Tornado Cash
Using SNARKSs for Privacy and Scalability

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

April 1, 2024

1/17



Motivation

¢ Consider the following scenario

You have 100 ETH stored in a self-custodial wallet

You take your family on a vacation to an exotic country

The hotel accepts ETH as a mode of payment

You pay the room rent of 1 ETH while checking in

The front desk clerk notices that you love your family and that your
ETH address has 99 ETH

He has friends in the kidnapping industry

* How can you prevent leaking the total amount of ETH you hold?

Option A: You could store your ETH on an exchange and pay
using their interface.

® You risk losing funds due to exchange hacks

® Hackers can steal customer data and sell it to their kidnapper friends
Option B: You could send 1 ETH to a fresh address from your 100
ETH address and use that to pay the room rent

® Now suppose you decide to extend your stay

® You make another 1 ETH transfer from your main ETH address

® The clerk can now infer that you control a large amount of ETH

¢ Tornado Cash is a better Option B

It is a smart contract on Ethereum which implements a mixer

2/17



Tornado Cash Overview

Pre-Nova Version

Tornado Cash
Smart Contract

Deposit 1 ETH

Alice’s address
100 ETH
Bob’s address
5ETH
Carol’'s address
3ETH

Deposit 1 ETH

Deposit 1 ETH

Withdraw 1 ETH

New address 1
1ETH
New address 2
1ETH

Withdraw 1 ETH

¢ Desired functionality
® Soundness
® Only past depositors should be able to withdraw
® No double withdrawal (only one withdrawal per deposit)
® Privacy: A withdrawal should not be linkable to a particular past
deposit

3/17



Deposit Workflow (1/2)

Choose amount and chain

08 tornado.cash o

© tornado mmo Cominmee i M e

Deposit Withdraw

1Em 10 £ 100 ETH

08 tornado.cash 1A

Change network

4/17



Deposit Workflow (2/2)
Connect wallet, save note, and deposit

o8 tormado.cash o

© tornado i m

Withdraw

QO 8 he tornado.cash o

Your private note

Please b will need it later

share

5/17



Deposit Steps (1/2)

¢ Anatomy of a Tornado Cash private note

tornado—eth-0.1-5-0x 22e9829348329423842394823eabc37dedec78£904bb799d73e30159614bfb

Header 31-byte Nullifier

eff45678284749dcbbabcel8ecea65351366aec97£d064ec630361£fb01db28

31-byte Secret

® The 62 bytes in the nullifier and secret are randomly generated
on the user’s computer

* A commitment (Pedersen hash of the 62 bytes) is calculated
and submitted to the contract
Pedersen hash of bitstring by by ... b, = g? g2 ... g

~In

e Contract checks that _commitment has not been seen before

mapping (bytes32 => bool) public commitments;
// <sn >

p

require (!commitments[_commitment], "The commitment has been submitted");

6/17



Deposit Steps (2/2)

e Contract inserts _commitment into a Merkle tree

uint32 insertedIndex = _insert (_commitment);

® Tree has 20 levels
® insertedIndex is the index of new leaf
root

AN

® No leaf deletions allowed = Maximum of 22° deposits
e Stores the fact that _commitment has been seen

commitments [_commitment] = true;
e Checks that ETH being sent equals contract denomination
require (msg.value == denomination, "Please send 1 ETH with transaction");

* Emits an event

emit Deposit (_commitment, insertedIndex, block.timestamp) ;

7117



Withdrawal Workflow (1/3)

Enter note string and recipient address

tornado.cash

Goerli | i

Deposit \ Statistics

Note @ Anenymity set

4087 equal user deposits

Amount: Latest deposits

UL FLEE 4087. an hour ago 11 hours ago
Subsequent deposits
4086. an hour ago 21 hours ago

Recipient Address Donate 4885. an hour ago a

l 0x3081b6978£7374e6427Db8b78dA2985b6C5D6483 A2 2 I D a day

4083, 5 hours a

Total

Gas Price

Network fee ©.0022 gETH
©.000099 ETH
.002299 ETH

Tokens to receive 0.997701 ETH




Withdrawal Workflow (2/3)

Choose relayer

T 8 bty p tornado.cash had

Withdrawal settings

9/17



Withdrawal Workflow (2/3

Choose relayer

O & he p.tornado.cash 1Ad

Withdrawal settings

goerli-v2.tornado:

goerli-v2.poanet.eth

goerli.v2.odanrot

goerli-

goerli-

10/17



Withdrawal Workflow (2/3)

Choose wallet if you have an unlinkable address with ETH

O & he tornado.cash @

Withdrawal settings

11/17



Withdrawal Workflow (3/3)

Generate proof and confirm withdrawal

oa

12/17



Withdrawal Steps (1/2)

® Recall our requirements
® Soundness
® Only past depositors should be able to withdraw
® No double withdrawal (only one withdrawal per deposit)
® Privacy: A withdrawal should not be linkable to a particular past
deposit
® The withdraw method is executed
function withdraw (
bytes calldata _proof,
bytes32 _root,
bytes32 _nullifierHash,
address payable _recipient,
address payable _relayer,
uint256 _fee
// <snip>
)
e proof is a SNARK proof for the following statement:
| know the secret and nullifier for a commitment which is included
in the Merkle tree with root _root.
Furthermore, _nullifierHash is the Pedersen hash of the
commitment’s nullifier.

13/17



Withdrawal Steps (2/2)

Contract checks that _nullifierHash has not been seen

before.
mapping (bytes32 => bool) public nullifierHashes;
// <snip>

require (!nullifierHashes[_nullifierHash], "Note already spent");
This prevents double withdrawal
Checks that _root is any of the last 100 Merkle roots

require (isKnownRoot (_root), "Cannot find your merkle root");

It then verifies the SNARK proof on-chain
require (
verifier.verifyProof (_proof,
[uint256 (_root), uint256(_nullifierHash), ...]

),
"Invalid withdraw proof"

)i
Stores the fact that _nullifierHash has been seen

nullifierHashes[_nullifierHash] = true;
Sends relevant amounts to _recipient and _relayer
_recipient.call.value (denomination - _fee) ("");

_relayer.call.value (_fee) ("");
The SNARK proof also “signs” the _recipient, _relayer,
_fee fields to prevent tampering

The verifier contract is generated using the circom compiler.

14/17



withdraw.circom

ate Withdraw(levels) {
ignal input root;
i t nullifierHash;
t recipient;
relayer;
fee;
ate input nullifier;
t secret;
t pathElements[levels];
t pathIndices[levels];

ent hasher = CommitmentHasher();
hasher.nullifier <== nullifier;
hasher.secret <== secret;
hasher.nullifierHash === nullifierHash;

ent tree = MerkleTreeChecker(levels);
tree.leaf <== hasher.commitment;
tree.root root;
for (var i = 8; i < levels; i++) {
tree.pathElements[i] pathElements[i];
tree.pathIndices[i] < athIndices[i];

recipientSquare;
ignal feeSquare;
ignal relayerSquare;
recipientSquare <== recipient * recipient;
feeSquare <== fee * fee;
relayerSquare <== relayer * relayer;

ent main = Withdraw(20);




OFAC Sanctions

On Aug 8, 2022, the US Office of Foreign Assets Control placed
Tornado Cash addresses on a sanction list

US residents/businesses cannot interact with entities on the list

Allegations include facilitating money laundering by ransomware
operators and smart contract attackers

Github removed source repos and three contributors had Github
accounts suspended

Due to the efforts of Prof. Matthew Green and EFF, OFAC
allowed use of code for educational purposes

Github repositories and accounts restored in 2023

Developer Alexey Pertsev arrested in Netherlands in Aug 2022;
released on bail in April 2023

Developer Roman Storm arrested in US on Aug 23, 2023 and
later released on bail

Pertsev’s trial began on March 26, 2024. Verdict expected on
May 14

16/17



References

Tornado Cash App https://tornadoeth.cash/
Tornado Cash Docs https://docs.tornadoeth.cash/
Circom https://docs.circom.io/
https://github.com/tornadocash/tornado-core
EFF article on OFAC sanctions

EFF update in April 2023

17/17


https://tornadoeth.cash/
https://docs.tornadoeth.cash/
https://docs.circom.io/
https://github.com/tornadocash/tornado-core
https://www.eff.org/deeplinks/2022/08/code-speech-and-tornado-cash-mixer
https://www.eff.org/deeplinks/2023/04/update-tornado-cash

