Office of Foreign Assets Control placed

Tornado Cash addresses on a sanction list
• US residents/businesses cannot interact with entities on the list
• Allegations include facilitating money laundering by ransomware

operators and smart contract attackers
• Github removed source repos and three contributors had Github

accounts suspended
• Due to the efforts of Prof. Matthew Green and EFF, OFAC

allowed use of code for educational purposes
• Github repositories and accounts restored in 2023
• Developer Alexey Pertsev arrested in Netherlands in Aug 2022;

released on bail in April 2023
• Developer Roman Storm arrested in US on Aug 23, 2023 and

later released on bail
• Pertsev’s trial began on March 26, 2024. Verdict expected on

May 14

16 / 17



References
• Tornado Cash App https://tornadoeth.cash/

• Tornado Cash Docs https://docs.tornadoeth.cash/
• Circom https://docs.circom.io/

• https://github.com/tornadocash/tornado-core

• EFF article on OFAC sanctions
• EFF update in April 2023

17 / 17

https://tornadoeth.cash/
https://docs.tornadoeth.cash/
https://docs.circom.io/
https://github.com/tornadocash/tornado-core
https://www.eff.org/deeplinks/2022/08/code-speech-and-tornado-cash-mixer
https://www.eff.org/deeplinks/2023/04/update-tornado-cash

